CN115266702A - 具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用 - Google Patents

具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用 Download PDF

Info

Publication number
CN115266702A
CN115266702A CN202210962449.0A CN202210962449A CN115266702A CN 115266702 A CN115266702 A CN 115266702A CN 202210962449 A CN202210962449 A CN 202210962449A CN 115266702 A CN115266702 A CN 115266702A
Authority
CN
China
Prior art keywords
glyphosate
enzyme activity
nano material
prussian blue
heptanoic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210962449.0A
Other languages
English (en)
Inventor
陈丹
杨德志
王春琼
杨亚玲
张轲
李秋兰
黄文勇
孙浩威
王越茂
张燕
尹晓东
宋洁
胡小东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan tobacco quality supervision and inspection station
Original Assignee
Yunnan tobacco quality supervision and inspection station
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan tobacco quality supervision and inspection station filed Critical Yunnan tobacco quality supervision and inspection station
Priority to CN202210962449.0A priority Critical patent/CN115266702A/zh
Priority to NL2033192A priority patent/NL2033192B1/en
Publication of CN115266702A publication Critical patent/CN115266702A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/003Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Zoology (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Composite Materials (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Power Engineering (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用,其中具有仿生酶活性的纳米材料是采用庚酸和普鲁士蓝修饰Fe3O4纳米颗粒,得到具有核壳结构的Fe3O4@C7/PB,其中芯核为四氧化三铁,壳层由庚酸和普鲁士蓝复配而成。本发明的有益效果是:通过庚酸和普鲁士蓝修饰的Fe3O4纳米颗粒合成了一种具有过氧化物酶样活性的纳米酶(Fe3O4@C7/PB),相比于Fe3O4@C7的过氧化物酶样活性更高,且Fe3O4@C7/PB可以通过单层PB保持稳定,以防止凝聚。我们建立了一种基于庚酸和普鲁士蓝(PB)修饰的Fe3O4纳米颗粒(Fe3O4@C7/PB)的过氧化物酶样活性的抗干扰智能手机辅助纳米传感平台,用于测定烟草中的草甘膦含量,其检测限为0.1μg mL‑1

Description

具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘 膦检测中的应用
技术领域
本发明涉及化学分析检测技术领域,特别是具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用。
背景技术
草甘膦是一种高效、广谱非选择性灭生性除草剂,由于其导电性高、成本效益高、且具有系统的杀灭效果,在许多领域特别是农业领域得到了广泛应用。草甘膦已成为世界顶级除草剂之一,其使用量仍在不断增加。虽然目前对草甘膦的毒性存在争议,但大量的草甘膦残留容易通过食物链对动物和人类产生潜在毒性,据报道,目前仍有中毒病例。中国、美国环境保护署和欧盟都设定了草甘膦残留限制。草甘膦是一种具有较强极性的氨基酸类除草剂,不溶于一般有机溶剂,缺乏显色基团和荧光基团,与植物中的有机化合物结合能力强,这使其很难被直接分析。到目前为止,用于检测草甘膦的传统分析技术主要有质谱、电化学、离子色谱、荧光光谱,及多种衍生方法。
具有仿生酶活性的纳米材料(即纳米酶)通常是批量生产的,成本低,与天然酶相比更具稳定性,是一种有前景的农药检测候选材料。报道了一种基于纳米酶催化氧化显色基质甚至痕量目标物的比色传感。关于用于农药检测的比色纳米酶,大多是基于对纳米酶活性的抑制。基于抑制多孔Co3O4纳米片的过氧化物酶样催化活性,罗等人提出了一种简易比色纳米酶片,用于快速检测农产品中的草甘膦。刘等人开发了一种由聚乙烯亚胺覆盖上转换纳米颗粒、铜(II)、过氧化氢和3,3’,5,5’-四甲基联苯胺组成的系统,用于草甘膦的比色和荧光测定。严等人创建了一种采用仿过氧化物酶(POD)Fe3O4纳米颗粒对有机磷农药进行的比色测定。自2007年首次报道Fe3O4纳米颗粒以来,研究范围迅速扩展到多种纳米材料,Fe3O4纳米颗粒也采用各种官能团修饰,以提高酶活性[17-19]。与Fe3O4类似,普鲁士蓝(PB)也是由具有较高类POD活性的混合价态Fe组成的。因此,比色和荧光传感平台具有很好的应用前景。
虽然目前检测草甘膦的方法灵敏度较高,但对于复杂的样品,样品制备更为复杂,这些方法不适用于快速现场检测。此外,对于复杂样品,纳米材料的催化活性也容易受到周围环境条件的影响。为了解决这些问题,开发了一些分析技术,如预处理技术、智能手机辅助传感平台等。具有高分辨率摄像头并可充当彩色相机的智能手机已经发展成为接收、处理和显示生化或化学物质检测数据的综合工具。
发明内容
本发明的目的在于克服现有技术的缺点,提供具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用。
本发明的目的通过以下技术方案来实现:
一种具有仿生酶活性的纳米材料的制备方法,具有核壳结构,采用庚酸和普鲁士蓝修饰Fe3O4纳米颗粒,得到具有核壳结构的Fe3O4@C7/PB,其中芯核为四氧化三铁,壳层由庚酸和普鲁士蓝复配而成。
作为优选的,在N2气氛中,向硫酸亚铁铵和三氯化铁混合液中加入庚酸、氨水和普鲁士蓝进行反应,得到包含所述具有仿生酶活性的纳米材料Fe3O4@C7/PB的沉淀物。
作为优选的,所述反应的时间为0.5-2h,反应温度为60-90℃。
作为优选的,反应液中硫酸亚铁铵、三氯化铁、庚酸、氨水和普鲁士蓝的摩尔比为1:1-1.4:0.16-0.19:0.003-0.004:4-5。
作为优选的,对沉淀物进行磁性分离和清洗,得到Fe3O4@C7/PB。
一种应用所述具有仿生酶活性的纳米材料的草甘膦检测方法,包括样品中草甘膦测定:在Fe3O4@C7/PB+H2O2+过氧化物酶基质系统中加入待测样品,通过监测系统颜色变化或吸光度变化,对甘草膦进行定量分析。
作为优选的,还包括标准曲线绘制:
拍摄不同草甘膦浓度下,Fe3O4@C7/PB+H2O2+过氧化物酶基质系统的彩色图像,获得所述彩色图像的RGB值并转化为灰度值,建立不同草甘膦浓度与灰度值之间的线性关系;
或,测定不同草甘膦浓度下,Fe3O4@C7/PB+H2O2+过氧化物酶基质系统的吸光度,获建立不同草甘膦浓度与吸光度之间的线性关系。
作为优选的,还包括样品预处理,所述样品预处理包括提取和脱色,所述脱色步骤是向提取液中加入Al(OH)3溶液和NaOH溶液,取上层清液,进行草甘膦测定。
作为优选的,所述过氧化物酶基质为2,2′-联氨-双(3-乙基苯并噻唑啉-6-磺酸)或3,3',5,5'-四甲基联苯胺。
作为优选的,所述Fe3O4@C7/PB+H2O2+过氧化物酶基质系统pH为1.9-2.2,其中H2O2浓度为1.5-2.5mM、过氧化物酶基质的浓度为0.15-0.25mM、Fe3O4@C7/PB的浓度为11-14μgmL-1
作为优选的,所述样品包括茶叶、烟草、土壤、环境水样。
本发明具有以下优点:
通过庚酸和普鲁士蓝修饰的Fe3O4纳米颗粒合成了一种具有过氧化物酶样活性的纳米酶(Fe3O4@C7/PB),相比于Fe3O4@C7的过氧化物酶样活性更高,且Fe3O4@C7/PB可以通过单层PB保持稳定,以防止凝聚。
对于烟草制品中草甘膦含量测定,潜在问题是由复杂的基体引起的假阴性结果。本文中,我们建立了一种基于庚酸和普鲁士蓝(PB)修饰的Fe3O4纳米颗粒(Fe3O4@C7/PB)的过氧化物酶样活性的抗干扰智能手机辅助纳米传感平台,用于测定烟草中的草甘膦含量,其检测限为0.1μg mL-1,且在416nm、647nm和730nm处观察到3个特征吸收峰。与Fe3O4相比,初合成的Fe3O4@C7/PB表现出良好的过氧化物酶样活性,其在过氧化氢存在下采用2,2′-联氨-双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)作为基质进行评估。此外,甚至通过痕量草甘膦对Fe3O4@C7/PB的催化活性进行抑制。
草甘膦分子可占据多孔Fe3O4@C7/PB纳米颗粒表面的活性位点,阻止H2O2向·OH转化,从而导致ABTS发生微妙的颜色变化。通过监测ABTS的颜色变化,可在10min内检测出草甘膦的浓度。根据颜色变化,结合RGB颜色模式和智能手机技术,开发了一种比色定量方法,用于草甘膦的定量。该方法操作简单、成本低、响应速度快,在草甘膦现场评估中具有很大的潜力。
附图说明
图1(A)制备的Fe3O4@C7的TEM图像。(B)制备的Fe3O4@C7/PB的TEM图像。(C)Fe3O4@C7和Fe3O4@C7/PB的XRD图谱。(D)Fe3O4@C7和Fe3O4@C7/PB的FTIR光谱。(E)Fe3O4@C7和Fe3O4@C7/PB的测量XPS谱。(F)Fe3O4@C7/PB复合材料中Fe 2p的核级光谱。
图2Fe3O4@C7/PB,TMB和ABTS的催化活性紫外-可见吸收光谱(A),以及草甘膦对不同系统的抑制作用(B)。(C)三种不同材料(Fe3O4、Fe3O4@C7和Fe3O4@C7/PB)对TMB的催化活性。(D)在Fe3O4、Fe3O4@C7和Fe3O4@C7/PB存在下TMB氧化的紫外吸收光谱。
图3Fe3O4@C7和Fe3O4@C7/PB仿过氧化物酶的稳态动力学分析。Fe3O4@C7:(A)在H2O2存在下速度-TMB浓度曲线;(C)在TMB存在下速度-H2O2浓度曲线;和(B,D)(A,C)的双倒数图。Fe3O4@C7/PB:(E)在H2O2存在下速度-TMB浓度曲线;(G)在TMB存在下速度-H2O2浓度曲线;和(F,H)(A,C)的双倒数图。
图4TA与不同系统相互作用的荧光光谱(A);不同洗脱液对吸附在Fe3O4@C7/PB上的草甘膦的洗脱效果(B)。1:空白;2:水;3:1%NaOH水溶液;4:乙醇;5:1%NAOH乙醇溶液;不同系统的拉曼光谱(C)。
图5共沉淀法对烟草样品的纯化效果(A);和纯化前后烟草样品的紫外-可见吸收光谱(B)。
图6为不同草甘膦浓度下Fe3O4@C7/PB+H2O2+ABTS系统的比色信号变化。插图:纳米酶催化系统的颜色变化(A);和草甘膦浓度与吸光度之间的线性关系(B)。
图7用于草甘膦检测的色感平台的特异性(A);三种磷酸盐的干扰(B);IP、CaCl2和IP+CaCl2对色感平台的影响(C);色感平台分别加入IP、CaCl2和IP+CaCl2时的紫外-可见吸收光谱(D)。插图:色感平台加入IP、CaCl2和IP+CaCl2时的颜色变化。
图8智能手机读出灰度值与草甘膦浓度的线性关系(A);和智能手机读出灰度值与草甘膦浓度的线性关系(B)。
图9用于草甘膦检测的比色传感器的示意图。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。通常在此处附图中描述和示出的本发明实施方式的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
本申请提供了一种具有仿生酶活性的纳米材料的制备方法,具有核壳结构,采用庚酸和普鲁士蓝修饰Fe3O4纳米颗粒,得到具有核壳结构的Fe3O4@C7/PB,其中芯核为四氧化三铁,壳层由庚酸和普鲁士蓝复配而成,具体的,在N2气氛中,向硫酸亚铁铵和三氯化铁混合液中加入庚酸、氨水和普鲁士蓝进行反应,得到包含所述具有仿生酶活性的纳米材料Fe3O4@C7/PB的沉淀物,对沉淀物进行磁性分离和清洗,得到Fe3O4@C7/PB;所述反应的时间为0.5-2h,反应温度为60-90℃。
本申请还提供了一种应用所述具有仿生酶活性的纳米材料的草甘膦检测方法,包括标准曲线绘制、样品预处理和样品中草甘膦测定,
标准曲线绘制:
拍摄不同草甘膦浓度下,Fe3O4@C7/PB+H2O2+过氧化物酶基质系统的彩色图像,获得所述彩色图像的RGB值并转化为灰度值,建立不同草甘膦浓度与灰度值之间的线性关系;
或,测定不同草甘膦浓度下,Fe3O4@C7/PB+H2O2+过氧化物酶基质系统的吸光度,获建立不同草甘膦浓度与吸光度之间的线性关系;
样品预处理:
所述样品预处理包括提取和脱色,所述脱色步骤是向提取液中加入Al(OH)3溶液和NaOH溶液,取上层清液,进行草甘膦测定;
样品中草甘膦测定:
在Fe3O4@C7/PB+H2O2+过氧化物酶基质系统中加入待测样品,通过监测系统颜色变化或吸光度变化,对甘草膦进行定量分析;
其中,所述过氧化物酶基质可以为2,2′-联氨-双(3-乙基苯并噻唑啉-6-磺酸)或3,3',5,5'-四甲基联苯胺,所述Fe3O4@C7/PB+H2O2+过氧化物酶基质系统pH为1.9-2.2,其中H2O2浓度为1.5-2.5mM、过氧化物酶基质的浓度为0.15-0.25mM、Fe3O4@C7/PB的浓度为11-14μg mL-1,所述样品可以包括茶叶、烟草、土壤、环境水样。
实施例:
1.材料
所有试剂均为市售的分析级试剂,除非另有说明,否则按收到的原样使用。(NH4)2Fe(SO4)2·6H2O、庚酸、普鲁士蓝(PB)、FeCl3·6H2O、NH3·H2O(25%w/w)、2,2′-联氨-双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)、H2O2(30%w/w)、草甘膦和其它有竞争力的有机磷农药(OPs)均由阿拉丁试剂(中国上海)有限公司提供。对苯二甲酸(TA)购自上海麦克林生化科技有限公司(中国上海)。实验用去离子水由超纯水设备(18.23MΩ·cm,UPT-Ⅱ,Ulupure,中国)制备。
2.仪表
Fe3O4@C7/PB的形态和微观结构通过加速电压为200kV(FEI,USA)的TecnaiG2 TF30透射式电子显微镜(TEM)进行观察。紫外-可见吸收光谱由北京普析通用分析仪器有限责任公司(中国普析)生产的TU-1901双光束紫外-可见分光光度计测定。
3.纳米颗粒的合成
采用一锅合成法制备Fe3O4@C7/PB。首先,将3.38g(NH4)2Fe(SO4)2·6H2O和2.82gFeCl3·6H2O分散在80mL去离子水中。在N2气氛中,将悬浮液在80℃加热,并充分搅拌。然后,分别逐步地向溶液中加入200mg庚酸(溶解于5mL丙酮中),5mL NH3·H2O(28%,w/v)和200mg普鲁士蓝(PB)。混合物在80℃下保存1h。将得到的沉淀物冷却至室温后,用去离子水和乙醇对其进行磁性分离和清洗。冻干沉淀物,使其变成粉末。最后,将得到的粉末再分散到水中,并将纳米材料的浓度设置为3.24mg mL-1
本实施例中各种反应物的用量可以在一定范围内边浮动,例如硫酸亚铁铵、三氯化铁、庚酸、氨水和普鲁士蓝的摩尔比为1∶1-1.4∶0.16-0.19∶0.003-0.004∶4-5,只要反应液中能够有Fe3O4@C7/PB纳米颗粒生成,就能够通过磁性分离分离出来。
本实施例中考虑到反应速率和沉淀速率,反应温度设置为60-90℃,反应进行0.5h内沉淀速率较快,大约2个小时可以沉淀完全,但考虑到反应效率,反应时间即沉淀时间最优为1h。
4.Fe3O4@C7/PB的动力学测试
在最佳条件下,通过改变TMB和H2O2浓度,对Fe3O4@C7/PB的类POD性能进行动力学考察研究。首先,采用具有固定H2O2浓度(50mM)和多变TMB浓度(0.0625、0.125、0.1875、0.25、0.3125、0.375、0.4375、0.5、0.5625、0.625mM)的Fe3O4@C7/PB(3.24mg mL-1)进行分析研究。然后,以H2O2为基质,采用具有固定TMB浓度(0.25mM)和多变H2O2浓度(0.625、1.25、1.875、2.5、3.125、3.75)的Fe3O4@C7/PB/PB/PB/PB(3.24mg mL-1)进行试验研究。动力学参数根据以下米氏方程计算:
1/V=Km/Vmax·1/[s]+1/Vmax
其中,V为初速度,Vmax为最大反应速度,[S]为基质浓度,Km为米氏常数。以TMB和H2O2为基质,分别计算Fe3O4@C7/PB的类POD活性的Km值和Vmax值。
5.Fe3O4@C7/PB的过氧化物酶样催化活性
通过用Fe3O4@C7/PB催化一些显色反应,考察了Fe3O4@C7/PB的过氧化物酶样活性。通常情况下,在2.5mL的0.1MNaAc-HAc缓冲液(pH 2.0)中加入50μL的5mMABTS溶液、50μL的(30%)H2O2溶液和50μL的1mg mL-1 Fe3O4@C7/PB溶液。在固定波长(416nm)记录紫外-可见光谱和吸光度值用于分析。
本实施例中缓冲液是为了保证体系的稳定以及显色,本领域技术人员可以根据情况选择其他的缓冲液。体系中各组分的用量也可以在一定范围内浮动,但是为了保证草甘膦检测的灵敏度,本实施例选择了最佳用量。
6.基于智能手机的草甘膦检测
检测实验在水介质中进行。首先,在制备好的样品中加入50μL的5mM ABTS溶液、50μL的(30%)H2O2溶液和50μL的1mg mL-1 Fe3O4@C7/PB溶液。然后,加入0.1M NaAc-HAc缓冲液(pH 2.0)调节所得混合液体的体积至2.5mL。颜色改变后,用智能手机的相机拍摄图像。通过已安装的颜色选择器APP,将获得的不同草甘膦浓度的彩色图像瞬时转换为红(R)、绿(G)、蓝(B)色通道的数字值,用于草甘膦的现场定量分析。最后,用抑制效率(IE,%)评价其抑制效果,并计算草甘膦含量。抑制效率(%)通过以下公式计算:IE(%)=(A0-Ag)/A0×100,其中,Ag和A0分别为Fe3O4@C7/PB-ABTS-H2O2系统在草甘膦存在和不存在下在416nm处的吸光度。检测限(LOD)由3σ准则确定。所有比色草甘膦测量均重复3次。
7.样品预处理
对于无色液体样品,可以直接将样品加入Fe3O4@C7/PB+H2O2+过氧化物酶基质系统中,若液体样品有颜色,可能会对草甘膦的检测有影响,则需进行脱色,然后加入Fe3O4@C7/PB+H2O2+过氧化物酶基质系统中进行测定;对于固体样品,则需先将其中的草甘膦提取出来。本申请中的样品预处理方式和方法本领域技术人员可以根据样品的情况进行选择,本实施例提供一种最优的样品预处理方法。
以烟草样品为例,可以将1g的样品粉末加入30毫升去离子水(包含1毫升氢氧化钠(1M))中。15分钟的超声波后,以8000rpm的转速对获得的黄色溶液进行离心分离5分钟。在4℃保存上清液,以备后续的脱色实验。
用共沉淀法对提取物进行脱色。简单地说,在2mL的提取物中加入300μL的Al(OH)3(0.33M)。混合后,溶液中加入300μL NaOH(1M),涡旋混合30秒。然后,将混合溶液以6000rpm的转速进行离心分离5分钟。上层草甘膦提取物用于酶抑制分析。
为了避免黄色沉淀物中出现草甘膦,本研究旨在通过二次沉淀来减少草甘膦的损失。黄色沉淀物中加入1ml去离子水。搅拌1min后,用300μL HCl(1M)溶解沉淀物。然后,加入300μL NaOH(1M)进行二次沉淀。离心分离后,将两种提取液的上清液合并,4℃保存,以备后续分析所用。
8.结果和讨论
8.1.Fe3O4@C7/PB的特征描述
图1A和B所示的TEM图像显示了Fe3O4@C7和Fe3O4@C7/PB的核壳结构。PB改质后,颗粒有略微变大的趋势。这可能是由于Fe3O4@C7表面的改质PB。然而,随着PB的增加,颗粒尺寸略有增加,这可能与反应过程中Fe3O4@C7的表面分解有关。制备的Fe3O4@C7/PB通过单层PB保持稳定,以防止凝聚,Fe3O4@C7制备过程中,庚酸需要缓慢加入以减缓凝聚,本申请本实施例中的PB可以保持稳定,以防止凝聚,因此可以不对PB加入速度进行控制。Fe3O4@C7/PB的晶体结构通过XRD分析识别(图1C)。观察到2θ分别为17.5°、24.8°、39.7°和51.0°的衍射峰,分别对应200、220、400和440的衍射平面。Fe 2p、C 1s(284eV)和N1s(401.2eV)的高分辨率XPS谱拟合为Fe3O4@C7/PB和模板有机部分(图1E)。精细Fe 2p XPS(图1F)提供了可以很好地分配给Fe3+2p1/2、Fe2+2p1/2、Fe3+2p3/2和Fe2+2p3/2的峰,以验证收集到的产物中Fe的混合价态。AuNPs/CDs和Fe3O4@C7/PB的FTIR光谱(图1D)显示了2084cm-1和1412cm-1处的处于PB的γ(C≡N)拉伸模式的IR峰。
8.2.Fe3O4@C7/PB的过氧化物酶样活性
评估制备的Fe3O4@C7/PB在过氧化物酶基质如TMB和ABTS上的催化性能。如图2A所示,当Fe3O4@C7/PB在室温下与H2O2反应时,可观察到绿色(TMB)或钢蓝色(ABTS)。TMB(无色→绿色)和ABTS(无色→钢蓝色)有明显的色响应,在650nm和730nm处有最大吸收峰。酸性缓冲液中,Fe3O4@C7/PB对ABTS的活性最高,大约为TMB色原的5.0倍(图2A)。由于Fe3O4@C7/PB对ABTS具有良好的亲和力和敏感性,我们选择ABTS作为仿过氧化物酶活性的显色工具,用于进一步基于智能手机的定量分析测定。在没有H2O2的情况下,650nm和730nm处的特征峰消失了(图2A),这说明Fe3O4@C7/PB具有过氧化物酶样活性。如图2B所示,在将Fe3O4@C7/PB引入TMB/H2O2溶液之前,如果对其进行SCN-预处理,则Fe3O4@C7/PB的POD活性会受到SCN-的不可逆抑制,这表明Fe-Cx部分是POD的主要活性位点。为了进一步评价Fe3O4@C7/PB的仿过氧化物酶催化效率,获取酶动力学常数(Km)和最大速率(Vmax),以测量酶效率(图3)。以H2O2和TMB为基质时,Fe3O4@C7和Fe3O4@C7/PB的Km分别为1.165mM和1.593mM(基质为H2O2),2.104mM和1.413mM(基质为TMB),均明显低于HRP的Km,这说明Fe3O4@C7/PB对基质的亲和力高于HRP。这可能是由于Fe3O4@C7/PB表面有更多的“活性位点”。
表1不同NPs的表观米氏常数(Km)和最大反应速率(Vmax)比较
Figure BDA0003793347990000081
8.3.草甘膦对Fe3O4@C7/PB的过氧化物酶样活性的影响
为了研究草甘膦对Fe3O4@C7/PB的过氧化物酶样活性的影响,测量了不同系统的吸收光谱(图2A和图2B)。加入草甘膦后,Fe3O4@C7/PB+H2O2+ABTS+草甘膦内730nm处的吸收峰显著降低。ABTS+草甘膦和H2O2+ABTS+草甘膦系统中均未见吸收峰,这表明草甘膦不能催化氧化ABTS变色,且可通过草甘膦抑制Fe3O4@C7/PB的过氧化物酶样活性。
因此,Fe3O4@C7/PB酶活性的抑制可用于草甘膦检测。
8.4.草甘膦对酶活性的抑制机理
Fe3O4@C7/PB纳米酶可通过分解H2O2促进·OH生成,导致基质ABTS氧化。在草甘膦存在下,可以通过占据Fe3O4@C7/PB表面的活性位点中断H2O2向·OH的转化。为了进一步研究草甘膦对Fe3O4@C7/PB的纳米酶催化活性的抑制机理,在Fe3O4@C7/PB+H2O2系统中,采用荧光实验以追踪·OH。因为对苯二甲酸(TA)可成为2-羟基对苯二甲酸,一种在大约430nm处有峰的荧光剂,采用TA捕获·OH。如图4A所示,Fe3O4@C7/PB+H2O2+草甘膦系统的荧光强度低于Fe3O4@C7/PB+H2O2系统的荧光强度,这说明草甘膦能有效抑制·OH的产生。此外,用Fe3O4@C7/PB纳米片培养TA时,没有观察到荧光,这明显表明·OH不存在。生成的·OH也可以通过电子顺磁共振(EPR)光谱直接检测(图4B)。Fe3O4@C7/PB+H2O2系统具有比Fe3O4@C7/PB+H2O2+草甘膦系统更高的信号峰,表明Fe3O4@C7/PB具有更好的催化活性。
这些结果证实了Fe3O4@C7/PB的过氧化物酶活性能被草甘膦抑制。
当Fe3O4@C7/PB+ABTS+H2O2系统中加入草甘膦时,Fe3O4@C7/PB+ABTS+H2O2系统的吸光度降低(图2B)。当吸附在Fe3O4@C7/PB上的草甘膦用不同的洗脱液(去离子水、1%NaOH去离子水、乙醇和1%NaOH乙醇)洗脱时,用1%NaOH去离子水洗脱的Fe3O4@C7/PB-ABTS-H2O2系统的吸光度最好,这表明吸附在Fe3O4@C7/PB上的草甘膦已被洗脱(图4B)。这一现象证实了我们关于Fe3O4@C7/PB纳米酶的活性位点被草甘膦阻断的推测。表面增强拉曼光谱(SERS)用于揭示活性位点是如何被草甘膦阻断的。根据报道文献合成Au NPs[H.L.a.Z.Z.MingmingHan,Fast and Low-Cost Surface-Enhanced Raman Scattering(SERS)Method for On-Site Detection of Flumetsulam in Wheat,Molecules,25(2020)4662]。Fe3O4@C7/PB+草甘膦+Au NPs(437,1344cm-1)的SERS光谱显示出比Au NPs和Fe3O4@C7/PB-Au NPs强得多的拉曼信号强度,并在797和905cm-1处观察到两个新信号(图3C)。从图3中可以看出,437和797cm-1处的峰主要是根据草甘膦分子的伸缩振动(Gaussian 09程序,B3LYP/6-31G(d)水平上的密度泛函理论)而形成的。结果表明:Fe3O4@C7/PB表面与草甘膦之间可形成化学键。
8.5.净化及方法优化
烟草提取物的颜色干扰对比色结果有较大影响。为提高所提出的现场测试传感平台的准确性和稳定性,采用共沉淀技术对烟草样品进行预处理。如图5A所示,当添加了Al(OH)3和NaOH时,颜色干扰被消除。为了测试通过共沉淀技术是否能沉淀草甘膦,采用加标水样和烟草样品对共沉淀净化技术进行评估。沉淀物中的草甘膦在用1mL HCl(1M)溶解后也进行分析。由表2可知,草甘膦的沉淀效率为1.87-3.23%,相对标准偏差(RSD)在2.14-4.38%范围内。这一结果表明共沉淀技术对草甘膦检测的影响几乎可以忽略不计。通过利用共沉淀法纯化样品后,烟草样品内250nm处的吸收峰明显降低(图5B)。同时,烟草样品的背景吸光度也明显下降,这说明共沉淀技术能很好地消除背景干扰。
表2共沉淀法对草甘膦的沉淀效率
Figure BDA0003793347990000101
优化了Fe3O4@C7/PB+ABTS+H2O2系统的理想分析性能的参数,包括Fe3O4@C7/PB的浓度、pH、反应时间、H2O2和ABTS的基质浓度。草甘膦对Fe3O4@C7/PB的仿过氧化物酶活性有抑制作用,这是因为草甘膦分子占据了多孔Fe3O4@C7/PB纳米颗粒表面的活性位点。因此,Fe3O4@C7/PB的浓度在检测系统的颜色探头中起着重要的作用。当Fe3O4@C7/PB的浓度为12.5μg mL-1时,在不同的草甘膦浓度下,通过眼睛很容易识别系统颜色的色差。因此,在后续实验中,Fe3O4@C7/PB的浓度为12.5μg mL-1。然后,为获得最优的实验结果,优化了pH、反应时间、和ABTS和H2O2的基质浓度,选择反应时间为10min,pH值为2,H2O2浓度为2mM和ABTS浓度为0.2mM进行随后的实验。
8.6.草甘膦的测定性能
Fe3O4@C7/PB的过氧化物酶样活性可以促进H2O2分解为羟基自由基(·OH),这直接使ABTS氧化形成在416nm、647nm和730nm处有三个特征吸收峰的钢蓝色产品。随着草甘膦浓度的增加(图6A和图6B),在416nm,647nm和730nm处的吸光度逐渐减少,与草甘膦的浓度成正比,这表明在0.125-15μg mL-1范围内线性关系良好,相关系数R大于0.99,且检测限为0.1μg mL-1
特异性和抗干扰能力是评估类过氧化物酶纳米酶基传感器的检测能力的重要指标。选择其他常见农药(a-草甘膦、b-氟苯脲、c-炔咪菊酯、d-噻虫啉、e-阿特拉津、f-磷酸三苯酯、g-氟节胺、h-地乐胺、i-二甲戊乐灵、j-甲基对硫磷、k-氟氰戊菊酯和l-福美锌)和磷酸盐(PO4 3-、HPO4 2-和H2PO4-)评估干扰效果。如图7所示,在系统中,只有草甘膦引起了显著诱导响应,而其他相同浓度(10.0mg L-1)的农药则无明显效果(图7A和图7B)。但磷酸盐(IP)会导致Fe3O4@C7/PB-ABTS-H2O2系统吸光度下降,这说明磷酸盐对检测系统有干扰。为了消除磷酸盐的干扰,我们加入了氯化钙(CaCl2),在磷酸盐和Ca2+之间形成不溶性化合物,以消除干扰(图7C和图7D)。
8.7.智能手机色感平台
基于现场测试的意义,还应考虑便携式设备和检测。基于草甘膦对过氧化物酶活性的抑制作用,我们设计了一种用于草甘膦现场检测的便携式智能手机,如图9所示。利用系统拍摄具有不同草甘膦浓度的反应溶液的颜色,并通过安装在智能手机上的颜色识别器APP进行进一步分析,将颜色变化转化为RGB值。由于采集到的探针溶液图像亮度与草甘膦浓度呈负相关关系。结合Adobe photoshop CC 2015.5软件,智能手机读出灰度值与不同草甘膦浓度(在5-125μg mL-1范围内)之间的线性关系(R2=0.9973)如图8A、8B所示。将所开发的智能手机辅助传感平台的性能与文献中的其他方法进行比较。如表3中所总结的,本文提出的方法的检测灵敏度没有电化学传感器那么低,但它们在现场检测和检测时间上有很大的优势。
表3与先前报道的草甘膦检测传感平台的比较。
Figure BDA0003793347990000111
8.8.实际样品中草甘膦含量测定
考虑到烟草样品的基质比一般农产品复杂,选取不同的烟草产品对智能手机色感平台的应用进行评估。如表4所示,实际加标样品中草甘膦的平均回收率为89.44-97.10%,相对标准偏差为1.89-5.38%。此外,通过智能手机色感平台得到的加标回收率与通过GC-MS《中国国家标准GB/T 23750-2009》得到的加标回收率非常相似。上述结果表明,智能手机色感平台具有良好的准确性和重复性,在烟草制品中草甘膦的快速检测领域具有很大的实际应用价值。
表4加标烟草样品中草甘膦的测定(n=6).
Figure BDA0003793347990000121
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种具有仿生酶活性的纳米材料的制备方法,其特征在于:采用庚酸和普鲁士蓝修饰Fe3O4纳米颗粒,得到具有核壳结构的Fe3O4@C7/PB,其中芯核为四氧化三铁,壳层由庚酸和普鲁士蓝复配而成。
2.根据权利要求1所述的具有仿生酶活性的纳米材料的制备方法,其特征在于:在N2气氛中,向硫酸亚铁铵和三氯化铁混合液中加入庚酸、氨水和普鲁士蓝进行反应,得到包含所述具有仿生酶活性的纳米材料Fe3O4@C7/PB的沉淀物。
3.根据权利要求1所述的具有仿生酶活性的纳米材料的制备方法,其特征在于:所述反应的时间为0.5-2h,反应温度为60-90℃。
4.根据权利要求1所述的具有仿生酶活性的纳米材料的制备方法,其特征在于:反应液中硫酸亚铁铵、三氯化铁、庚酸、氨水和普鲁士蓝的摩尔比为1:1-1.4:0.16-0.19:0.003-0.004:4-5。
5.根据权利要求1所述的名称,其特征在于:对沉淀物进行磁性分离和清洗,得到Fe3O4@C7/PB。
6.一种应用权利要求1所述具有仿生酶活性的纳米材料的草甘膦检测方法,其特征在于:包括样品中草甘膦测定:在Fe3O4@C7/PB+H2O2+过氧化物酶基质系统中加入待测样品,通过监测系统颜色变化或吸光度变化,对甘草膦进行定量分析。
7.根据权利要求1所述的草甘膦检测方法,其特征在于:还包括标准曲线绘制:
拍摄不同草甘膦浓度下,Fe3O4@C7/PB+H2O2+过氧化物酶基质系统的彩色图像,获得所述彩色图像的RGB值并转化为灰度值,建立不同草甘膦浓度与灰度值之间的线性关系;
或,测定不同草甘膦浓度下,Fe3O4@C7/PB+H2O2+过氧化物酶基质系统的吸光度,获建立不同草甘膦浓度与吸光度之间的线性关系。
8.根据权利要求1所述的草甘膦检测方法,其特征在于:还包括样品预处理,所述样品预处理包括提取和脱色,所述脱色步骤是向提取液中加入Al(OH)3溶液和NaOH溶液,取上层清液,进行草甘膦测定。
9.根据权利要求1所述的名称,其特征在于:所述过氧化物酶基质为2,2′-联氨-双(3-乙基苯并噻唑啉-6-磺酸)或3,3',5,5'-四甲基联苯胺。
10.根据权利要求1所述的名称,其特征在于:所述Fe3O4@C7/PB+H2O2+过氧化物酶基质系统pH为1.9-2.2,其中H2O2浓度为1.5-2.5mM、过氧化物酶基质的浓度为0.15-0.25mM、Fe3O4@C7/PB的浓度为11-14μg mL-1
CN202210962449.0A 2022-08-11 2022-08-11 具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用 Pending CN115266702A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210962449.0A CN115266702A (zh) 2022-08-11 2022-08-11 具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用
NL2033192A NL2033192B1 (en) 2022-08-11 2022-09-30 A Preparation Method of A Nanomaterial with bionic enzymes activity and An Application of the Nanomaterial in Glyphosate Detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210962449.0A CN115266702A (zh) 2022-08-11 2022-08-11 具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用

Publications (1)

Publication Number Publication Date
CN115266702A true CN115266702A (zh) 2022-11-01

Family

ID=83750775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210962449.0A Pending CN115266702A (zh) 2022-08-11 2022-08-11 具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用

Country Status (2)

Country Link
CN (1) CN115266702A (zh)
NL (1) NL2033192B1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2033192A (en) * 2022-08-11 2023-01-17 Yunnan Tobacco Quality Supervision And Testing Station A Preparation Method of A Nanomaterial with bionic enzymes activity and An Application of the Nanomaterial in Glyphosate Detection
CN115888811A (zh) * 2022-12-29 2023-04-04 云南省烟草质量监督检测站 纳米酶材料及其制备方法和应用、Pb2+离子的检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406068B (zh) * 2021-07-08 2024-07-23 云南伦扬科技有限公司 一种基于智能手机快速检测草甘膦的方法
CN115266702A (zh) * 2022-08-11 2022-11-01 云南省烟草质量监督检测站 具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2033192A (en) * 2022-08-11 2023-01-17 Yunnan Tobacco Quality Supervision And Testing Station A Preparation Method of A Nanomaterial with bionic enzymes activity and An Application of the Nanomaterial in Glyphosate Detection
CN115888811A (zh) * 2022-12-29 2023-04-04 云南省烟草质量监督检测站 纳米酶材料及其制备方法和应用、Pb2+离子的检测方法

Also Published As

Publication number Publication date
NL2033192B1 (en) 2023-06-14
NL2033192A (en) 2023-01-17

Similar Documents

Publication Publication Date Title
Ge et al. A colorimetric smartphone-based platform for pesticides detection using Fe-N/C single-atom nanozyme as oxidase mimetics
CN115266702A (zh) 具有仿生酶活性的纳米材料的制备方法及该纳米材料在草甘膦检测中的应用
Li et al. Switching on-off-on colorimetric sensor based on Fe-N/SC single-atom nanozyme for ultrasensitive and multimodal detection of Hg2+
Chen et al. Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles
Zhao et al. Nanozyme-based biosensor for organophosphorus pesticide monitoring: Functional design, biosensing strategy, and detection application
Sun et al. Multi-enzyme activity of three layers FeOx@ ZnMnFeOy@ Fe-Mn organogel for colorimetric detection of antioxidants and norfloxacin with smartphone
Wang et al. Etching of single-MnO2-coated gold nanoparticles for the colorimetric detection of organophosphorus pesticides
Xia et al. Self-enhanced electrochemiluminescence of luminol induced by palladium–graphene oxide for ultrasensitive detection of aflatoxin B1 in food samples
CN110715912B (zh) 一种硫量子点/二氧化锰纳米片复合材料及其制备方法与应用
Muhlbachova et al. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site
Chen et al. Zeolitic imidazolate frameworks-derived hollow Co/N-doped CNTs as oxidase-mimic for colorimetric-fluorescence immunoassay of ochratoxin A
Zhu et al. A colorimetric immunoassay based on cobalt hydroxide nanocages as oxidase mimics for detection of ochratoxin A
Zhang et al. A convenient label free colorimetric assay for pyrophosphatase activity based on a pyrophosphate-inhibited Cu 2+–ABTS–H 2 O 2 reaction
Xue et al. Analyte-triggered citrate-stabilized Au nanoparticle aggregation with accelerated peroxidase-mimicking activity for catalysis-based colorimetric sensing of arsenite
Xiong et al. Ultrasmall phosphatase-mimicking nanoceria with slight self-colour for nonredox nanozyme-based colorimetric sensing
Huang et al. Recent developments on nanomaterial probes for detection of pesticide residues: A review
Yang et al. Portable intelligent paper-based sensors for rapid colorimetric and smartphone-assisted analysis of hydrogen peroxide for food, environmental and medical detection applications
CN113788788B (zh) 一种荧光离子液体及其合成方法与应用
Hou et al. A ratiometric electrochemical biosensor via alkaline phosphatase mediated dissolution of nano-MnO2 and Ru (III) redox recycling for the determination of dimethoate
Zhao et al. The influence of substrates addition order on colorimetric assay based on MnO2 nanocubes: A novel turn-off H2O2 assay strategy in water-soak foods
Chen et al. A portable smartphone-based detection of glyphosate based on inhibiting peroxidase-like activity of heptanoic acid/Prussian blue decorated Fe 3 O 4 nanoparticles
Guan et al. Magnetic supported gold-copper bimetallic organic framework nanocomposite as a novel nanozyme for ultra-fast point-of-care colorimetric assay of glutathione
Hou et al. Recent advances in metal-organic framework-based nanozymes and their enabled optical biosensors for food safety analysis
Liu et al. A portable colorimetric sensing platform for rapid and sensitive quantification of dichlorvos pesticide based on Fe-Mn bimetallic oxide nanozyme-participated highly efficient chromogenic catalysis
CN114544614B (zh) 一种重金属Fe3+和Cr6+的快速检测试剂盒及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination