Disclosure of Invention
The invention aims to overcome the defects of the prior art and provide a high-efficiency gene insertion or replacement method mediated by CRISPR RNP and donor DNA co-location, firstly, the invention expresses a fusion protein (Cas9-Xten-mSA) of Cas9 and monovalent streptomycin (mSA), then biotin labels the donor DNA, CRISPR RNP and the donor DNA form a complex through the affinity of mSA and biotin, and the complex is drawn to a target site by utilizing the search function of RNP, so that after the Cas9 generates a DNA double-strand cut at the target site, the donor DNA can timely provide a template required by homologous recombination repair cut in situ, thereby improving the gene insertion or replacement efficiency.
It is another object of the present invention to provide the use of the highly efficient CRISPR RNP and donor DNA co-location mediated gene insertion or replacement method.
The purpose of the invention is realized by the following technical scheme:
a highly efficient CRISPR RNP and donor DNA co-location mediated gene insertion or replacement method, comprising the steps of:
(1) carrying out biotin labeling on the donor DNA to obtain the donor DNA labeled by biotin;
(2) uniformly mixing the Cas9 protein with a fusion protein (Cas9-Xten-mSA protein) of monovalent streptavidin (Monostreptavidin, mSA), sgRNA and biotin-labeled donor DNA, and standing to obtain a CRISPR RNP-donor DNA complex;
(3) the CRISPR RNP-donor DNA complex is subjected to nuclear transformation to effect gene insertion or replacement.
The gene insertion or substitution can be the insertion or substitution of any gene sequence; especially, gene insertion or replacement in agricultural organisms such as rice and pigs, such as replacement of herbicide sensitive gene ALS1 in rice; replacement of bacterial blight and/or rice blast susceptible genes; insertion of environmentally friendly genes in the porcine genome at the Rosa26 and/or H11 safe sites.
The bacterial leaf blight and/or rice blast susceptible gene comprises rice bacterial leaf blight and/or rice blast susceptible genes, such as OsSWEET14, OsSWEET13, OsSweet11, pi21 genes and the like.
The environment-friendly genes at the Rosa26 and/or H11 safety sites in the pig genome comprise cellulase genes bg17, eg131, xylanase genes xynB, phytase genes appA and the like.
The donor DNA in the step (1) is preferably donor DNA containing a terminal homology arm, an RNA Splice Acceptor (SA) and a coral green fluorescent protein coding sequence (ZsGreen1), and the nucleotide sequence of the donor DNA is shown in SEQ ID NO. 4.
The biotin labeling described in step (1) is preferably achieved by: and (3) performing PCR amplification by using the donor DNA as a template and using a biotin labeled primer SEQ ID NO.23 and a primer SEQ ID NO.24 to obtain the biotin labeled donor DNA.
The fusion protein of the Cas9 protein and the monovalent streptavidin (Cas9-Xten-mSA protein) in the step (2) is a Cas9-Xten-mSA fusion protein connected with a Xten linker, and the amino acid sequence of the fusion protein is shown as SEQ ID NO. 1; the Cas9-Xten-mSA protein can be obtained by expression and purification by means of conventional technical means in the field, and is preferably prepared by the following method:
(A) using pET-NLS-Cas9-6xHis plasmid as a template and SEQ ID NO.6 and SEQ ID NO.7 as primers to carry out amplification to obtain a fragment I; simultaneously, taking the sequences SEQ ID NO.8 and SEQ ID NO.9 as primers to carry out amplification to obtain a fragment II; adopting an Overlap extension PCR method, taking a mixture of the fragments I and II in equal molar ratio as a template, and amplifying by using primers SEQ ID NO.6 and SEQ ID NO.9 to obtain a fusion fragment of the fragments I and II; after the fused fragment is cut by SacI and AvrII enzyme, inserting the fused fragment into pET-NLS-Cas9-6xHis plasmid cut by the same enzyme to obtain pET-NLS-Cas9-NLS-6xHis plasmid;
(B) pET-NLS-Cas9-NLS-6xHis plasmid is taken as a template, and sequences SEQ ID NO.10 and SEQ ID NO.11 are taken as primers for amplification to obtain a fragment III; taking the Xten-mSA gene as a template and taking the sequences SEQ ID NO.12 and SEQ ID NO.13 as primers for amplification to obtain a fragment IV; adopting an Overlap Extension PCR method, taking a mixture of fragments III and IV in an equimolar ratio as a template, and amplifying by using primers SEQ ID NO.10 and SEQ ID NO.13 to obtain a fusion fragment of the fragments III and IV; after the fused fragment is digested by SacI and XhoI, inserting the digested fused fragment into pET-NLS-Cas9-NLS-6xHis plasmid to obtain expression plasmid pET-Cas 9-Xten-mSA; wherein, the nucleotide sequence of the Xten-mSA gene is shown as SEQID NO. 5;
(C) the expression plasmid pET-Cas9-Xten-mSA is transformed into escherichia coli and then cultured, IPTG is added for induction expression, bacteria are collected, ultrasonic lysis is carried out, and purification is carried out, so that Cas9-Xten-mSA protein, namely the fusion protein of Cas9 protein and monovalent streptavidin is obtained.
The Escherichia coli described in step (C) is preferably E.coli Rosetta (DE 3).
The conditions for the cultivation in the step (C) are preferably: cultured at 200rpm and 37 ℃ until OD600 becomes 0.6.
The amount of IPTG used in step (C) was calculated as its addition at a final concentration of 0.5mmol/L in the system.
The conditions for inducing expression in step (C) are: the culture was carried out at 22 ℃ and 160rpm for 16 hours.
The nucleotide sequence of the fusion protein (Cas9-Xten-mSA protein) encoding Cas9 protein and monovalent streptavidin is shown in SEQ ID NO. 2.
The sgRNA in the step (2) is an in vitro transcribed sgRNA which takes a Rosa26 locus of a pig genome as a target site, and the nucleotide sequence of the sgRNA is shown as SEQ ID No. 3; the sgRNA can be synthesized by means of conventional techniques in the art, and is preferably synthesized by the following method:
(I) taking pGEM-T easy plasmid as a template and taking sequences SEQ ID NO.15 and SEQ ID NO.16 as primers to carry out PCR amplification to obtain a sequence I;
(II) carrying out PCR amplification by taking the pX330 plasmid as a template and taking the sequences SEQ ID NO.17 and SEQ ID NO.18 as primers to obtain a sequence II;
(III) adopting an Overlap Extension PCR method, taking a mixture of a sequence I and a sequence II in an equal molar ratio as a template, and amplifying by using primers SEQ ID NO.15 and SEQ ID NO.18 to obtain a fusion fragment of the sequence I and the sequence II (namely, the fusion fragment of a DNA coding sequence containing a T7 promoter sequence, a sgRNA guide sequence and a DNA coding sequence of a sgRNA framework sequence, wherein the nucleotide sequence of the sgRNA guide sequence is shown as SEQ ID NO. 14); and then taking the fusion fragment of the sequence I and the sequence II as a template for in vitro sgRNA transcription, and carrying out in vitro transcription to obtain the sgRNA.
The molar ratio of the fusion protein of the Cas9 protein and the monovalent streptavidin (Cas9-Xten-mSA protein) to the biotin-labeled donor DNA in the step (2) is 8-32: 1; preferably 20-24: 1.
The molar ratio of the fusion protein of the Cas9 protein and the monovalent streptavidin (Cas9-Xten-mSA protein) to the sgRNA in the step (2) is 1: 1-1.2; preferably 1: 1.
The standing condition in the step (2): standing at room temperature for 15-25 min; preferably: standing at room temperature for 20 min.
The cells in the step (3) are embryonic fibroblasts; preferably porcine embryonic fibroblasts.
The transformation of the nucleus in the step (3) is preferably carried out by the following method: adding the nuclear transformation liquid of P3 Primary Cell 4D-Nucleofector X kit into cells, and uniformly mixing to obtain a mixed liquid; CRISPRRNP-donor DNA complex is then added and nuclear transformation is performed using a nuclear transfectator.
The volume ratio of the mixed solution to the CRISPR RNP-donor DNA complex is 1: 0.5-1.
The application of the efficient CRISPR RNP and donor DNA co-location mediated gene insertion or replacement method in gene editing.
The environment of the application is in vitro environment, such as livestock embryo fibroblasts and the like.
The livestock embryonic fibroblasts comprise porcine embryonic fibroblasts and the like.
The gene editing comprises gene insertion or gene replacement.
The efficient CRISPR RNP and donor DNA co-location mediated gene insertion or replacement method is applied to crop breeding.
The crops comprise rice and the like.
Compared with the prior art, the invention has the following advantages and effects:
(1) the invention provides an CRISPR RNP and donor DNA co-location mediated gene insertion or replacement method, namely, a fusion protein of Cas9 protein and monovalent streptavidin (Monostreptavidin, mSA) is utilized to combine the characteristic of biotin labeling of donor DNA, so that CRISPR RNP and donor DNA co-appear at a target site, and the accurate insertion of the donor DNA at the target site or the accurate replacement of the target site gene are realized. The method provided by the invention is an effective method for gene insertion or replacement, and can play an important role in breeding of crops and livestock with excellent character gene editing breeding.
(2) According to the invention, Cas9-Xten-mSA fusion protein connected with an Xten linker is expressed and purified firstly, then sgRNA taking a pig genome Rosa26 site as a target site is transcribed in vitro, donor DNA containing a terminal homologous arm, an RNA splicing acceptor (Splice acceptor, SA) and a coral green fluorescent protein coding sequence (ZsGreen1) marked by biotin is prepared, and finally CRISPR RNP-donor DNA complex is assembled in vitro, and a pig embryo is subjected to nuclear transformation to form a fibroblast. In cells, CRISPRRNP after incision at target site, using cell homologous recombination repair mechanism, the donor DNA coordinated and combined on CRISPR RNP is precisely integrated on the target site, so that the Green1 gene on the donor DNA is expressed by using endogenous Rosa26 promoter, and the co-location mediated gene insertion or replacement efficiency of CRISPR RNP and donor DNA is determined by PCR product gel electrophoresis and flow cytometry analysis.
(3) The CRISPR RNP-donor DNA complex produced by the invention has improved homologous recombination efficiency, so that the gene insertion or replacement of a large fragment is more feasible in breeding practice of agricultural biological trait improvement.
(4) CRISPR RNP-donor DNA complex is introduced into embryonic fibroblasts of domestic animals such as pigs or fertilized eggs in one-cell stage by nuclear transformation or microinjection, and the embryonic fibroblasts or fertilized eggs with excellent properties can be obtained by gene insertion of safe loci or replacement of inferior genes in genomes, and are used for gene editing breeding of domestic animals such as pigs.
(5) The CRISPR RNP-donor DNA complex is introduced into the callus or young embryo of rice and other crops through gene gun bombardment, and new germplasm of rice and other crops with excellent characters can be obtained through gene insertion of safe sites or replacement of inferior genes in the genome.
Example 2 Nuclear transformation cell population ZsGreen1 Gene expression Observation and flow cytometry analysis
(1) After 24 hours of nuclear transformation in example 1 step (6), expression of the ZsGreen1 gene was observed under a Zeiss Axio Observer A1 fluorescent inverted microscope, and about 10% of the cells fluoresced after nuclear transformation with the CRISPR RNP-donor DNA complex (sgRNA-Cas9-Xten-mSA-ZsGreen1) (FIG. 7A); as a control, CRISPR RNP-donor DNA mixture (sgRNA-Cas9+ ZsGreen1) showed few cells that fluoresced after nuclear transformation (fig. 7B). The ZsGreen1 gene has no promoter when designing donor DNA, and only can be correctly inserted into the first intron of the Rosa26 gene through homologous recombination and can be expressed by depending on the Rosa26 gene promoter, so the fluorescent cell is a cell with the ZsGreen1 gene correctly inserted into a target site. Wherein, the nuclear transformation of CRISPR RNP and donor DNA mixture (sgRNA-Cas9+ ZsGreen1) in the control group is referred to example 1, which is as follows:
the Cas9 protein expression plasmid is pET-NLS-Cas9-NLS-6xHis plasmid, and the construction process is shown in step (1) a of example 1; the expression purification of Cas9 protein is the same as that of Cas9-Xten-mSA protein, with specific reference to example 1, step (1) b; the sequence of sgRNA is shown in SEQ ID NO.2, and the design and in vitro transcription method are the same as the step (2) of the example 1; the sequence of the donor DNA of the Green1 gene is shown in SEQ ID NO. 3; then referring to the method in step (5) of example 1, Cas9 protein, sgRNA and donor DNA were mixed uniformly to obtain CRISPR RNP-donor DNA mixture, and then nuclear transformation was performed according to the same method.
(2) The CRISPR RNP-donor DNA complex (sgRNA-Cas9-Xten-mSA-ZsGreen1) nuclear transformed porcine embryonic fibroblasts were trypsinized, centrifuged at 1000rpm for 5min to collect the cells, the supernatant was aspirated, and the cells were resuspended in PBS buffer. The cell suspension was filtered through a 50 μm nylon membrane into a flow tube in order not to clog the flow cytometer. The ratio of fluorescent cells was about 5.8% when analyzed by FACSAria II (BDBiosiens) flow cytometer (FIG. 8). The results show that: the insertion efficiency of the CRISPR RNP and the ZsGreen1 co-location mediated by the donor DNA is 5.8%.
The above embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and simplifications which do not depart from the spirit and principle of the present invention should be construed as equivalents thereof, and all such changes, modifications, substitutions, combinations, and simplifications are intended to be included in the scope of the present invention.
Sequence listing
<110> center for researching agricultural biological genes of Guangdong province academy of agricultural sciences
<120> a highly efficient CRISPR RNP and donor DNA co-location mediated gene insertion or substitution method and uses thereof
<160>30
<170>SIPOSequenceListing 1.0
<210>1
<211>1543
<212>PRT
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Cas9-Xten-mSA protein sequence
<400>1
Met Pro Lys Lys Lys Arg Lys Val Met Asp Lys Lys Tyr Ser Ile Gly
1 5 10 15
Leu Asp Ile Gly Thr Asn Ser Val Gly Trp Ala Val Ile Thr Asp Glu
20 25 30
Tyr Lys Val Pro Ser Lys Lys Phe Lys Val Leu Gly Asn Thr Asp Arg
35 40 45
His Ser Ile Lys Lys Asn Leu Ile Gly Ala Leu Leu Phe Asp Ser Gly
50 55 60
Glu Thr Ala Glu Ala Thr Arg Leu Lys Arg Thr Ala Arg Arg Arg Tyr
65 70 75 80
Thr Arg Arg Lys Asn Arg Ile Cys Tyr Leu Gln Glu Ile Phe Ser Asn
85 90 95
Glu Met Ala Lys Val Asp Asp Ser Phe Phe His Arg Leu Glu Glu Ser
100 105 110
Phe Leu Val Glu Glu Asp Lys Lys His Glu Arg His Pro Ile Phe Gly
115 120 125
Asn Ile Val Asp Glu Val Ala Tyr His Glu Lys Tyr Pro Thr Ile Tyr
130 135 140
His Leu Arg Lys Lys Leu Val Asp Ser Thr Asp Lys Ala Asp Leu Arg
145 150 155 160
Leu Ile Tyr Leu Ala Leu Ala His Met Ile Lys Phe Arg Gly His Phe
165 170 175
Leu Ile Glu Gly Asp Leu Asn Pro Asp Asn Ser Asp Val Asp Lys Leu
180 185 190
Phe Ile Gln Leu Val Gln Thr Tyr Asn Gln Leu Phe Glu Glu Asn Pro
195 200 205
Ile Asn Ala Ser Gly Val Asp Ala Lys Ala Ile Leu Ser Ala Arg Leu
210 215 220
Ser Lys Ser Arg Arg Leu Glu Asn Leu Ile Ala Gln Leu Pro Gly Glu
225 230 235 240
Lys Lys Asn Gly Leu Phe Gly Asn Leu Ile Ala Leu Ser Leu Gly Leu
245 250 255
Thr Pro Asn Phe Lys Ser Asn Phe Asp Leu Ala Glu Asp Ala Lys Leu
260 265 270
Gln Leu Ser Lys Asp Thr Tyr Asp Asp Asp Leu Asp Asn Leu Leu Ala
275 280 285
Gln Ile Gly Asp Gln Tyr Ala Asp Leu Phe Leu Ala Ala Lys Asn Leu
290 295 300
Ser Asp Ala Ile Leu Leu Ser Asp Ile Leu Arg Val Asn Thr Glu Ile
305 310 315 320
Thr Lys Ala Pro Leu Ser Ala Ser Met Ile Lys Arg Tyr Asp Glu His
325 330 335
His Gln Asp Leu Thr Leu Leu Lys Ala Leu Val Arg Gln Gln Leu Pro
340 345 350
Glu Lys Tyr Lys Glu Ile Phe Phe Asp Gln Ser Lys Asn Gly Tyr Ala
355 360 365
Gly Tyr Ile Asp Gly Gly Ala Ser Gln Glu Glu Phe Tyr Lys Phe Ile
370 375 380
Lys Pro Ile Leu Glu Lys Met Asp Gly Thr Glu Glu Leu Leu Val Lys
385 390 395 400
Leu Asn Arg Glu Asp Leu Leu Arg Lys Gln Arg Thr Phe Asp Asn Gly
405 410 415
Ser Ile Pro His Gln Ile His Leu Gly Glu Leu His Ala Ile Leu Arg
420 425 430
Arg Gln Glu Asp Phe Tyr Pro Phe Leu Lys Asp Asn Arg Glu Lys Ile
435 440 445
Glu Lys Ile Leu Thr Phe Arg Ile Pro Tyr Tyr Val Gly Pro Leu Ala
450 455 460
Arg Gly Asn Ser Arg Phe Ala Trp Met Thr Arg Lys Ser Glu Glu Thr
465 470 475 480
Ile Thr Pro Trp Asn Phe Glu Glu Val Val Asp Lys Gly Ala Ser Ala
485 490 495
Gln Ser Phe Ile Glu Arg Met Thr Asn Phe Asp Lys Asn Leu Pro Asn
500 505 510
Glu Lys Val Leu Pro Lys His Ser Leu Leu Tyr Glu Tyr Phe Thr Val
515 520 525
Tyr Asn Glu Leu Thr Lys Val Lys Tyr Val Thr Glu Gly Met Arg Lys
530 535 540
Pro Ala Phe Leu Ser Gly Glu Gln Lys Lys Ala Ile Val Asp Leu Leu
545 550 555 560
Phe Lys Thr Asn Arg Lys Val Thr Val Lys Gln Leu Lys Glu Asp Tyr
565 570 575
Phe Lys Lys Ile Glu Cys Phe Asp Ser Val Glu Ile Ser Gly Val Glu
580 585 590
Asp Arg Phe Asn Ala Ser Leu Gly Thr Tyr His Asp Leu Leu Lys Ile
595 600 605
Ile Lys Asp Lys Asp Phe Leu Asp Asn Glu Glu Asn Glu Asp Ile Leu
610 615 620
Glu Asp Ile Val Leu Thr Leu Thr Leu Phe Glu Asp Arg Glu Met Ile
625 630 635 640
Glu Glu Arg Leu Lys Thr Tyr Ala His Leu Phe Asp Asp Lys Val Met
645 650 655
Lys Gln Leu Lys Arg Arg Arg Tyr Thr Gly Trp Gly Arg Leu Ser Arg
660 665 670
Lys Leu Ile Asn Gly Ile Arg Asp Lys Gln Ser Gly Lys Thr Ile Leu
675 680 685
Asp Phe Leu Lys Ser Asp Gly Phe Ala Asn Arg Asn Phe Met Gln Leu
690 695 700
Ile His Asp Asp Ser Leu Thr Phe Lys Glu Asp Ile Gln Lys Ala Gln
705 710 715 720
Val Ser Gly Gln Gly Asp Ser Leu His Glu His Ile Ala Asn Leu Ala
725 730 735
Gly Ser Pro Ala Ile Lys Lys Gly Ile Leu Gln Thr Val Lys Val Val
740 745 750
Asp Glu Leu Val Lys Val Met Gly Arg His Lys Pro Glu Asn Ile Val
755 760 765
Ile Glu Met Ala Arg Glu Asn Gln Thr Thr Gln Lys Gly Gln Lys Asn
770 775 780
Ser Arg Glu Arg Met Lys Arg Ile Glu Glu Gly Ile Lys Glu Leu Gly
785 790 795 800
Ser Gln Ile Leu Lys Glu His Pro Val Glu Asn Thr Gln Leu Gln Asn
805 810 815
Glu Lys Leu Tyr Leu Tyr Tyr Leu Gln Asn Gly Arg Asp Met Tyr Val
820 825 830
Asp Gln Glu Leu Asp Ile Asn Arg Leu Ser Asp Tyr Asp Val Asp His
835 840 845
Ile Val Pro Gln Ser Phe Leu Lys Asp Asp Ser Ile Asp Asn Lys Val
850 855 860
Leu Thr Arg Ser Asp Lys Asn Arg Gly Lys Ser Asp Asn Val Pro Ser
865 870 875 880
Glu Glu Val Val Lys Lys Met Lys Asn Tyr Trp Arg Gln Leu Leu Asn
885 890 895
Ala Lys Leu Ile Thr Gln Arg Lys Phe Asp Asn Leu Thr Lys Ala Glu
900 905 910
Arg Gly Gly Leu Ser Glu Leu Asp Lys Ala Gly Phe Ile Lys Arg Gln
915 920 925
Leu Val Glu Thr Arg Gln Ile Thr Lys His Val Ala Gln Ile Leu Asp
930 935 940
Ser Arg Met Asn Thr Lys Tyr Asp Glu Asn Asp Lys Leu Ile Arg Glu
945 950 955 960
Val Lys Val Ile Thr Leu Lys Ser Lys Leu Val Ser Asp Phe Arg Lys
965 970 975
Asp Phe Gln Phe Tyr Lys Val Arg Glu Ile Asn Asn Tyr His His Ala
980 985 990
His Asp Ala Tyr Leu Asn Ala Val Val Gly Thr Ala Leu Ile Lys Lys
995 1000 1005
Tyr Pro Lys Leu Glu Ser Glu Phe Val Tyr Gly Asp Tyr Lys Val Tyr
1010 1015 1020
Asp Val Arg Lys Met Ile Ala Lys Ser Glu Gln Glu Ile Gly Lys Ala
1025 1030 1035 1040
Thr Ala Lys Tyr Phe Phe Tyr Ser Asn Ile Met Asn Phe Phe Lys Thr
1045 1050 1055
Glu Ile Thr Leu Ala Asn Gly Glu Ile Arg Lys Arg Pro Leu Ile Glu
1060 1065 1070
Thr Asn Gly Glu Thr Gly Glu Ile Val Trp Asp Lys Gly Arg Asp Phe
1075 1080 1085
Ala Thr Val Arg Lys Val Leu Ser Met Pro Gln Val Asn Ile Val Lys
1090 1095 1100
Lys Thr Glu Val Gln Thr Gly Gly Phe Ser Lys Glu Ser Ile Leu Pro
1105 1110 1115 1120
Lys Arg Asn Ser Asp Lys Leu Ile Ala Arg Lys Lys Asp Trp Asp Pro
1125 1130 1135
Lys Lys Tyr Gly Gly Phe Asp Ser Pro Thr Val Ala Tyr Ser Val Leu
1140 1145 1150
Val Val Ala Lys Val Glu Lys Gly Lys Ser Lys LysLeu Lys Ser Val
1155 1160 1165
Lys Glu Leu Leu Gly Ile Thr Ile Met Glu Arg Ser Ser Phe Glu Lys
1170 1175 1180
Asn Pro Ile Asp Phe Leu Glu Ala Lys Gly Tyr Lys Glu Val Lys Lys
1185 1190 1195 1200
Asp Leu Ile Ile Lys Leu Pro Lys Tyr Ser Leu Phe Glu Leu Glu Asn
1205 1210 1215
Gly Arg Lys Arg Met Leu Ala Ser Ala Gly Glu Leu Gln Lys Gly Asn
1220 1225 1230
Glu Leu Ala Leu Pro Ser Lys Tyr Val Asn Phe Leu Tyr Leu Ala Ser
1235 1240 1245
His Tyr Glu Lys Leu Lys Gly Ser Pro Glu Asp Asn Glu Gln Lys Gln
1250 1255 1260
Leu Phe Val Glu Gln His Lys His Tyr Leu Asp Glu Ile Ile Glu Gln
1265 1270 1275 1280
Ile Ser Glu Phe Ser Lys Arg Val Ile Leu Ala Asp Ala Asn Leu Asp
1285 1290 1295
Lys Val Leu Ser Ala Tyr Asn Lys His Arg Asp Lys Pro Ile Arg Glu
1300 1305 1310
Gln Ala Glu Asn Ile Ile His Leu Phe ThrLeu Thr Asn Leu Gly Ala
1315 1320 1325
Pro Ala Ala Phe Lys Tyr Phe Asp Thr Thr Ile Asp Arg Lys Arg Tyr
1330 1335 1340
Thr Ser Thr Lys Glu Val Leu Asp Ala Thr Leu Ile His Gln Ser Ile
1345 1350 1355 1360
Thr Gly Leu Tyr Glu Thr Arg Ile Asp Leu Ser Gln Leu Gly Gly Asp
1365 1370 1375
Lys Lys Lys Lys Leu Lys Leu Ser Gly Gly Ser Ser Gly Gly Ser Ser
1380 1385 1390
Gly Ser Glu Thr Pro Gly Thr Ser Glu Ser Ala Thr Pro Glu Ser Ser
1395 1400 1405
Gly Gly Ser Ser Gly Gly Ser Met Ala Glu Ala Gly Ile Thr Gly Thr
1410 1415 1420
Trp Tyr Asn Gln Ser Gly Ser Thr Phe Thr Val Thr Ala Gly Ala Asp
1425 1430 1435 1440
Gly Asn Leu Thr Gly Gln Tyr Glu Asn Arg Ala Gln Gly Thr Gly Cys
1445 1450 1455
Gln Asn Ser Pro Tyr Thr Leu Thr Gly Arg Tyr Asn Gly Thr Lys Leu
1460 1465 1470
Glu Trp Arg Val Glu Trp Asn Asn Ser Thr Glu Asn Cys His Ser Arg
1475 1480 1485
Thr Glu Trp Arg Gly Gln Tyr Gln Gly Gly Ala Glu Ala Arg Ile Asn
1490 1495 1500
Thr Gln Trp Asn Leu Thr Tyr Glu Gly Gly Ser Gly Pro Ala Thr Glu
1505 1510 1515 1520
Gln Gly Gln Asp Thr Phe Thr Lys Val Lys Pro Ser Ala Ala Ser Gly
1525 1530 1535
Ser His His His His His His
1540
<210>2
<211>4629
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Cas9-Xten-mSA nucleotide sequence
<400>2
atgcccaaga agaagaggaa ggtgatggat aagaaatact caataggctt agatatcggc 60
acaaatagcg tcggatgggc ggtgatcact gatgaatata aggttccgtc taaaaagttc 120
aaggttctgg gaaatacaga ccgccacagt atcaaaaaaa atcttatagg ggctctttta 180
tttgacagtg gagagacagc ggaagcgact cgtctcaaac ggacagctcg tagaaggtat 240
acacgtcgga agaatcgtat ttgttatcta caggagattt tttcaaatga gatggcgaaa 300
gtagatgata gtttctttca tcgacttgaa gagtcttttt tggtggaaga agacaagaag 360
catgaacgtc atcctatttt tggaaatata gtagatgaag ttgcttatca tgagaaatat 420
ccaactatct atcatctgcg aaaaaaattg gtagattcta ctgataaagc ggatttgcgc 480
ttaatctatt tggccttagc gcatatgatt aagtttcgtg gtcatttttt gattgaggga 540
gatttaaatc ctgataatag tgatgtggac aaactattta tccagttggt acaaacctac 600
aatcaattat ttgaagaaaa ccctattaac gcaagtggag tagatgctaa agcgattctt 660
tctgcacgat tgagtaaatc aagacgatta gaaaatctca ttgctcagct ccccggtgag 720
aagaaaaatg gcttatttgg gaatctcatt gctttgtcat tgggtttgac ccctaatttt 780
aaatcaaatt ttgatttggc agaagatgct aaattacagc tttcaaaaga tacttacgat 840
gatgatttag ataatttatt ggcgcaaatt ggagatcaat atgctgattt gtttttggca 900
gctaagaatt tatcagatgc tattttactt tcagatatcc taagagtaaa tactgaaata 960
actaaggctc ccctatcagc ttcaatgatt aaacgctacg atgaacatca tcaagacttg 1020
actcttttaa aagctttagt tcgacaacaa cttccagaaa agtataaaga aatctttttt 1080
gatcaatcaa aaaacggata tgcaggttat attgatgggg gagctagcca agaagaattt 1140
tataaattta tcaaaccaat tttagaaaaa atggatggta ctgaggaatt attggtgaaa 1200
ctaaatcgtg aagatttgct gcgcaagcaa cggacctttg acaacggctc tattccccat 1260
caaattcact tgggtgagct gcatgctatt ttgagaagac aagaagactt ttatccattt 1320
ttaaaagaca atcgtgagaa gattgaaaaa atcttgactt ttcgaattcc ttattatgtt 1380
ggtccattgg cgcgtggcaa tagtcgtttt gcatggatga ctcggaagtc tgaagaaaca1440
attaccccat ggaattttga agaagttgtc gataaaggtg cttcagctca atcatttatt 1500
gaacgcatga caaactttga taaaaatctt ccaaatgaaa aagtactacc aaaacatagt 1560
ttgctttatg agtattttac ggtttataac gaattgacaa aggtcaaata tgttactgaa 1620
ggaatgcgaa aaccagcatt tctttcaggt gaacagaaga aagccattgt tgatttactc 1680
ttcaaaacaa atcgaaaagt aaccgttaag caattaaaag aagattattt caaaaaaata 1740
gaatgttttg atagtgttga aatttcagga gttgaagata gatttaatgc ttcattaggt 1800
acctaccatg atttgctaaa aattattaaa gataaagatt ttttggataa tgaagaaaat 1860
gaagatatct tagaggatat tgttttaaca ttgaccttat ttgaagatag ggagatgatt 1920
gaggaaagac ttaaaacata tgctcacctc tttgatgata aggtgatgaa acagcttaaa 1980
cgtcgccgtt atactggttg gggacgtttg tctcgaaaat tgattaatgg tattagggat 2040
aagcaatctg gcaaaacaat attagatttt ttgaaatcag atggttttgc caatcgcaat 2100
tttatgcagc tgatccatga tgatagtttg acatttaaag aagacattca aaaagcacaa 2160
gtgtctggac aaggcgatag tttacatgaa catattgcaa atttagctgg tagccctgct 2220
attaaaaaag gtattttaca gactgtaaaa gttgttgatg aattggtcaa agtaatgggg 2280
cggcataagc cagaaaatat cgttattgaa atggcacgtg aaaatcagac aactcaaaag 2340
ggccagaaaa attcgcgaga gcgtatgaaa cgaatcgaag aaggtatcaa agaattagga 2400
agtcagattc ttaaagagca tcctgttgaa aatactcaat tgcaaaatga aaagctctat 2460
ctctattatc tccaaaatgg aagagacatg tatgtggacc aagaattaga tattaatcgt 2520
ttaagtgatt atgatgtcga tcacattgtt ccacaaagtt tccttaaaga cgattcaata 2580
gacaataagg tcttaacgcg ttctgataaa aatcgtggta aatcggataa cgttccaagt 2640
gaagaagtag tcaaaaagat gaaaaactat tggagacaac ttctaaacgc caagttaatc 2700
actcaacgta agtttgataa tttaacgaaa gctgaacgtg gaggtttgag tgaacttgat 2760
aaagctggtt ttatcaaacg ccaattggtt gaaactcgcc aaatcactaa gcatgtggca 2820
caaattttgg atagtcgcat gaatactaaa tacgatgaaa atgataaact tattcgagag 2880
gttaaagtga ttaccttaaa atctaaatta gtttctgact tccgaaaaga tttccaattc 2940
tataaagtac gtgagattaa caattaccat catgcccatg atgcgtatct aaatgccgtc 3000
gttggaactg ctttgattaa gaaatatcca aaacttgaat cggagtttgt ctatggtgat 3060
tataaagttt atgatgttcg taaaatgatt gctaagtctg agcaagaaat aggcaaagca 3120
accgcaaaat atttctttta ctctaatatc atgaacttct tcaaaacaga aattacactt 3180
gcaaatggag agattcgcaa acgccctcta atcgaaacta atggggaaac tggagaaatt 3240
gtctgggata aagggcgaga ttttgccaca gtgcgcaaag tattgtccat gccccaagtc 3300
aatattgtca agaaaacaga agtacagaca ggcggattct ccaaggagtc aattttacca 3360
aaaagaaatt cggacaagct tattgctcgt aaaaaagact gggatccaaa aaaatatggt 3420
ggttttgata gtccaacggt agcttattca gtcctagtgg ttgctaaggt ggaaaaaggg 3480
aaatcgaaga agttaaaatc cgttaaagag ttactaggga tcacaattat ggaaagaagt 3540
tcctttgaaa aaaatccgat tgacttttta gaagctaaag gatataagga agttaaaaaa 3600
gacttaatca ttaaactacc taaatatagt ctttttgagt tagaaaacgg tcgtaaacgg 3660
atgctggcta gtgccggaga attacaaaaa ggaaatgagc tggctctgcc aagcaaatat 3720
gtgaattttt tatatttagc tagtcattat gaaaagttga agggtagtcc agaagataac 3780
gaacaaaaac aattgtttgt tgagcagcat aagcattatt tagatgagat tattgagcaa 3840
atcagtgaat tttctaagcg tgttatttta gcagatgcca atttagataa agttcttagt 3900
gcatataaca aacatagaga caaaccaata cgtgaacaag cagaaaatat tattcattta 3960
tttacgttga cgaatcttgg agctcccgct gcttttaaat attttgatac aacaattgat 4020
cgtaaacgat atacgtctac aaaagaagtt ttagatgcca ctcttatcca tcaatccatc 4080
actggtcttt atgaaacacg cattgatttg agtcagctag gaggtgacaa aaagaaaaag 4140
ttgaagctgt ctggtggttc ttctggtggt tctagcggca gcgagactcc cgggacctca 4200
gagtccgcca cacccgaaag ttctggtggt tcttctggtg gttctatggc ggaagcgggt 4260
atcaccggca cgtggtacaa ccagtctggt tctaccttca ccgttaccgc gggtgcggac 4320
ggtaacctga ccggtcagta cgaaaaccgt gcgcagggca ctggttgcca gaactctccg 4380
tacaccctga ccggtcgtta caacggtacc aaactggaat ggcgtgttga atggaacaac 4440
tctaccgaaa actgccactc tcgtaccgaa tggcgtggtc agtaccaggg tggtgcggaa 4500
gcgcgtatca acacccagtg gaacctgacc tacgaaggtg gttctggtcc ggcgaccgaa 4560
cagggtcagg acaccttcac caaagttaaa ccgtctgcgg cgtctggatc ccatcaccac 4620
caccatcac 4629
<210>3
<211>100
<212>DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223>sgRNA
<400>3
gugagaguua ucugaccgua guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggtgcuuuu 100
<210>4
<211>5116
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> donor DNA
<400>4
ggattgagca ggtgtacgag gacgagccca atttctctat attcccacag tcttgagttt 60
gtgtcacaaa ataattatag tggggtggag atgggaaatg agtccaggca acacctaagc 120
ctgattttat gcattgagac tgcgtgttat tactaaagat ctttgtgtcg caatttcctg 180
atgaagggag ataggttaaa aagcacggat ctactgagtt ttacagtcat cccatttgta 240
gacttttgct acaccaccaa agtatagcat ctgagattaa atattaatct ccaaacctta 300
ggccccctca cttgcatcct tactgacctg cacgtctagg gcgcagtagt ccagggtttc 360
cttgatgatg tcatacttat cctgtccctt ttttttccac agctcgcggt tgaggacaaa 420
ctcttcgcgg tctttccagt aagaattcct cgatcgaggg acctaagatc cgccaccatg 480
gcccagtcca agcacggcct gaccaaggag atgaccatga agtaccgcat ggagggctgc 540
gtggacggcc acaagttcgt gatcaccggc gagggcatcg gctacccctt caagggcaag 600
caggccatca acctgtgcgt ggtggagggc ggccccttgc ccttcgccga ggacatcttg 660
tccgccgcct tcatgtacgg caaccgcgtg ttcaccgagt acccccagga catcgtcgac 720
tacttcaaga actcctgccc cgccggctac acctgggacc gctccttcct gttcgaggac 780
ggcgccgtgt gcatctgcaa cgccgacatc accgtgagcg tggaggagaa ctgcatgtac 840
cacgagtcca agttctacgg cgtgaacttc cccgccgacg gccccgtgat gaagaagatg 900
accgacaact gggagccctc ctgcgagaag atcatccccg tgcccaagca gggcatcttg 960
aagggcgacg tgagcatgta cctgctgctg aaggacggtg gccgcttgcg ctgccagttc 1020
gacaccgtgt acaaggccaa gtccgtgccc cgcaagatgc ccgactggca cttcatccag 1080
cacaagctga cccgcgagga ccgcagcgac gccaagaacc agaagtggca cctgaccgag 1140
cacgccatcg cctccggctc cgccttgccc tgagtcagag ctcgctgatc agcctcgact 1200
gtgccttcta gttgccagcc atctgttgtt tgcccctccc ccgtgccttc cttgaccctg 1260
gaaggtgcca ctcccactgt cctttcctaa taaaatgagg aaattgcatc gcattgtctg 1320
agtaggtgtc attctattct ggggggtggg gtggggcagg acagcaaggg ggaggattgg 1380
gaagacaata gcaggcatgc tggggatgcg gtgggctcta tggcttctga ggcggaaaga 1440
acggtcagat aactctcact catactttaa gcccattttg tttgttgtac ttgctcatcc 1500
agtcccagtc ccattggctt tctcctcacc tgttttaggt agccagcaag tcatgaaatc 1560
agataagttc caccaccaat taacactacc catcttgagc ataggcccaa cagtgcattt 1620
attcctcatt tactgatgtt cgtgaatatt taccttgatt ttcatttttt tctttttctt 1680
aagctgggat tttactcctg accctattca cagtcagatg atcttgacta ccactgcgat 1740
tggacctgag gttcagcaat actccccttt atgtcttttg aatacttttc aataaatctg 1800
tttgtatttt cattagttag taactgagct cagttgccgt aatgctaata gcttccaaac 1860
tagtgtctct gtctccagta tctgataaat cttaggtgtt gctgggacag ttgtcctaaa 1920
attaagataa agcatgaaaa taactgacac aactccatta ctggctccta actacttaaa 1980
caatgcattc tatcatcaca aatgtgaaaa aggagttccc tcagtggact aaccttatct 2040
tttctcaaca cctttttctt tgcacaattt tccacacatg cctacaaaaa gtacttctct 2100
gctcaagtca cactgagttg attgctattt accgaaatca aagtaacatt atcagatctc 2160
tgtagggtgg ttccctctgg aatgctaccc tccatagtcc ttacccttca agtaaagagc 2220
atgaagactg aaatatctct gtgatctgtc atcctttaag ccagaatccc ccataaaaaa 2280
gttagtattg ctttctcctg atcccatagc aggttgaatc atagcactta tcaggttgtt 2340
gtcattgctt gcttaaattc tcctaactat ttggagcttc ttgagggcac aggttcttgt 2400
tgagtcttgt acctaagcac ctagtatagt ccttgatgtc tagccaaccc taaataaaat 2460
gcagtgagtg acatgtagat gtctttataa ggtttgatag gttggtctct caaacagttc 2520
ttttgtatgtttggtagtgc tctagattag cactggccag tataactctg atgatggaaa 2580
tgttctatag ctatgctgtc taatatggta gtcactacta acatatgtta ctgttgagcc 2640
ttggaaatat ggcttttgtg acaaaactga atttttcatg ctatgtaatt taagtctaaa 2700
ttgctactgt gtacattgtg gctgtagcca caaatttgtg ctgtggattg cagaataatt 2760
aatatggaca ttgataattt tcttttcata ctaagcagta aggaaagaaa agttgaaact 2820
ctgtggtcca tttaggttat atgtgtattt gtacttgatt ggtttgtttg aatacctatt 2880
tctatacttt agctgagagc taaagccaac aaaccagtac tgtagataac ctgctttgga 2940
caacaatgtg ttgactagtt ggatttcatc aaagaatgcc taataaattt taagaaaatg 3000
agatttcatt aaaccataat actgacataa gtttagggaa gaatcagact atatctggtg 3060
tttgtgaaac tacccctgaa tttcagtcct acaaagtttt cagttttgga aaaactttca 3120
tcagagaggg cactaagtta caggaagcca tcacaaagta agttttcatc tgatgaatta 3180
taaatttaag atatatttta ataccaaaat tctttatggt ttatgtgcta acttaaaatt 3240
tctccttaaa atatgagaac taagtacaca attgtacttg gctgtttaat gcggattccc 3300
agtccctcac acagagattc tcaattaaga ttggagagca ggggttacta gaattctttt 3360
tcaggttcct tatatgcttc tgatttggtg gcctagaaat cacaatgcta gtgcagccct 3420
catggggcta cagtatacgt atctgaaaca tgattacatc agggaaactg tatgtctaat 3480
ctactttgtc cctaaaggaa gcattttgaa aggcagaaag taatatgtga tagtttttga 3540
aacttgtagg tcacattgtt tttaaaaggg atccaagtaa gttttttttt cttttgaggg 3600
ctacacctgt ggcacatgga ggttcccagg ctaggggtta aatcagaact gcagctgcca 3660
gcctatgcca gagccacagc aatgccagat ctgagctgtg tctgcaactg tgtagctcac 3720
agcaacgctg gatccttaac ccaatgagca aggccagaga ttgaacctac aacctcgtgg 3780
ttcctagtta gatttgtttc cgctgtgcca cgatgggaac tccaagtaat ttttttttga 3840
gcaaggaagt tacctttttt gtctgttttc ccactaaatg cattcctcaa ggattcccag 3900
tttgttcttg attcctcagt gccttaacac agacctgggt tctcagtaaa tgttgatttt 3960
attgatttat atgtgaaatt gtttttcaaa taatagtttt taagtccata gaaacaatgc 4020
ttcttttatg gagatacttt aggatcatac ttgtaaccca agttgcctaa tactctgttc 4080
ataaagaaaa ctcatgcctc atggtctctg aataatacat ctgtctacca ttgagctctt 4140
ccttgggttt cctgtgcaaa ccattgcact tatcctcttc ctgtgctata cttcctcagg 4200
ctttattaca gtttttaaaa taaaccaact atctatctct ctttgaagta gagccataat 4260
aattgcatca gaacactgaa ggtttttagg ctttaatttt tttttttttt aagatattca 4320
aaatttggag ttcttgttgt ggcgcagtgg ttaacgaacc caactaggaa ccatgacgct 4380
gcaggttcgg tccctggcct cgctcagtgg gttaaggatc cagcgttgcc atgagctgtg 4440
gtataggtcc atatgtggct cggatcctgc attgctgtgg ctgtggcagc agccacaggt 4500
acgattagac ccctagcctg ggaccctcca tatgctgtgg gcgcggtcct agaaaagaaa 4560
aaaaaaaaag aaaagaaaag aaagatatac aaaatttgaa ctacgcattg tttctcttaa 4620
cagttgttat gtatggagga ggtttgttat aattacagtt tacaactctt aatccagaat 4680
atgttaggga tccacattcc cagggtaaga ctagtttgtt ttaggccaga cttaattgta 4740
cagcccattg tccagccaca tactcaggag tctcatactt tgcaggctaa aaattcttga 4800
ttttgttacc tagtagtgta ctgttcatgt tggggaactt ttttctccag aaaagtttat 4860
tatccattat cctgcctcct ttttattttc atttatttat ttatttattt ttgctttttt 4920
agggccacac ttgtggcata tggaaattcc tgggctaggg gtcaaatcag ggcttcagct 4980
gctggcctat gccacaacaa cacgggatca gagctgcatc tgcaatctat accacagctt 5040
ttggcaaccc cgtatcctta acccaatgaa tactagttgg gttcttaacc cgctaagcca 5100
taattggaac tcccgg 5116
<210>5
<211>492
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> DNA sequence of Xten-mSA
<400>5
tctggtggtt cttctggtgg ttctagcggc agcgagactc ccgggacctc agagtccgcc 60
acacccgaaa gttctggtgg ttcttctggt ggttctatgg cggaagcggg tatcaccggc 120
acgtggtaca accagtctgg ttctaccttc accgttaccg cgggtgcgga cggtaacctg 180
accggtcagt acgaaaaccg tgcgcagggc actggttgcc agaactctcc gtacaccctg 240
accggtcgtt acaacggtac caaactggaa tggcgtgttg aatggaacaa ctctaccgaa 300
aactgccact ctcgtaccga atggcgtggt cagtaccagg gtggtgcgga agcgcgtatc 360
aacacccagt ggaacctgac ctacgaaggt ggttctggtc cggcgaccga acagggtcag 420
gacaccttca ccaaagttaa accgtctgcg gcgtctggat cccatcacca ccaccatcac 480
taatgactcg ag 492
<210>6
<211>32
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>6
cgctagagct cccgctgctt ttaaatattt tg 32
<210>7
<211>46
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>7
gcagcttcaa ctttttcttt ttgtcacctc ctagctgact caaatc 46
<210>8
<211>48
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>8
tgacaaaaag aaaaagttga agctgcatca ccaccaccat cactaatg 48
<210>9
<211>28
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>9
gcagcctagg ttaattaagc tgcgctag 28
<210>10
<211>30
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>10
ttggagctcc cgctgctttt aaatattttg 30
<210>11
<211>49
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>11
aagaaccacc agacagcttc aactttttct ttttgtcacc tcctagctg 49
<210>12
<211>45
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>12
aaagttgaag ctgtctggtg gttcttctgg tggttctagc ggcag 45
<210>13
<211>41
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>13
agactcgagt cattagtgat ggtggtggtg atgggatcca g 41
<210>14
<211>20
<212>DNA/RNA
<213> Artificial Sequence (Artificial Sequence)
<400>14
gugagaguua ucugaccgua 20
<210>15
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>15
gatgtgctgc aaggcgatta agttg 25
<210>16
<211>47
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>16
aactacggtc agataactct cacctatagt gagtcgtatt acaattc 47
<210>17
<211>47
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>17
aactacggtc agataactct cacctatagt gagtcgtatt acaattc 47
<210>18
<211>22
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>18
aaaagcaccg actcggtgcc ac 22
<210>19
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>19
gatgggaaat gagtccaggc aacac 25
<210>20
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>20
cattacggca actgagctca gttac 25
<210>21
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>21
cttgggtttc ctgtgcaaac cattg 25
<210>22
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>22
cgagccacat atggacctat accac 25
<210>23
<211>23
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>23
ggattgagca ggtgtacgag gac 23
<210>24
<211>29
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>24
gagttccaat tatggcttag cgggttaag 29
<210>25
<211>23
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>25
ggattgagca ggtgtacgag gac 23
<210>26
<211>29
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>26
gagttccaat tatggcttag cgggttaag 29
<210>27
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>27
gatctcgtca tcgcctccat gtcag 25
<210>28
<211>24
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>28
gaccgcgaag agtttgtcct caac 24
<210>29
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>29
gattgggaag acaatagcag gcatg 25
<210>30
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>30
ccagtttctc acccacttca tcaag 25