CN111579548B - 一种鲁米诺-镓纳米组装体及其制备方法和应用 - Google Patents

一种鲁米诺-镓纳米组装体及其制备方法和应用 Download PDF

Info

Publication number
CN111579548B
CN111579548B CN202010430519.9A CN202010430519A CN111579548B CN 111579548 B CN111579548 B CN 111579548B CN 202010430519 A CN202010430519 A CN 202010430519A CN 111579548 B CN111579548 B CN 111579548B
Authority
CN
China
Prior art keywords
luminol
tmb
assembly
gallium
ppi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010430519.9A
Other languages
English (en)
Other versions
CN111579548A (zh
Inventor
祁文静
田雪
吴狄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Normal University
Original Assignee
Chongqing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Normal University filed Critical Chongqing Normal University
Priority to CN202010430519.9A priority Critical patent/CN111579548B/zh
Publication of CN111579548A publication Critical patent/CN111579548A/zh
Application granted granted Critical
Publication of CN111579548B publication Critical patent/CN111579548B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明涉及一种鲁米诺‑镓纳米组装体及其制备方法和应用,属于化学生物传感以及生物检测技术领域。本发明采用一锅法制备由鲁米诺和Ga3+自组装形成的链状或网状结构的鲁米诺‑镓纳米组装体,以典型的3,3,5,5‑四甲基联苯胺(TMB)为过氧化物酶为底物时表现出类似于过氧化物模拟酶的活性,鲁米诺‑镓纳米组装体在H2O2存在的情况下触发无色TMB氧化成蓝色氧化TMB;此外,由于PPi与Ga3+之间的配位能够抑制鲁米诺‑镓纳米组装体催化TMB的氧化,使蓝色氧化TMB形成的蓝色变浅甚至消失,故本发明提供的鲁米诺‑镓纳米组装体实现了PPi的比色检测,具有检测限低和选择性好的特点。

Description

一种鲁米诺-镓纳米组装体及其制备方法和应用
技术领域
本发明属于化学生物传感以及生物检测技术领域,具体涉及一种鲁米诺-镓纳米组装体及其制备方法和应用。
背景技术
天然酶是数千种生物反应的有效催化剂,它们在非生理环境中的稳定性差、生产成本高、储存困难,从未限制了它们的实际应用。与天然酶相似,纳米材料被认为是具有令人满意的效率、稳定性和选择性的人工酶。因此,纳米材料作为酶的应用在世界范围内都是一个不断发展的研究领域。迄今为止,各种纳米材料被用作酶,包括量子点、过渡金属双卤代烃、贵金属纳米颗粒/纳米团簇、复合材料等。在现有报道中,Liu等人合成了光敏金属-有机骨架,并对其过氧化物模拟酶活性进行了研究:光敏金属-有机骨架的过氧化物模拟酶活性可以通过猝灭和恢复光强度来调节,由于谷胱甘肽抑制光敏金属-有机骨架的催化活性,因此开发了一种检测细胞内谷胱甘肽的方法;Ivanova和他的同事开发了无表面活性剂的氮化硼纳米薄片纳米复合材料,并以3,3,5,5-四甲基联苯胺(TMB)为过氧化物酶底物,研究其过氧化物模拟酶催化活性,由于多巴胺的存在抑制了Pt修饰的氮化硼纳米片的催化活性,从而开发了多巴胺检测方法;Jin等人合成了PdPt双金属合金纳米线,并基于PdPt双金属合金纳米线的过氧化物模拟酶活性,开发了酸性磷酸酶的比色检测方法;Zhang等人将分子印迹技术应用于生长在Fe3O4纳米颗粒上的分子印迹聚合物杂化材料的合成,在催化氧化条件下获得了显著的过氧化物酶拟合特异性和活性增强。上述具有过氧化物模拟酶活性的纳米材料在分析领域具有广阔的应用前景。然而,合成纳米材料的繁琐过程和高昂的成本极大地限制了其实际应用。因此,通过一种环境友好、操作简单、成本低廉的方法合成具有过氧化物酶活性的纳米粒子是很有必要的。
焦磷酸根(P2O7 4-,PPi)是由两个在生物代谢过程中起重要作用的无机磷酸盐单元缩合反应而形成的,是三磷酸腺苷(ATP)细胞水解的副产物。PPi的浓度为柠檬酸和ATP的水解、DNA复制和环腺苷酸(c-AMP)的生成等重要诊断提供了重要信息。对于患有二水焦磷酸钙晶体沉积病的患者,滑膜液中PPi水平异常高,因此,PPi水平已成为疾病研究的重要指标;此外,PPi还具有与Cu2+、Al3+、Zn2+、Ga3+等金属离子的配位能力。因此,基于PPi与金属离子间的配位能力,开发PPi检测方法是可行的。迄今为止,PPi的检测方法有色谱法、电化学法、比色法、单粒子暗视野显微镜法、荧光法等,其中,荧光法具有较高的灵敏度;比色法比较方便。因此,尽管对PPi检测进行了广泛的研究,开发灵敏度高、响应时间快、成本低、使用方便的PPi检测方法仍需要付出努力。
纳米粒子体积小,通常具有链状、网状和交错的结构,这使得纳米粒子在超级电容器、催化剂和水分解等方面具有良好的应用前景,故有必要将纳米组装体的结构应用于检测PPi分子中。
发明内容
有鉴于此,本发明的目的之一在于提供一种鲁米诺-镓纳米组装体;本发明的目的之二在于提供一种鲁米诺-镓纳米组装体的制备方法;本发明的目的之三在于提供一种鲁米诺-镓纳米组装体作为模拟酶在催化3,3,5,5-四甲基联苯胺显色中的应用;本发明的目的之四在于提供一种鲁米诺-镓纳米组装体在检测焦磷酸根(PPi)中的应用。
为达到上述目的,本发明提供如下技术方案:
1.一种鲁米诺-镓纳米组装体,所述组装体为鲁米诺和Ga3+组装形成的链状或网状结构。
2.上述鲁米诺-镓纳米组装体的制备方法,所述方法具体为:将含有Ga3+的溶液与鲁米诺溶液在室温下按照0.5~2.0:8的摩尔比混合,自组装1min以上即可形成鲁米诺-镓纳米组装体。
优选的,所述含有Ga3+的溶液的浓度为1~5mM。
进一步优选的,所述含有Ga3+的溶液中溶剂为水。
进一步优选的,所述含有Ga3+的溶液为三氯化镓溶液。
优选的,所述鲁米诺溶液的浓度为5~20mM。
进一步优选的,所述鲁米诺溶液中的溶剂为水。
3.上述鲁米诺-镓纳米组装体作为模拟酶在催化3,3,5,5-四甲基联苯胺(TMB)显色中的应用。
优选的,所述显色过程具体为:将上述鲁米诺-镓纳米组装体加入到TMB与H2O2形成的TMB-H2O2体系中,无色TMB在体系中能够氧化形成蓝色氧化TMB,从而是体系显蓝色。
4.上述鲁米诺-镓纳米组装体在检测焦磷酸根(PPi)中的应用。
优选的,所述应用具体为:向上述鲁米诺-镓纳米组装体与TMB-H2O2体系形成的鲁米诺-镓纳米组装体-TMB-H2O2体系中添加PPi来改变体系的吸光度。
本发明的有益效果在于:
1、本发明提供了一种由鲁米诺和Ga3+自组装形成的链状或网状结构的鲁米诺-镓纳米组装体,以典型的TMB为过氧化物酶为底物时表现出类似于过氧化物模拟酶的活性,鲁米诺-镓纳米组装体在H2O2存在的情况下触发无色TMB氧化成蓝色氧化TMB;此外,由于PPi与Ga3+之间的配位能够抑制鲁米诺-镓纳米组装体催化TMB的氧化,使蓝色氧化TMB形成的蓝色变浅甚至消失,故本发明提供的鲁米诺-镓纳米组装体实现了PPi的比色检测,具有检测限低和选择性好的特点。
2、本发明的鲁米诺-镓纳米组装体采用一锅法制备,制备方法简单,容易操作,适合大批量制作的工业应用。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为鲁米诺-镓纳米组装体的TEM(A)和SEM(B)图;
图2为不同体系中的可见光下的颜色变化图和紫外-可见吸收谱图,其中a为TMB-H2O2体系,b为鲁米诺-镓纳米组装体-TMB-H2O2体系,c为向鲁米诺-镓纳米组装体-TMB-H2O2体系中加入PPi;
图3为吸光度降低的百分比((A0-A)/A0)随Ga3+浓度的变化情况;
图4为加入PPi后不同相应时间(2min、5min、10min、20min和30min)下的吸光度降低百分比变化情况;
图5为无色TMB氧化成蓝色氧化TMB的反应温度对吸光度降低百分比的影响;
图6为无色TMB氧化成蓝色氧化TMB的反应时间对吸光度降低百分比的影响;
图7为不同浓度的PPi对鲁米诺-镓纳米组装体-TMB-H2O2体系的影响,其中A为PPi浓度对鲁米诺-镓纳米组装体-TMB-H2O2体系的可见光下颜色的影响、B为PPi浓度对体系中吸光度的影响、C为PPi浓度对体系中吸光度降低百分比的影响;
图8为不同离子对含有鲁米诺-镓纳米组装体的鲁米诺-镓纳米组装体-TMB-H2O2体系吸光度的影响;
图9为鲁米诺-镓纳米组装体对PPi的比色检测的流程图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
实施例1
采用一锅法制备一种鲁米诺-镓纳米组装体,具体的制备方法如下:
将100μL三氯化镓溶液(1mM)和40μL鲁米诺溶液(20mM)加入到1.5mL的塑料小瓶中,使其充分混合,然后在室温下1min以上后获得鲁米诺-镓纳米组装体。
将上述方法制备得到的鲁米诺-镓纳米组装体的TEM和SEM图分别如图1中A和B所示。从图1的结果表面,鲁米诺-镓纳米组装体是由小颗粒形成的,且小颗粒自组装在一起,聚集形成链状或网状纳米组装体。制备的鲁米诺-镓纳米组装体在4℃冰箱中可稳定存放1个月以上,说明鲁米诺-镓纳米组装体具有较好的稳定性。
另外由于上述反应中主要是来自于自组装形成,故其反应结果受到反应物的量较小,反应体系中均采用水溶液进行,其中1mM的三氯化镓溶液可以用其它含有Ga3+浓度为1~5mM之间的可溶于水的溶液代替、20mM鲁米诺溶液可以用浓度为5~20mM之间的鲁米诺溶液代替、体系中将Ga3+与鲁米诺以0.5~2.0:8的摩尔比混合、自组装时间在1min中以上即可得到鲁米诺-镓纳米组装体。
实施例2
将3,3,5,5-四甲基联苯胺(TMB)作为过氧化物酶底物,测试鲁米诺-镓纳米组装体的过氧化物模拟酶活性,具体方法为:
将实施例中制备的鲁米诺-镓纳米组装体加入到以3,3,5,5-四甲基联苯胺(TMB)作为过氧化物酶底物的TMB-H2O2体系(体系为pH=4.0的浓度为0.04M的HAc-NaAc)中形成鲁米诺-镓纳米组装体-TMB-H2O2体系,然后向鲁米诺-镓纳米组装体-TMB-H2O2体系加入焦磷酸根(PPi),分别测试体系(体系中鲁米诺的浓度为0.8mM、Ga3+的浓度为0.1mM、H2O2的浓度为0.2M、TMB的浓度为1.0mM)在加入鲁米诺-镓纳米组装体之前和之后的紫外-可见吸收,测试结果如图2所示(其中a为TMB-H2O2体系,b为鲁米诺-镓纳米组装体-TMB-H2O2体系,c为向鲁米诺-镓纳米组装体-TMB-H2O2体系中加入PPi)。由图2可知,TMB-H2O2体系对溶液的紫外-可见吸收较弱,没有典型的蓝色,说明TMB没有被H2O2氧化(因为没有催化剂);然而,在向TMB-H2O2体系中加入鲁米诺-镓纳米组装体后形成的鲁米诺-镓纳米组装体-TMB-H2O2体系中,TMB可以被H2O2催化氧化,从无色的TMB到蓝色的氧化TMB发生了显著的颜色反应,并在652nm处出现了吸收峰(其原因在于TMB被氧化成蓝色产品氧化TMB),说明在TMB-H2O2体系中鲁米诺-镓纳米组装体起到了催化作用,具有过氧化物模拟酶活性;继续向鲁米诺-镓纳米组装体-TMB-H2O2体系加入PPi,蓝色逐渐消失,652nm处的吸光度急剧下降(下降约72%),说明加入PPi后蓝色产品氧化TMB的含量减少,说明加入PPi后鲁米诺-镓纳米组装体-TMB-H2O2体系中鲁米诺-镓纳米组装体的过氧化物模拟酶活性降低,其原因在于鲁米诺-镓纳米组装体中的Ga3+与PPi之间发生了协同作用,破坏了鲁米诺-镓纳米组装体结构,从而降低其过氧化物模拟酶活性,减少蓝色产品氧化TMB的含量。
实施例3
比色法中用鲁米诺-镓纳米组装体检测PPi,其中测试中个条件的影响结果如下:
向含有浓度为0.8mM的鲁米诺、浓度为0.2M的H2O2和浓度为1mM的H2O2体系(pH=4.0的浓度为0.04M的HAc-NaAc)中加入Ga3+,逐渐增加Ga3+的含量,测定体系中Ga3+的浓度为0.01mM、0.02mM、0.05mM、0.1mM、0.6mM、0.8mM时体系中吸光度,吸光度降低的百分比((A0-A)/A0)随Ga3+浓度变化趋势图如图3所示(A0为鲁米诺-镓纳米组装体-TMB-H2O2体系的吸光度、A为鲁米诺-镓纳米组装体-TMB-H2O2体系加入PPi后的吸光度)。由图3可知,吸光度降低的百分比((A0-A)/A0)随Ga3+浓度变化趋势是先增加后减少,在Ga3+的浓度为0.1mM时吸光度降至最低。
测定体系(PPi浓度为15μM、鲁米诺浓度为0.8mM、Ga3+浓度为0.1mM、H2O2浓度为0.2M、TMB浓度为1mM,pH=4.0的浓度为0.04M的HAc-NaAc)中加入PPi后的不同响应时间(2min、5min、10min、20min和30min)下的吸光度降低百分比((A0-A)/A0)变化情况,其结果如图4所示、由图4可知,在响应时间为20min时吸光度降至最低。
将体系中的HAc–NaAc缓冲溶液替换为磷酸盐溶液或柠檬酸盐缓冲溶液后体系中的吸光度降低百分比基本上不受影响。
测定向TMB-H2O2体系中加入鲁米诺-镓纳米组装体后在不同的温度(19℃、25℃、27℃、37℃和50℃)下反应(即无色TMB氧化成蓝色氧化TMB的反应),其中体系中PPi浓度为15μM、鲁米诺浓度为0.8mM、Ga3+浓度为0.1mM、H2O2浓度为0.2M、TMB浓度为1mM,pH=4.0的浓度为0.04M的HAc-NaAc,吸光度降低百分比的变化情况,其结果如图5所示,选择37℃为最优的反应温度。
测定向TMB-H2O2体系中加入鲁米诺-镓纳米组装体后在不同的反应(即无色TMB氧化成蓝色氧化TMB的反应)时间(10min、20min、30min、40min、50min、60min、70min和80min),吸光度降低百分比的变化情况,其中体系中PPi浓度为15μM、鲁米诺浓度为0.8mM、Ga3+浓度为0.1mM、H2O2浓度为0.2M、TMB浓度为1mM,pH=4.0的浓度为0.04M的HAc-NaAc,其结果如图6所示,选择60min为最优的反应时间。
实施例3
优化条件下基于鲁米诺-镓纳米组装体的可视化定量检测PPi:
选择实施例2中确定的各种优化后的条件(体系中鲁米诺浓度为0.8mM、Ga3+浓度为0.1mM、H2O2浓度为0.2M、TMB浓度为1mM,pH=4.0的浓度为0.04M的HAc–NaAc、响应时间为20min、反应时间为60min、反应温度为37℃)下检测加入不同浓度的PPi对体系的影响情况如图7所示。由图7可知,随着体系中加入的PPi浓度从1μM到50μM的增加,体系中溶液蓝色逐渐变浅,在浓度为50μM的情况下溶液蓝色逐渐消失(如图7中A所示)。由此表明,由于体系中鲁米诺-镓纳米组装体中Ga3+与PPi的协同作用,无色的TMB被氧化成蓝色的氧化TMB受到抑制。基于蓝色氧化TMB到无色TMB的颜色变化,实现PPi的比色检测,该比色法可以作为一个定性的比色法检测PPi。此外,继续用紫外-可见吸收光谱进行测量,实现了对PPi的定量测定。PPi添加浓度(0μM、0.5μM、0.8μM、2μM、4μM、6μM、7μM、10μM、12μM和15μM)对体系中的紫外-可见吸收测量结果(图7中B)显示,氧化TMB在652nm处的吸光度是由鲁米诺-镓纳米组装体催化氧化TMB造成的;加入不同浓度的PPi(0μM、0.5μM、0.8μM、2μM、4μM、6μM、7μM、10μM、12μM和15μM)后,氧化TMB在652nm处的吸光度逐渐降低(如图7中B所示),得到了652nm处的吸光度降低百分比与PPi浓度之间良好的线性关系(如图7中C所示),拟合得到线性方程为:
(A0-A)/A0=0.04718c-0.01596,其中c为PPi浓度,单位为μM,相关系数(r)为0.9977。
根据响应的标准差和校准曲线的斜率计算得到PPi的检出限(LOD)为62.4nM(3σ,n=9)。与其它关于PPi检测的报道(表1)相比,本发明采用鲁米诺-镓纳米组装体检测PPi的LOD值要低于其他PPi检测中的大部分。因此,利用鲁米诺-镓纳米组装体检测PPi是一种灵敏的方法。
表1不同方法检测PPi的LOD比较
Figure BDA0002500372490000061
Figure BDA0002500372490000071
其中方法中[1]来自于文献“Xu,W.W.,et al.,Electrochemical method ofpyrophosphate determination by quinone reduction.Electrochim.Acta,2019.300:p.171-176”、[2]来自于“Ma,J.L.,et al.,Copper-mediated DNA-scaffolded silvernanocluster on-off switch for detection of pyrophosphate and alkalinephosphatase.Anal.Chem.,2016.88(18):p.9219-25”、[3]来自于“Qian,Z.,et al.,Areversible fluorescent nanoswitch based on carbon quantum dots nanoassemblyfor real-time acid phosphatase activity monitoring.Anal.Chem.,2015.87(14):p.7332-9”、[4]来自于“Sun,J.,et al.,Highly sensitive real-time assay ofinorganic pyrophosphatase activity based on the fluorescent goldnanoclusters.Anal.Chem.,2014.86(15):p.7883-9”、[5]来自于“Li,H.,et al.,A dual-responsive luminescent metal–organic framework as a recyclable luminescentprobe for the highly effective detection of pyrophosphate andnitrofurantoin.Analyst,2019.144(15):p.4513-4519”、[6]来自于“Xu,W.W.,et al.,Electrochemical method of pyrophosphate determination by quinonereduction.Electrochim.Acta,2019.300:p.171-176”、[7]来自于“Chen,Y.,et al.,Cysteine-directed fluorescent gold nanoclusters for the sensing ofpyrophosphate and alkaline phosphatase.J.Mater.Chem.C,2014.2(20):p.4080-4085”、[8]来自于“Han,Y.,et al.,A rational strategy to develop a boron nitridequantum dot-based molecular logic gate and fluorescent assay of alkalinephosphatase activity.J.Mater.Chem.B,2019.7(6):p.897-902”、[9]来自于“Zhang,W.J.,et al.,A ratiometric fluorescent and colorimetric dual-signal sensingplatform based on N-doped carbon dots for selective and sensitive detectionof copper(II)and pyrophosphate ion.Sens.Actuat.B:Chem.,2019.283:p.215-221”、[10]来自于“Lin,Z.,et al.,Silica-polydopamine hybrids as light-induced oxidasemimics for colorimetric detection of pyrophosphate.Analyst,2020.145(2):p.424-433”、[11]来自于“Shi,D.,et al.,Naked-eye sensitive detection of alkalinephosphatase(ALP)and pyrophosphate(PPi)based on horseradish peroxidasecatalytic colorimetric system with Cu(II).Analyst,2016.141(19):p.5549-5554”文献中报道的检测PPi的方法。
测试浓度为15μM的不同离子(K+、Na+、Ca2+、Mg2+、Ag+、F-、Cl-、Br-、I-、NO3-和PPi)对含有鲁米诺-镓纳米组装体的鲁米诺-镓纳米组装体-TMB-H2O2体系(鲁米诺浓度为0.8mM、Ga3+浓度为0.1mM、H2O2浓度为0.2M、TMB浓度为1mM,pH=4.0的浓度为0.04M的HAc–NaAc、响应时间为20min、反应时间为60min、反应温度为37℃)中的吸光度影响,其结果如图8所示。由图8可知,PPi导致吸光度下降,而在鲁米诺-镓纳米组装-TMB-H2O2体系中加入其他离子,与空白样品相比,吸光度变化可以忽略不计。说明本发明加入鲁米诺-镓纳米组装体的方法对PPi的检测具有很好的选择性。此外,通过在PPi样品中添加共存物质,测试了本方法检测PPi的抗干扰能力,如表2所示,与PPi相比,添加50倍NaCl、KCl、MgCl2、CaCl2、ZnSO4、FeCl3、KNO3、KI或KBr;20倍的Na3PO4、Na2HPO4或NaH2PO4的对PPi检测无干扰。
表2添加不同的共存物对PPi检测的干扰
Figure BDA0002500372490000081
Figure BDA0002500372490000091
实施例4
将上述检测体系(鲁米诺-镓纳米组装体-TMB-H2O2体系)对湖水和自来水样中的PPi进行检测(将2μM、6μM和10μM的PPi分别加入湖中和自来水样中),其加标回收实验结果如表3所示。
表3湖水和自来水样品中PPi的加标回收实验结果
Figure BDA0002500372490000092
a 湖水样品,b自来水样品
综上所述,鲁米诺-镓纳米组装体是通过绿色的一锅法合成的,并以典型的TMB为过氧化物酶为底物,表现出类似于过氧化物模拟酶的活性。鲁米诺-镓纳米组装体在H2O2存在的情况下触发无色TMB氧化成蓝色氧化TMB;此外,PPi与Ga3+之间的配位涉及到鲁米诺-镓纳米组装体,能够抑制TMB的氧化。将PPi引入到鲁米诺-镓纳米组装体-TMB-H2O2体系中,使蓝色氧化TMB形成的蓝色变浅甚至消失(如图9所示)。因此,本发明提供的鲁米诺-镓纳米组装体实现了PPi的比色检测,其检测限为62.4nM,吸收光谱测量结果和比色法的结果均表明,本发明基于鲁米诺-镓纳米组装体的检测方法可以用于定量测定环境水样(湖水和自来水样品)中的PPi。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

1.一种鲁米诺-镓纳米组装体作为模拟酶在催化3,3,5,5-四甲基联苯胺显色中的应用。
2.根据权利要求1所述的应用,其特征在于,所述组装体为鲁米诺和Ga3+组装形成的链状或网状结构。
3.根据权利要求1所述的应用,其特征在于,所述鲁米诺-镓纳米组装体的制备方法具体为:将含有Ga3+的溶液与鲁米诺溶液在室温下按照Ga3+与鲁米诺以0.5~2.0:8的摩尔比混合,自组装1min以上即可形成鲁米诺-镓纳米组装体。
4.根据权利要求3所述的应用,其特征在于,所述含有Ga3+的溶液的浓度为1~5mM。
5.根据权利要求4所述的应用,其特征在于,所述含有Ga3+的溶液中溶剂为水。
6.根据权利要求5所述的应用,其特征在于,所述含有Ga3+的溶液为三氯化镓溶液。
7.根据权利要求3所述的应用,其特征在于,所述鲁米诺溶液的浓度为5~20mM。
8.根据权利要求7所述的应用,其特征在于,所述鲁米诺溶液中的溶剂为水。
CN202010430519.9A 2020-05-20 2020-05-20 一种鲁米诺-镓纳米组装体及其制备方法和应用 Expired - Fee Related CN111579548B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010430519.9A CN111579548B (zh) 2020-05-20 2020-05-20 一种鲁米诺-镓纳米组装体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010430519.9A CN111579548B (zh) 2020-05-20 2020-05-20 一种鲁米诺-镓纳米组装体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111579548A CN111579548A (zh) 2020-08-25
CN111579548B true CN111579548B (zh) 2022-03-18

Family

ID=72117394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010430519.9A Expired - Fee Related CN111579548B (zh) 2020-05-20 2020-05-20 一种鲁米诺-镓纳米组装体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111579548B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541999A (ja) * 1991-08-09 1993-02-23 Snow Brand Milk Prod Co Ltd メタノールの定量法
CN102539420A (zh) * 2012-02-10 2012-07-04 侯巍 一种液体蛋白质浓度检测方法
CN103033611A (zh) * 2012-12-13 2013-04-10 北京新华联协和药业有限责任公司 致敏性变应原化学发光法诊断试剂盒及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984524B2 (en) * 2002-09-12 2006-01-10 Control Screening, Llc Chemiluminescent detection of explosives, narcotics, and other chemical substances
US7674629B2 (en) * 2007-03-15 2010-03-09 Saint Louis University Method for improving chemiluminescent signal
CN102967595B (zh) * 2012-12-03 2015-04-15 北京化工大学 一种化学发光传感器及采用该传感器检测葡萄糖的方法
CN104437560B (zh) * 2014-10-20 2017-04-26 青岛科技大学 一种纳米黑硒过氧化物模拟酶及其制备方法
EP3258270B1 (en) * 2015-02-10 2019-05-29 Shenzhen New Industries Biomedical Engineering Co. Ltd. Cardiac troponin i ultra-sensitive detection reagent kit, and ultra-sensitive detection method therefor
CN107121402B (zh) * 2017-04-21 2020-02-14 同济大学 一种基于金属有机骨架化合物模拟酶催化特性的水体中氯霉素检测方法
CN108003864B (zh) * 2017-12-04 2019-08-20 西南科技大学 一种鲁米诺发光功能化纳米氮化硼及其制备方法
CN108535240A (zh) * 2018-04-13 2018-09-14 江南大学 以牛血清蛋白-铜纳米簇催化鲁米诺化学发光检测胰蛋白酶的方法
CN109161478B (zh) * 2018-06-26 2022-01-25 东南大学 一种基于金/鲁米诺纳米复合物的生物芯片及其制备方法和应用
CN110186910B (zh) * 2019-05-15 2021-11-12 济南大学 一种双抑制电致化学发光传感器及测定草甘膦的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541999A (ja) * 1991-08-09 1993-02-23 Snow Brand Milk Prod Co Ltd メタノールの定量法
CN102539420A (zh) * 2012-02-10 2012-07-04 侯巍 一种液体蛋白质浓度检测方法
CN103033611A (zh) * 2012-12-13 2013-04-10 北京新华联协和药业有限责任公司 致敏性变应原化学发光法诊断试剂盒及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chemiluminescence flow biosensor for glucose using Mg-Al carbonate layered double hydroxides as catalysts and buffer solutions;Zhihua Wang 等;《Biosensors and Bioelectronics》;20120626(第38期);第284–288页 *

Also Published As

Publication number Publication date
CN111579548A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
Singh et al. Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and their application in colorimetric detection of H 2 O 2 and glutathione in human blood serum
Liu et al. Facile synthesis of magnetic hierarchical flower-like Co3O4 spheres: Mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications
Liu et al. Smartphone based platform for ratiometric fluorometric and colorimetric determination H2O2 and glucose
Jia et al. Enzyme-like catalysis of polyoxometalates for chemiluminescence: Application in ultrasensitive detection of H2O2 and blood glucose
Yin et al. Breaking the pH limitation of peroxidase-like CoFe2O4 nanozyme via vitriolization for one-step glucose detection at physiological pH
Liao et al. A highly selective colorimetric sulfide assay based on the inhibition of the peroxidase-like activity of copper nanoclusters
CN110715912B (zh) 一种硫量子点/二氧化锰纳米片复合材料及其制备方法与应用
Li et al. Ratiometric fluorescence and colorimetric detection for uric acid using bifunctional carbon dots
Sun et al. A carbon dot doped lanthanide coordination polymer nanocomposite as the ratiometric fluorescent probe for the sensitive detection of alkaline phosphatase activity
Xiong et al. Ultrasmall phosphatase-mimicking nanoceria with slight self-colour for nonredox nanozyme-based colorimetric sensing
Chen et al. Visual and dual-fluorescence homogeneous sensor for the detection of pyrophosphatase in clinical hyperthyroidism samples based on selective recognition of CdTe QDs and coordination polymerization of Ce 3+
Wang et al. Constructing bifunctional metal–organic framework based nanozymes with fluorescence and oxidase activity for the dual-channel detection of butyrylcholinesterase
Du et al. Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity
Zhao et al. Colorimetric determination of the activities of tyrosinase and catalase via substrate-triggered decomposition of MnO 2 nanosheets
CN115266702A (zh) 具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用
CN110487778B (zh) 基于水凝胶构建的辉光型化学发光传感器及其制备方法和应用
Chen et al. Responsive methylene blue release from lanthanide coordination polymer for label-free, immobilization-free and sensitive electrochemical alkaline phosphatase activity assay
Xu et al. MOF@ MnO2 nanocomposites prepared using in situ method and recyclable cholesterol oxidase–inorganic hybrid nanoflowers for cholesterol determination
Hormozi Jangi Detection mechanism and principles of the multinanozyme systems as the new generation of nanozyme-mediated sensing assays: A critical review
Zhang et al. Colorimetric copper (Ⅱ) ions detection in aqueous solution based on the system of 3′ 3′ 5′ 5′-tetramethylbenzidine and AgNPs in the presence of Na2S2O3
Hou et al. A ratiometric electrochemical biosensor via alkaline phosphatase mediated dissolution of nano-MnO2 and Ru (III) redox recycling for the determination of dimethoate
Chen et al. Enhancing catalytic performance of Fe and Mo co-doped dual single-atom catalysts with dual-enzyme activities for sensitive detection of hydrogen peroxide and uric acid
Xu et al. UiO-66-NH2: An easily attainable and label-free turn-on probe for facile fluorescence sensing of alkaline phosphatase
CN111579548B (zh) 一种鲁米诺-镓纳米组装体及其制备方法和应用
Niu et al. Pyrophosphate-Mediated On–Off–On Oxidase-Like Activity Switching of Nanosized MnFe 2 O 4 for Alkaline Phosphatase Sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220318