CN111575686A - 一种不锈钢球阀表面耐磨耐蚀高磷镀液及耐磨耐蚀的制备方法 - Google Patents

一种不锈钢球阀表面耐磨耐蚀高磷镀液及耐磨耐蚀的制备方法 Download PDF

Info

Publication number
CN111575686A
CN111575686A CN202010530220.0A CN202010530220A CN111575686A CN 111575686 A CN111575686 A CN 111575686A CN 202010530220 A CN202010530220 A CN 202010530220A CN 111575686 A CN111575686 A CN 111575686A
Authority
CN
China
Prior art keywords
resistant
plating solution
wear
plating
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010530220.0A
Other languages
English (en)
Inventor
陈长生
沈秀杰
付世平
郑精武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingtian Yongtuo Metal Surface Technology Treatment Co ltd
Original Assignee
Qingtian Yongtuo Metal Surface Technology Treatment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingtian Yongtuo Metal Surface Technology Treatment Co ltd filed Critical Qingtian Yongtuo Metal Surface Technology Treatment Co ltd
Priority to CN202010530220.0A priority Critical patent/CN111575686A/zh
Publication of CN111575686A publication Critical patent/CN111575686A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种不锈钢球阀表面耐磨耐蚀镀液,镀液pH为4,可溶性镍盐为NiSO4·7H2O,其中含有尺寸为60nm左右的纳米SiO2 10g/L。所述镀液以CDTA(1,2‑环己二胺四乙酸)和乳酸为络合剂,以Ce2(SO4)3·8H2O为稳定剂,以解决现有的Ni‑P镀液的稳定性问题和自发分解问题。另外,纳米SiO2进入到镀层中,纳米SiO2颗粒粒硬度高,会在摩擦表面形成滚珠轴承效应,将滑动摩擦变成滚动摩擦,表现出良好的润滑性,进而更好地提高了镀层的耐磨性。基于上述镀液,本发明还提供一种不锈钢球阀表面耐磨耐蚀复合镀层的制备方法,可有效提高不锈钢球阀表面的耐磨耐蚀性能。

Description

一种不锈钢球阀表面耐磨耐蚀高磷镀液及耐磨耐蚀的制备 方法
技术领域
本发明涉及大型不锈钢球阀的表面保护处理技术领域,尤其涉及一种不锈钢球阀表面耐磨耐蚀镀液,通过在Ni-P镀液中添加纳米SiO2在不锈钢球阀表面电镀一层高磷含量的Ni-P-SiO2复合镀层,提高不锈钢球阀表面的耐磨耐蚀性能。
背景技术
球阀是一种以球体为启闭件的阀门,被广泛的应用在石油炼制、长输管线、化工、造纸、制药、水利、电力、市政、钢铁等行业,在国民经济中占有举足轻重的地位。球阀由于安装和使用的环境特点常接触腐蚀环境,特别是用于燃气、石油和煤化工行业的球阀时管输物料通常含有腐蚀性的气相和液相介质。同时金属硬密封球阀一般使用碳钢或不锈钢材质制造,由于材质本身的限制(耐腐蚀性偏低或硬度较低),碳钢或不锈钢制造的球体和阀座在严苛的工况下,容易发生较快速的磨损和腐蚀。而腐蚀严重会导致在役阀门泄漏,造成突发的恶性生产事故;轻则会因阀门频繁地更换或维修,造成停工、检修所带来巨大的经济损失。因此针对大型球阀为降低腐蚀造成的损失、延长球阀在恶劣工况下使用寿命,能安全可靠地工作,采取合理有效的防腐蚀处理是非常有意义。
化学镀镍层具有优异的耐磨性、耐蚀性、均镀能力、特殊的磁性性能、高硬度、可焊性等性能。自1946年G.Riddell和A Brenner发现化学镀现象以来,化学镀镍技术得到飞速的发展,被广泛应用于航空航天工业、汽车工业、电子工业、食品工业和和机械工业等各种工业领域。化学镀镍在电子和计算机工业中的应用最为广泛,几乎涉及到每一种化学镀镍技术和工艺,典型代表如计算机薄膜硬磁盘化学镀镍。汽车工业应用化学镀镍作为汽化器、燃油泵送系统的表面强化手段,还有齿轮、散热器和喷油嘴也采用化学镀镍层保护。此外,化学镀镍技术在大型反应容器的内壁、阀门制造业、油田采油和输油管道设备、采矿机械装置、军事工业等领域也得到广泛的应用。如在低碳钢材料的阀门上镀50μm的化学镀镍层,其腐蚀速度是镍基合金材料8020阀的一半,而成本仅及8020阀的五分之一。
化学镀镍-磷工艺中镀层中磷含量有着举足轻重的作用。镍镀层中含磷量的不同(从3%-5%低磷,7%-9%中磷到10%-13%高磷),镀层的物理化学特征,如硬度、抗蚀性、耐磨性、电磁能性都表现出很大的差异,所以,化学镀镍的工业应用及化学镀镍的工艺设计呈现出多变性及专用性的特点。因此必须根据镀层性能的特殊要求,然后有针对性地选择不同体系的化学镀镍液,确定不同的施镀工艺及不同的镀后热处理规范等。一般来说,P含量越高,钝化膜形成速率越快,结构越完整,镀层耐蚀性越好。因此,高P镀层的制备对于Ni-P镀技术的开发具有尤为重要的意义。但相对于低P镀层来说,高P镀层的耐磨性要低于低P镀层,所以需要提高高P镀层的耐磨性能。而纳米复合镀层比普通镀层具有更高的硬度,耐磨性、减摩性及耐蚀性等,在镀液中加人第二相粒子,使其在镀液中和金属镍共沉积在基体上,得到性能更为优异的复合镀层。
近年来,有很多科研工作者将微米级、纳米级的硬质颗粒,如:碳化硅、碳化钨、氧化铝、金刚石、二氧化硅等添加到镀液中得到硬度、耐磨性等性能更为优异的复合镀层。添加石墨、二硫化钨等进人镀液,可以得到自润滑、低摩擦的复合镀层。纳米微粒比微米级的颗粒在镀液中更加容易分散,并且得到的复合镀层的性能也优于微米添加得到的复合镀层。因此,可以在原有的镀液中添加纳米SiO2不仅能保持原有的优良性能,还能大幅度提高镀层的耐磨性能。通过这种复合化学镀的方法在不锈钢球阀表面镀上一层高P含量的Ni-P-SiO2复合镀层来显著提高不锈钢球阀的耐蚀和耐磨性能。
根据化学镀镍的原理,还原剂次磷酸钠的分解产物是亚磷酸根,随着反应不断进行,亚磷酸根不断积累,很容易产生亚磷酸镍的白色沉淀(NiHPO3.7H2O),从而影响镀液的稳定性;进一步地,由于溶液由于加热方式不当使局部过热,或调整补充不当使局部pH值过高,或镀液被污染或缺乏足够的连续过滤使其他活性物进入镀液中,从而触发局部区域发生激烈的自催化还原反应,进而迅速蔓延,致使整个镀液自发分解。
发明内容
本申请的一个目的在于提供不锈钢球阀表面耐磨耐蚀高磷复合镀层的镀液,镀液pH为4,可溶性镍盐为NiSO4·7H2O,其中含有尺寸为20-100nm的纳米SiO210g/L。所述镀液以CDTA(1,2-环己二胺四乙酸)和乳酸为络合剂,以Ce2(SO4)3·8H2O为稳定剂,以解决现有的Ni-P镀液的稳定性问题和自发分解问题。
上述络合剂也可以是羟基乙酸、柠檬酸、醋酸钠等,稳定剂也可以是某些其他重金属离子(如Sn2+,Cd2+),也可以是某些含氧酸的酸根(如AsO2-,IO3-,BrO3-,MoO4 2-等),也可以含硫的化学物(如硫脲,硫代硫酸盐,硫氰酸盐等),也可以某些不饱和有机酸(如马来酸等),优选为Ce2(SO4)3·8H2O。
进一步地,上述镀液采用如下组成:NiSO4·7H2O 25g/L,NaH2PO2·H2O 20g/L,CDTA(1,2-环己二胺四乙酸)35g/L,乳酸5-10ml/L,Ce2(SO4)3·8H2O 2-4mg/L,PDDA(邻苯二甲酸二乙二醇二丙烯酸酯)3ml/L,十二烷基硫酸钠为0.5g/L,纳米SiO2 10g/L。其中,PDDA能使得纳米SiO2均匀存在于镀液中,促进纳米SiO2进入到镀层中,而十二烷基硫酸钠不仅能减少镀层的针孔,提高镀层光亮度,还能发挥纳米SiO2分散剂的作用,促进纳米SiO2在镀液中分散而不团聚,但十二烷基硫酸钠用量太多,会使溶液泡沫过多,并影响沉积速度。稳定剂可以在一定程度上阻止镀液自发分解的发生。但稳定性过量不仅会降低镀液的镀速,还会降低镀层中的磷含量,严重地会毒化化学镀镍,使镀液不能起镀。
在某些实施例中,所述乳酸为8ml/L,BiSiO4为3mg/L。
本发明的另一个目的在于提供一种不锈钢球阀表面耐磨耐蚀高磷复合镀层的制备方法,该方法为:将不锈钢样品在分别在除油液和有稀盐酸中进行表面除油和去氧化物处理,然后在超声波作用下水洗,然后置于上述镀液中,在磁力搅拌下施镀2h,然后取出样品水洗吹干。所得到的镀层的磷含量在9%以上,且具有优异的耐蚀和耐磨性能。
在某些实施例中,先将镀液进行均质化处理,具体为:镀液中超声十分钟,再放入磁力搅拌器中搅拌二十分钟。
不锈钢样品的去油在碱性溶液中进行。所述碱性溶液包括:40g/L NaOH、25g/LNa2CO3、7g/L Na3PO4、10g/L Na2SiO3和1.5g/L OP-10水基复配液,温度在90℃左右,至少20min。去氧化物处理为:在10%的硫酸溶液中去除表面的氧化物,除锈温度在50℃,时间为5min。
施镀在磁力搅拌器中进行。化学镀的条件主要包括镀液温度,磁力搅拌转速,PH值以及施镀时间,在某些实施例中,镀液温度保持在90℃左右,转速为500rad/min,PH=4.0,施镀时间为2h。
本发明的另一个目的还提供了由上述制备方法获得的Ni-P-SiO2镀层保护的不锈钢基体,不锈钢基体表面覆盖有耐磨耐蚀高磷Ni-P-SiO2复合镀层。
与现有的技术相比,本发明的有益效果体现在:(1)以CDTA和乳酸络位合剂,能提高镀层中P的含量。(2)PDDA和十二烷基硫酸钠加入到镀液中能很好的让纳米SiO2均匀分散于镀液中,且PDDA在不改变镀层中P的含量情况下能很好的促进纳米SiO2进入到镀层中(3)纳米SiO2进入到镀层中能很好的减小镀层的孔隙率,进而提高镀层的耐蚀性能。(4)纳米SiO2进入到镀层中,纳米SiO2颗粒硬度高,会在摩擦表面形成滚珠轴承效应,将滑动摩擦变成滚动摩擦,表现出良好的润滑性,进而更好地提高了镀层的耐磨性。
附图说明
图1为比较例1(a)、实施例1(b)、实施例2(c)获得的不锈钢镀层表面SEM图。
图2为比较例1、实施例1获得的不锈钢镀层在3.5%NaCl溶液中的动电位极化曲线(a图)和交流阻抗图(b图)。
图3分别为实施例1、实施例2的Ni-P镀层在3.5%NaCl溶液中的动电位极化曲线(a图)和交流阻抗图(b图)。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
一种不锈钢球阀表面耐磨耐蚀高磷Ni-P-SiO2复合镀层的制备,按照以下步骤进行:
(1)配备含纳米SiO2的酸性Ni-P镀液,其镀液组成为NiSO4·7H2O 25g/L,NaH2PO2·H2O 20g/L,CDTA(1,2-环己二胺四乙酸)35g/L,乳酸8ml/L,Ce2(SO4)3·8H2O为3mg/L,十二烷基硫酸钠为0.5g/L,尺寸为60nm的SiO2为10g/L,PDDA(邻苯二甲酸二乙二醇二丙烯酸酯)3ml/L,用NaOH或H2SO4调整溶液pH为4。
(2)将含有纳米SiO2的酸性Ni-P镀液在超声搅拌10min,再放入磁力搅拌器中搅拌20min。
(3)采用奥氏体不锈钢(3cm×5cm)样品,先将样品放入40g/L NaOH、25g/L Na2CO3、7g/L Na3PO4、10g/L Na2SiO3和1.5g/L OP-10的水基复配液中除油处理,温度在90℃左右,至少20min。再将样品水洗置入10%的硫酸溶液中去除表面的氧化物,再超声水洗若干分钟。
(4)将经过步骤(3)处理过的样品置入镀液中,在磁力搅拌器中镀,磁力搅拌器转速为500rad/min。镀液温度保持90℃,施镀2h得到包覆有Ni-P-SiO2复合镀层的不锈钢样品。
(5)将得到的样品水洗干燥后分别进行表面形貌SEM观察(图1b)、镀层表面Ni-P含量DES分析(表1)、摩擦系数和磨损率分析(表2),3.5%NaCl溶液中的电化学性能分析(图2)。
实施例2
将实施例1步骤2制备的镀液置于空气环境下,放置30天。然后按照实施例1步骤3-4获得包覆有Ni-P-SiO2复合镀层的不锈钢样品。
将得到的样品水洗干燥后分别进行表面形貌SEM观察(图1c)、镀层表面Ni-P含量DES分析(表1)、摩擦系数和磨损率分析(表2),
比较例1:
将不锈钢片在酸性Ni-P镀液进行施镀得到一层Ni-P镀层,除了镀液中不加纳米纳米SiO2外,其余所有步骤和工艺都与实施例1一致。
将实施例1和2添加纳米SiO2得到的Ni-P-SiO2复合镀层的不锈钢样品与比较例1得到的Ni-P镀层样品进行表面形貌观察,如图1所示,添加纳米SiO2的Ni-P镀层(实施例1和2,分别为图1b和c)表面晶粒更加致密,均匀性更好,而在空气环境下长时间放置不影响涂层的表面结构。表1的EDS的Ni、P元素含量显示,添加纳米SiO2的镀层(实施例1和2)中P的含量和不添加纳米SiO2的镀层中P的含量相差无几,含量都很高,都超过10%。而且,放置长时间的镀液其摩擦率和摩擦系数也基本不变,对纳米SiO2进入到镀层也无很大影响,由此可见,本发明镀液具有良好的稳定性。
表1
Figure BDA0002534945730000061
表2为Ni-P和Ni-P-SiO2的摩擦系数和摩擦率对比,添加纳米SiO2的镀层的摩擦系数和摩擦率远远小于不添加纳米SiO2镀层,说明镀液中纳米SiO2的添加能使得Ni-P镀层更加耐磨。而实施例1和2所获得的镀层的摩擦系数和摩擦率基本相同,说明放置长时间的镀液对于纳米SiO2进入镀层无基本影响,说明了本发明镀液具有很好的稳定性。
表2
Figure BDA0002534945730000071
电化学耐蚀性测试
利用Ivium V38108电化学工作站测试动电位极化曲线及交流阻抗曲线来表征包覆镀层后的不锈钢基体在3.5%NaCl溶液中的耐腐蚀性能,测试结果如图2、图3所示。从图中可以比较自腐蚀电位Ecorr和自腐蚀电流icorr,如表3所示。
表3
E<sub>corr</sub>/V i<sub>corr</sub>/mA·cm<sup>-2</sup>
比较例1 -0.39 0.0005
实施例1 -0.185 0.0005
实施例2 -0.200 0.0007
自腐蚀电流越小或者自腐蚀电位越正,交流阻抗弧的直径越大,代表镀层耐蚀性越好,从表3可以看出,添加纳米SiO2的镀层(实施例1和2)在3.5%NaCl的溶液中比不添加纳米SiO2的镀层具有更好的耐腐蚀性,且从实施例2来看,在空气环境下长时间放置的镀液不影响本发明镀液的性能,镀液具有良好的稳定性。从图2的交流阻抗来看,添加纳米SiO2的镀层(实施例1)在3.5%NaCl的溶液中阻抗比不添加纳米SiO2的镀层阻抗要大很多,耐蚀性更好,说明纳米SiO2的加入能很好的提高Ni-P镀层的耐蚀性。实施例1所得到的高P Ni-P镀层比比较例1不添加纳米SiO2的镀层的自腐蚀电位更正,耐蚀性更好,从图3来看,实施例1和2的镀层的阻抗相近。
实施例3
一种不锈钢球阀表面耐磨耐蚀高磷Ni-P-SiO2复合镀层的制备,按照以下步骤进行:
(1)配备含纳米SiO2的酸性Ni-P镀液,其镀液组成为NiSO4·7H2O 25g/L,NaH2PO2·H2O 20g/L,CDTA(1,2-环己二胺四乙酸)35g/L,乳酸5ml/L,Ce2(SO4)3·8H2O为2mg/L,十二烷基硫酸钠为0.5g/L,PDDA(邻苯二甲酸二乙二醇二丙烯酸酯)3ml/L,尺寸为60nm的纳米SiO2为10g/L,用NaOH或H2SO4调整溶液pH为4。
(2)将含有纳米SiO2的酸性Ni-P镀液在超声搅拌10min,再放入磁力搅拌器中搅拌20min。
(3)采用奥氏体不锈钢(3cm×5cm)样品,先将样品放入40g/L NaOH、25g/L Na2CO3、7g/L Na3PO4、10g/L Na2SiO3和1.5g/L OP-10的水基复配液中除油处理,温度在90℃左右,至少20min。再将样品水洗置入10%的硫酸溶液中去除表面的氧化物,再超声水洗若干分钟。
(4)将经过步骤(3)处理过的样品置入镀液中,在磁力搅拌器中镀,磁力搅拌器转速为500rad/min。镀液温度保持90℃,施镀2h得到包覆有Ni-P-SiO2复合镀层的不锈钢样品。
(5)将得到的样品水洗干燥后分别进行表面形貌SEM观察、镀层表面Ni-P含量DES分析、摩擦系数和磨损率分析,3.5%NaCl溶液中的电化学性能分析。
结果表明,本实施例所得到的镀层表面晶粒致密,均匀性好。P含量为11.9%。磨损率为2.7×10-5mm3·(N·m)-1,摩擦系数为0.2722,均远远小于不添加纳米SiO2镀层(比较例1),且在3.5%NaCl的溶液中的腐蚀电位Ecorr为0.188V。
实施例4
一种不锈钢球阀表面耐磨耐蚀高磷Ni-P-SiO2复合镀层的制备,按照以下步骤进行:
(1)配备含纳米SiO2的酸性Ni-P镀液,其镀液组成为NiSO4·7H2O 25g/L,NaH2PO2·H2O 20g/L,CDTA(1,2-环己二胺四乙酸)35g/L,乳酸10ml/L,Ce2(SO4)3·8H2O为4mg/L,十二烷基硫酸钠为0.5g/L,PDDA(邻苯二甲酸二乙二醇二丙烯酸酯)3ml/L,尺寸为60nm的纳米SiO2为10g/L,用NaOH或H2SO4调整溶液pH为4。
(2)将含有纳米SiO2的酸性Ni-P镀液在超声搅拌10min,再放入磁力搅拌器中搅拌20min。
(3)采用奥氏体不锈钢(3cm×5cm)样品,先将样品放入40g/L NaOH、25g/L Na2CO3、7g/L Na3PO4、10g/L Na2SiO3和1.5g/L OP-10的水基复配液中除油处理,温度在90℃左右,至少20min。再将样品水洗置入10%的硫酸溶液中去除表面的氧化物,再超声水洗若干分钟。
(4)将经过步骤(3)处理过的样品置入镀液中,在磁力搅拌器中镀,磁力搅拌器转速为500rad/min。镀液温度保持90℃,施镀2h得到包覆有Ni-P-SiO2复合镀层的不锈钢样品。
(5)将得到的样品水洗干燥后分别进行表面形貌SEM观察、镀层表面Ni-P含量DES分析、摩擦系数和磨损率分析,3.5%NaCl溶液中的电化学性能分析。
结果表明,本实施例所得到的镀层表面晶粒致密,均匀性好。P含量为11.4%。磨损率为2.5×10-5mm3·(N·m)-1,摩擦系数为0.2798,均远远小于不添加纳米SiO2镀层(比较例1),且在3.5%NaCl的溶液中的腐蚀电位Ecorr为0.179V。

Claims (3)

1.一种不锈钢球阀表面耐磨耐蚀高磷复合镀层的镀液,其特征在于,镀液pH为4,至少包括NiSO4·7H2O 25g/L,NaH2PO2·H2O 20g/L,CDTA(1,2-环己二胺四乙酸)35g/L,乳酸5-10ml/L,Ce2(SO4)3·8H2O 2-4mg/L,PDDA(邻苯二甲酸二乙二醇二丙烯酸酯)3ml/L,十二烷基硫酸钠为0.5g/L,纳米SiO2 10g/L。
2.根据权利要求1所述的镀液,其特征在于,所述乳酸为8ml/L,Ce2(SO4)3·8H2O为3mg/L。
3.一种不锈钢球阀表面耐磨耐蚀高磷复合镀层的制备方法,其特征在于,该方法为:将不锈钢样品在分别在除油液和有稀盐酸中进行表面除油和去氧化物处理,然后在超声波作用下水洗,然后置于权利要求1所述的镀液中,在磁力搅拌下施镀2h,然后取出样品水洗吹干。
CN202010530220.0A 2020-06-11 2020-06-11 一种不锈钢球阀表面耐磨耐蚀高磷镀液及耐磨耐蚀的制备方法 Pending CN111575686A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010530220.0A CN111575686A (zh) 2020-06-11 2020-06-11 一种不锈钢球阀表面耐磨耐蚀高磷镀液及耐磨耐蚀的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010530220.0A CN111575686A (zh) 2020-06-11 2020-06-11 一种不锈钢球阀表面耐磨耐蚀高磷镀液及耐磨耐蚀的制备方法

Publications (1)

Publication Number Publication Date
CN111575686A true CN111575686A (zh) 2020-08-25

Family

ID=72109939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010530220.0A Pending CN111575686A (zh) 2020-06-11 2020-06-11 一种不锈钢球阀表面耐磨耐蚀高磷镀液及耐磨耐蚀的制备方法

Country Status (1)

Country Link
CN (1) CN111575686A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501598A (zh) * 2020-11-30 2021-03-16 南通麦特隆新材料科技有限公司 一种铝基材pcb线路板上用化学镀镍液及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997686A (en) * 1987-12-23 1991-03-05 Surface Technology, Inc. Composite electroless plating-solutions, processes, and articles thereof
CN1737213A (zh) * 2005-06-30 2006-02-22 北京交通大学 一种用于电镀液中纳米微粒的分散方法
CN101024879A (zh) * 2007-02-09 2007-08-29 中国重型汽车集团有限公司 一种用于304不锈钢表面高磷化学镀Ni-P合金的化学镀镀液
CN101050525A (zh) * 2007-05-17 2007-10-10 山东大学 一种高磷Ni-P-SiC复合镀层及其制备工艺
CN104561961A (zh) * 2014-12-27 2015-04-29 广东致卓精密金属科技有限公司 一种化学镀钴镍合金镀液及工艺
CN109742355A (zh) * 2018-12-29 2019-05-10 广西卡耐新能源有限公司 一种硅碳复合材料制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997686A (en) * 1987-12-23 1991-03-05 Surface Technology, Inc. Composite electroless plating-solutions, processes, and articles thereof
CN1737213A (zh) * 2005-06-30 2006-02-22 北京交通大学 一种用于电镀液中纳米微粒的分散方法
CN101024879A (zh) * 2007-02-09 2007-08-29 中国重型汽车集团有限公司 一种用于304不锈钢表面高磷化学镀Ni-P合金的化学镀镀液
CN101050525A (zh) * 2007-05-17 2007-10-10 山东大学 一种高磷Ni-P-SiC复合镀层及其制备工艺
CN104561961A (zh) * 2014-12-27 2015-04-29 广东致卓精密金属科技有限公司 一种化学镀钴镍合金镀液及工艺
CN109742355A (zh) * 2018-12-29 2019-05-10 广西卡耐新能源有限公司 一种硅碳复合材料制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
华戟云等: "不锈钢球阀化学镀Ni-P合金镀层研究", 《电镀与涂饰》 *
方景礼: "《电镀添加剂》", 北京:国防工业出版社 *
李亚涛等: "镀液基础配方对化学镀Ni-P-纳米SiO_2的影响", 《广东化工》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501598A (zh) * 2020-11-30 2021-03-16 南通麦特隆新材料科技有限公司 一种铝基材pcb线路板上用化学镀镍液及其制备方法

Similar Documents

Publication Publication Date Title
Barati et al. Electroless Ni-B and composite coatings: A critical review on formation mechanism, properties, applications and future trends
Luo et al. Development of electroless Ni–P/nano-WC composite coatings and investigation on its properties
Tamilarasan et al. Effect of surfactants on the coating properties and corrosion behaviour of Ni–P–nano-TiO2 coatings
Momenzadeh et al. The effect of TiO2 nanoparticle codeposition on microstructure and corrosion resistance of electroless Ni P coating
Fayyaz et al. Enhancement of mechanical and corrosion resistance properties of electrodeposited Ni–P–TiC composite coatings
Fayyad et al. Novel electroless deposited corrosion—resistant and anti-bacterial NiP–TiNi nanocomposite coatings
CN101545104B (zh) 一种纳米化学复合镀方法
Uysal Electroless codeposition of Ni-P composite coatings: Effects of graphene and TiO 2 on the morphology, corrosion, and tribological properties
Bao et al. Optimization of plating process and corrosion behavior of nanocrystalline Ni-Mo coatings on pure aluminum
CN111575686A (zh) 一种不锈钢球阀表面耐磨耐蚀高磷镀液及耐磨耐蚀的制备方法
Zhang et al. Preparation of Ni-P-Ti3C2Tx-Ce composite coating with enhanced wear resistance and electrochemical corrosion behavior on the surface of low manganese steel
Sürdem et al. A parametric study on the relationship between NaBH4 and tribological properties in the nickel-boron electroless depositions
CN106085551A (zh) 一种石墨烯基高分子纳米合金抗磨自修复材料及其制备方法和应用
Davoodi et al. Deposition of electroless Ni–Cu–P coatings on L80 steel substrates and the effects of coatings thickness and heat treatment on the corrosion resistance
Wang et al. Anti-corrosion, self-healing and environmental-friendly Ti3C2Tx/MgAl-LDH@ epoxy composite organic coating for Mg alloy protection
Mirza et al. Surface Coatings on Steel Pipes Used in Oil and Gas Industries-A Review
Zhang et al. Phosphate conversion of electroplated Ni coatings on NdFeB magnets improving the anticorrosion property
Yan et al. Effects of propylamine and ethylenediamine intercalation of α-ZrP on the corrosion resistance and tribological properties of electroless Ni-B coatings
Zhang et al. Studies of electroless nickel deposits with low phosphorus content
Boakye et al. Wear-reducing nickel-phosphorus and graphene oxide-based composite coatings: Microstructure and corrosion behavior in high temperature geothermal environment
CA3092257C (en) Electroless plating of objects with carbon-based material
Ali et al. Optimization of electroless Ni-P, Ni-Cu-P and Ni-Cu-P-TiO2 nanocomposite coatings microhardness using Taguchi method
Das et al. Electroless nickel-phosphorus deposits
CN105132895A (zh) 一种Ni-P化学镀液及Ni-P纳米立方氮化硼复合镀层的制备方法
Mukhopadhyay et al. Tribological behavior of electroless Ni-B-Mo coatings under dry and lubricated conditions and corrosion resistance in 3.5% NaCl solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825

RJ01 Rejection of invention patent application after publication