CN111564494A - 静电放电保护元件与电路及制造静电放电保护元件的方法 - Google Patents

静电放电保护元件与电路及制造静电放电保护元件的方法 Download PDF

Info

Publication number
CN111564494A
CN111564494A CN201910841185.1A CN201910841185A CN111564494A CN 111564494 A CN111564494 A CN 111564494A CN 201910841185 A CN201910841185 A CN 201910841185A CN 111564494 A CN111564494 A CN 111564494A
Authority
CN
China
Prior art keywords
layer
drain
gate
field plate
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910841185.1A
Other languages
English (en)
Other versions
CN111564494B (zh
Inventor
吴祖仪
黄尧峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuvoton Technology Corp
Original Assignee
Nuvoton Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuvoton Technology Corp filed Critical Nuvoton Technology Corp
Publication of CN111564494A publication Critical patent/CN111564494A/zh
Application granted granted Critical
Publication of CN111564494B publication Critical patent/CN111564494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种静电放电保护元件与电路及制造静电放电保护元件的方法,所述元件包括氮化镓层,设置在一衬底上。氮化铝镓层设置在该氮化镓层上。栅极绝缘层设置在该氮化铝镓层上。栅极结构设置在该栅极绝缘层上。金属场板层设置在该栅极结构上。源极结构在该栅极结构的第一边设置该氮化镓层上,穿过该氮化铝镓层与该栅极绝缘层。漏极结构在该栅极结构的第二边设置该氮化镓层上,穿过该氮化铝镓层与该栅极绝缘层。该金属场板层延伸到与该漏极结构距离一长度,以提供相对该漏极结构之间的一寄生电容。该寄生电容还包括该金属场板层与该氮化镓层形成的电容。

Description

静电放电保护元件与电路及制造静电放电保护元件的方法
技术领域
本发明是有关于一种静电放电(ESD)保护技术,且特别是有关于静电放电保护元件与电路及制造静电放电保护元件的方法。
背景技术
静电放电(ESD)的现象对于半导体技术所制造的集成电路而言,是普遍需要面对的现象。特别是在电子电路的输入/输出端点,其会与外部的电子元件连接。如果静电放电的现象发生,其瞬间所产生的高电压或大电流如果由输入/输出端点进入电子电路,很可能会损坏电子元件。
电子电路中最常见的是晶体管。基于晶体管的研发,氮化镓(GaN)晶体管已被提出,其具备高击穿电压、高输出功率与低导通电阻等特性,可以取代一些以硅为基础的晶体管。
关于GaN晶体管的静电放电保护的考虑,以增强型(enhancement-mode,e-mode)的GaN场效应晶体管为例,其栅极端的操作电压通常在0~10V之间。当静电放电作用于栅极端时,栅极端容易受到损伤。因此,为了保护栅极端,静电放电保护设计必须置于栅极端,以保护晶体管元件的栅极。
要达到静电放电保护的功效,其保护电路配合半导体制造技术,可以有不同的设计。然而,不同的设计会对应不同的制造成本。如何简化静电放电保护元件及电路是静电放电保护所需要考虑及继续研发。
发明内容
本发明提供针对GaN晶体管的静电放电保护技术,可以简化静电放电保护元件,达成静电放电保护电路的需求。
在一实施例中,本发明提供一种静电放电保护元件,包括氮化镓层,设置在一衬底上。氮化铝镓层设置在该氮化镓层上。栅极绝缘层设置在该氮化铝镓层上。栅极结构设置在该栅极绝缘层上。金属场板层设置在该栅极结构上。源极结构在该栅极结构的第一侧且设置于该氮化镓层上,并穿过该氮化铝镓层与该栅极绝缘层。漏极结构在该栅极结构的第二侧且设置于该氮化镓层上,并穿过该氮化铝镓层与该栅极绝缘层。该金属场板层沿着源极结构至漏极结构的方向延伸,且该金属场板层与该漏极结构的相距一长度以形成该金属场板层与该漏极结构之间的一寄生电容,其中该金属场板层与该氮化镓层之间也形成寄生电容。
在一实施例中,所述的静电放电保护元件,其更包括层间介电层(Inter-layerdielectric layer),在该栅极绝缘层上,覆盖该栅极结构、该金属场板层、该源极结构以及该漏极结构。
在一实施例中,所述的静电放电保护元件,该金属场板层包含多个区块,不连续地沿着源极结构至漏极结构的方向延伸到与该漏极结构距离一长度,其中该寄生电容还包括相邻两个该区块之间所构成的电容。
在一实施例中,所述的静电放电保护元件,其更包括一漏极金属连接结构。该漏极金属连接结构包含插塞,设置在该漏极结构上。在一实施例中,该插塞具有一延伸部沿着该漏极结构向该栅极结构方向延伸,与该金属场板层构成一重叠部分,这样该寄生电容还包括由该漏极金属连接结构与该金属场板层之间所形成的电容。
在一实施例中,所述的静电放电保护元件,该漏极金属连接结构的该延伸部与该金属场板层之间包含层间介电层。
在一实施例中,所述的静电放电保护元件,该栅极结构是条状结构,该金属场板层包含多个金属条层,由该栅极结构的一侧延伸到距离该漏极结构一长度,其中该漏极结构包括漏极条状结构以及多个漏极条层,由该漏极条状结构向该栅极结构延伸,与该多个金属条层交替配置,进一步地说,该漏极结构与该栅极结构为指杈状结构。
在一实施例中,本发明提供一种静电放电保护电路,用于保护第一GaN晶体管。该第一GaN晶体管有栅极端、漏极端及源极端。该静电放电保护电路包括第二GaN晶体管,其如前述的静电放电保护元件的任一种。该第二GaN晶体管的该源极结构连接到该第一GaN晶体管该源极端。该第二GaN晶体管的该漏极结构连接到该第一GaN晶体管的该栅极端。该第二GaN晶体管的该栅极结构通过该寄生电容也连接到该第一GaN晶体管的该栅极端。阻抗元件连接在该第二GaN晶体管的该栅极结构与该源极结构之间。
在一实施例中,本发明提供一种制造静电放电保护元件的方法。此方法包括:提供氮化镓层,该氮化镓层设置在一衬底上。形成氮化铝镓层在该氮化镓层上。形成栅极绝缘层在该氮化铝镓层上。形成栅极结构在该栅极绝缘层上。形成金属场板层在该栅极结构上。形成源极结构在该栅极结构的第一侧,穿过该氮化铝镓层与该栅极绝缘层,而座落在该氮化镓层上。形成漏极结构在该栅极结构的第二侧,穿过该氮化铝镓层与该栅极绝缘层,而座落该氮化镓层上。该金属场板层是单体或是分离的区块延伸到与该漏极结构距离一长度以提供相对该漏极结构之间的一寄生电容。该寄生电容还包括该金属场板层与该氮化镓层所构成的电容。
在一实施例中,如所述制造静电放电保护元件的方法,其更包括藉由使用层间介电层(Inter-layer dielectric layer)在该栅极绝缘层上,以形成该栅极结构、该金属场板层、该源极结构以及该漏极结构。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明。
附图说明
图1是依照本发明一实施例,一种对晶体管的栅极端的静电放电保护电路示意图。
图2是依照本发明一实施例,要被保护的GaN晶体管的剖面结构示意图。
图3是依照本发明一实施例,静电放电保护元件的剖面结构示意图。
图4是依照本发明一实施例,静电放电保护电路示意图。
图5是依照本发明一实施例,静电放电保护电路示意图。
图6是依照本发明一实施例,静电放电保护电路示意图。
图7是依照本发明一实施例,静电放电保护元件中的电容示意图。
附图标记:
100:被保护晶体管
102:保护电路
104:电容
106:保护晶体管
108:阻抗元件
200:衬底
202:氮化镓层
204:氮化镓铝层
206:栅极绝缘层
208:栅极结构
210:金属场板层
212:源极结构
214:漏极结构
214a:漏极条层
216:层间介电层
218、218a:金属连接结构
300、302:金属场板层
N:端点
G:栅极端
D:漏极端
S:源极端
具体实施方式
本发明针对GaN晶体管的静电放电保护需求,提出静电放电保护元件。此静电放电保护元件可以与需要被保护的GaN晶体管的半导体制造流程相容,进一步地说,可以不用实质另外增加其它制造流程,就可以形成GaN的静电放电保护元件。
以下举一些实施来说明本发明,但是本发明不限于所举的多个实施例。这些实施例之间有允许适当结合而构成另外的实施例。
先描述本发明对要被保护的半导体元件的整体电路。需要被保护的半导体元件例如是GaN晶体管。图1是依照本发明一实施例,一种对晶体管的栅极端的静电放电保护电路示意图。
参照图1,对于集成电路中以GaN晶体管为基础的被保护晶体管100,其有栅极端G、漏极端D及源极端S。静电放电保护电路102会设置在栅极端G与源极端S之间。静电放电的保护电路102包括保护晶体管106。保护晶体管106的源极结构连接到被保护晶体管100的源极端S。保护晶体管106的漏极结构连接到被保护晶体管100的栅极端G。另外,一电容104连接于保护晶体管106栅极结构与漏极端D之间。一阻抗元件108连接于保护晶体管106栅极结构与源极端S之间。进一步地说,电容104与阻抗元件108经一端点N连接至保护晶体管106栅极结构。
在本发明中,就静电放电保护电路102而言,其电容104在本发明中是由保护晶体管106的寄生电容提供。进一步地说,在制造上,不需要另外单独形成电容104。由于被保护晶体管100是GaN晶体管,本发明的保护晶体管106同样采用GaN晶体管,并藉由与栅极连接的金属场板(Metal Field Plate)形成寄生的电容104。保护晶体管106与被保护晶体管100都是GaN晶体管,因此不会实质增加形成电容104的工艺。以下描述静电放电保护电路102的运作方式。
当静电作用于栅极端G时,暂态的静电作用通过电容104耦合后,将提升端点N的电压,使保护晶体管106导通,因此,将能控制暂态的静电电压,避免被保护晶体管100受到暂态的静电作用而损伤。以下还描述GaN晶体管的结构。
图2是依照本发明一实施例,需要被保护的GaN晶体管的剖面结构示意图。参照图2,被保护晶体管100是GaN晶体管,其结构包括一氮化镓层202,形成在一衬底200上。衬底200例如是硅衬底。衬底200是用于生长氮化镓层202,但是不涉及GaN晶体管的操作性能。
以氮化镓层202为GaN晶体管的衬底,其上面会先形成氮化镓铝(AlGaN)层204。栅极绝缘层206形成在氮化镓铝层204。栅极绝缘层206例如是氮化硅层。栅极结构(G)208形成在栅极绝缘层206上。源极结构(S)212与漏极结构(D)214会形成在氮化镓层202上,且位于栅极结构208的两边。另外,对于GaN晶体管的结构,其还会有金属场板层210在栅极结构208上,将栅极结构208在水平方向延伸,对于晶体管的操作可以提升场效应。金属场板层210实质上是与漏极结构214处于隔离状态。
另外如一般所知,在半导体工艺要形成元件所需要的结构,其会配合层间介电层(inter-layer dielectric layer)216来完成,在此不予详述。层间介电层216一般是氧化硅的材料,会覆盖源极结构212、漏极结构214、栅极结构208等等,当作绝缘的作用。被保护晶体管100的源极结构212、漏极结构214、栅极结构208,也会通过金属连接结构218与外部连接。金属连接结构218例如是插塞结构。
图3是依照本发明一实施例,静电放电保护元件的剖面结构示意图。参照图3,本发明提出的静电放电保护元件同样为GaN型的晶体管结构,作为图1中的保护晶体管106。保护晶体管106的制造流程与被保护晶体管100的制造流程相容,因此,可以同时制造。
以下描述保护晶体管106的结构。如前述,保护晶体管106也是GaN型的晶体管,因此与被保护晶体管100相似。相同的元件符号代表相同的元件构件,不再重复描述。
保护晶体管106与被保护晶体管100的差异是金属场板层300与金属场板层210的差异。如图1的电路所示,其需要电容104来达成静电放电保护。在一实施例中,本发明利用金属场板层300来形成寄生电容,当作电容104的作用。
在一实施例中,在栅极结构208上面的金属场板层300延伸到与漏极结构214距离一长度,这样与漏极结构214构成寄生电容,其中该长度可为10至20微米。另外,由于金属场板层300与氮化镓层202之间同时也可以构成另一寄生电容,以电路观点其为并联,因此,可以将整体视为一个寄生电容,提供保护电路102所需要的电容104。
图4是依照本发明一实施例,静电放电保护电路示意图。参照图4,使用被保护晶体管100与保护晶体管106来构成整体的电路。为方便了解,如图1的电路示意图也画在图4的右下方。
根据本发明的保护电路102,其中的保护晶体管106与电容104可以在制造被保护晶体管100时,一并制造完成。电容104是保护晶体管106的寄生电容,因此不需要额外工艺来完成。
在保护晶体管106同时形成寄生电容的技术概念下,寄生电容也可以有其它的实施例。图5是依照本发明另一实施例,静电放电保护电路示意图。
参照图5,保护晶体管106的金属场板层302是图3或图4中的金属场板层300的改变。金属场板层300的结构是以单体为例。然而在本实施例中,金属场板层302可以是多个区块的结构,其中相邻的两区块也会形成寄生电容。
在一实施例中,在保护晶体管106同时形成寄生电容的技术概念下,寄生电容的形成也可以有其它的变化。图6是依照本发明另一实施例,静电放电保护电路示意图。
参照图6,在漏极结构214上的金属连接结构218也可以变化。在此实施例中,以金属场板层300为例,但是并不限制金属场板层的变化。改变的金属连接结构218a,除了前述如插塞结构的金属连接结构218还包含在插塞结构上的延伸部,其覆盖在层间介电层216上,且与金属场板层300有足够的重叠,而形成另一个寄生电容。
图7是依照本发明一实施例,静电放电保护元件中的电容示意图。参照图7,针对在栅极结构(G)208所延伸的金属场板层300配合漏极结构214可以有二维的结构。栅极结构208是条状结构,而金属场板层300包含多个金属条层。这些金属条层由栅极结构208的一侧延伸到距离漏极结构214一长度。另外,漏极结构214也包括漏极条状结构以及多个漏极条层214a。由漏极结构214的条状结构的一侧向栅极结构208延伸,与金属场板层300的多个金属条层交替配置,进一步地说,该漏极结构与该栅极结构为指杈状结构。这样,金属场板层300的金属条层与漏极条层214a在侧边也会构成多个寄生电容。
如上描述,金属场板层300与漏极结构214之间可以形成多种寄生电容,其整合成为一个电容104。
根据图3的保护晶体管106的结构,从制造上也可以如下的方式。在一实施例中,本发明提供一种制造静电放电保护元件的方法。此方法包括:提供氮化镓层202,该氮化镓层202设置在一衬底200上。形成氮化铝镓层204在该氮化镓层202上。形成栅极绝缘层206在该氮化铝镓层204上。形成栅极结构208在该栅极绝缘层206上。形成金属场板层300在该栅极结构208上。形成源极结构212在该栅极结构208的第一边,穿过该氮化铝镓层204与该栅极绝缘层206,而座落在该氮化镓层202上。形成漏极结构214在该栅极结构208的第二边,穿过该氮化铝镓层204与该栅极绝缘层206,而座落该氮化镓层202上。该金属场板层300是单体或是分离的区块延伸到与该漏极结构214距离一长度,以提供相对该漏极结构之间的一寄生电容。该寄生电容还包括该金属场板层300与该氮化镓层202所构成的电容。
综上所述,本发明的静电放电保护元件可以与需要被保护的GaN晶体管的半导体制造流程相容,可以不用实质另外增加其它制造流程,就可以形成GaN的静电放电保护元件。保护电路中所需要的电容,可以由金属场板层所构成的寄生电容来取代。
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视后附的申请专利范围所界定者为准。

Claims (11)

1.一种静电放电保护元件,其特征在于,包括:
氮化镓层,设置在一衬底上;
氮化铝镓层,设置在该氮化镓层上;
栅极绝缘层,设置在该氮化铝镓层上;
栅极结构,设置在该栅极绝缘层上;
金属场板层,设置在该栅极结构上;
源极结构,在该栅极结构的第一边设置该氮化镓层上,穿过该氮化铝镓层与该栅极绝缘层;以及
漏极结构,在该栅极结构的第二边设置该氮化镓层上,穿过该氮化铝镓层与该栅极绝缘层,
其中该金属场板层,延伸到与该漏极结构距离一长度,以提供相对该漏极结构之间的一寄生电容。
2.如权利要求1所述的静电放电保护元件,其特征在于,该寄生电容还包括该金属场板层与该氮化镓层构成的寄生电容。
3.如权利要求1所述的静电放电保护元件,其特征在于,更包括层间介电层,在该栅极绝缘层上,覆盖该栅极结构、该金属场板层、该源极结构以及该漏极结构。
4.如权利要求1所述的静电放电保护元件,其特征在于,该金属场板层包含多个区块,不连续地延伸到与该漏极结构距离一长度,其中该寄生电容还包括相邻两个该区块之间所构成的电容。
5.如权利要求1所述的静电放电保护元件,其特征在于,更包括一漏极金属连接结构,该漏极金属连接结构包含:
插塞,设置在该漏极结构上;以及
延伸部,设置在该插塞上,向该栅极结构方向延伸,与该金属场板层构成一重叠部分,这样该寄生电容还包括由该漏极结构与该金属场板层之间所构成的电容。
6.如权利要求5所述的静电放电保护元件,其特征在于,该金属场板层包含多个区块,不连续地延伸到与该漏极结构距离一长度,其中该寄生电容还包括相邻两个该区块之间所构成的电容。
7.如权利要求5所述的静电放电保护元件,其特征在于,该漏极金属连接结构的该延伸部与该金属场板层之间包含层间介电层。
8.如权利要求1所述的静电放电保护元件,其特征在于,
该栅极结构是条状结构,该金属场板层包含多个金属条层,由该栅极结构的一侧延伸到该漏极结构的该距离一长度,
其中该漏极结构包括:
漏极条状结构;以及
多个漏极条层,由该漏极条状结构向该栅极结构延伸,与该多个金属条层交替配置。
9.一种静电放电保护电路,其特征在于,用于保护第一GaN晶体管,该第一GaN晶体管有栅极端、漏极端及源极端,该静电放电保护电路包括:
第二GaN晶体管,如权利要求1至8中任一项所述的静电放电保护元件,其中该第二GaN晶体管的该源极结构连接到该第一GaN晶体管该源极端,该第二GaN晶体管的该漏极结构连接到该第一GaN晶体管的该栅极端,该第二GaN晶体管的该栅极结构通过该寄生电容也连接到该第一GaN晶体管的该栅极端;以及
阻抗元件,连接在该第二GaN晶体管的该栅极结构与该源极结构之间。
10.一种制造静电放电保护元件的方法,其特征在于,包括:
提供氮化镓层,该氮化镓层设置在一衬底上;
形成氮化铝镓层,在该氮化镓层上;
形成栅极绝缘层,在该氮化铝镓层上;
形成栅极结构,在该栅极绝缘层上;
形成金属场板层,在该栅极结构上;
形成源极结构,在该栅极结构的第一边,穿过该氮化铝镓层与该栅极绝缘层,而座落在该氮化镓层上;以及
形成漏极结构,在该栅极结构的第二边,穿过该氮化铝镓层与该栅极绝缘层,而座落该氮化镓层上,
其中该金属场板层,是单体或是分离的区块延伸到与该漏极结构距离一长度,以提供相对该漏极结构之间的一寄生电容,其中该寄生电容还包括该金属场板层与该氮化镓层所构成的电容。
11.如权利要求10所述的制造静电放电保护元件的方法,其特征在于,更包括藉由使用层间介电层在该栅极绝缘层上,以形成该栅极结构、该金属场板层、该源极结构以及该漏极结构。
CN201910841185.1A 2019-02-13 2019-09-06 静电放电保护元件与电路及制造静电放电保护元件的方法 Active CN111564494B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108104865A TWI730291B (zh) 2019-02-13 2019-02-13 靜電放電(esd)保護元件
TW108104865 2019-02-13

Publications (2)

Publication Number Publication Date
CN111564494A true CN111564494A (zh) 2020-08-21
CN111564494B CN111564494B (zh) 2023-12-26

Family

ID=72074040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910841185.1A Active CN111564494B (zh) 2019-02-13 2019-09-06 静电放电保护元件与电路及制造静电放电保护元件的方法

Country Status (2)

Country Link
CN (1) CN111564494B (zh)
TW (1) TWI730291B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101897029A (zh) * 2007-12-10 2010-11-24 特兰斯夫公司 绝缘栅e模式晶体管
JP2011119366A (ja) * 2009-12-01 2011-06-16 Nec Corp 半導体装置、電子装置、半導体装置の製造方法および使用方法
CN105633144A (zh) * 2015-06-26 2016-06-01 苏州能讯高能半导体有限公司 一种半导体器件及其制备方法
US9761675B1 (en) * 2015-01-08 2017-09-12 National Technology & Engineering Solutions Of Sandia, Llc Resistive field structures for semiconductor devices and uses therof
US20180026029A1 (en) * 2016-07-21 2018-01-25 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated ESD Protection Circuit for GaN Based Device
CN109004028A (zh) * 2018-06-22 2018-12-14 杭州电子科技大学 一种具有源极相连P埋层和漏场板的GaN场效应晶体管
CN109314136A (zh) * 2016-04-15 2019-02-05 麦克姆技术解决方案控股有限公司 高压GaN高电子迁移率晶体管

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2273553B1 (en) * 2004-06-30 2020-02-12 IMEC vzw A method for fabricating AlGaN/GaN HEMT devices
US8785973B2 (en) * 2010-04-19 2014-07-22 National Semiconductor Corporation Ultra high voltage GaN ESD protection device
US9755019B1 (en) * 2016-03-03 2017-09-05 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
WO2018227086A1 (en) * 2017-06-08 2018-12-13 Silicet, LLC Structure, method, and circuit for electrostatic discharge protection utilizing a rectifying contact

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101897029A (zh) * 2007-12-10 2010-11-24 特兰斯夫公司 绝缘栅e模式晶体管
JP2011119366A (ja) * 2009-12-01 2011-06-16 Nec Corp 半導体装置、電子装置、半導体装置の製造方法および使用方法
US9761675B1 (en) * 2015-01-08 2017-09-12 National Technology & Engineering Solutions Of Sandia, Llc Resistive field structures for semiconductor devices and uses therof
CN105633144A (zh) * 2015-06-26 2016-06-01 苏州能讯高能半导体有限公司 一种半导体器件及其制备方法
CN109314136A (zh) * 2016-04-15 2019-02-05 麦克姆技术解决方案控股有限公司 高压GaN高电子迁移率晶体管
US20180026029A1 (en) * 2016-07-21 2018-01-25 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated ESD Protection Circuit for GaN Based Device
CN109004028A (zh) * 2018-06-22 2018-12-14 杭州电子科技大学 一种具有源极相连P埋层和漏场板的GaN场效应晶体管

Also Published As

Publication number Publication date
CN111564494B (zh) 2023-12-26
TWI730291B (zh) 2021-06-11
TW202030855A (zh) 2020-08-16

Similar Documents

Publication Publication Date Title
US10312260B2 (en) GaN transistors with polysilicon layers used for creating additional components
KR101128716B1 (ko) 반도체 장치
US9754932B2 (en) Semiconductor device
KR102204777B1 (ko) 갈륨 나이트라이드 소자 및 집적회로 내 격리 구조
JP5210414B2 (ja) 半導体装置
JP2019145703A (ja) 半導体装置
US10943862B2 (en) Integrated filler capacitor cell device and corresponding manufacturing method
US10431655B2 (en) Transistor structure
KR101606374B1 (ko) 반도체장치
CN106783839B (zh) 具体用于防止过电压的电子设备
CN106373996B (zh) 半导体装置
CN111564494B (zh) 静电放电保护元件与电路及制造静电放电保护元件的方法
US20180144984A1 (en) Semiconductor chip having on-chip noise protection circuit
US5698886A (en) Protection circuit against electrostatic discharges
KR20120004954A (ko) 반도체 장치
WO2014196223A1 (ja) 半導体チップおよび半導体装置
US10068896B1 (en) Electrostatic discharge protection device and manufacturing method thereof
US8357990B2 (en) Semiconductor device
JP6355481B2 (ja) 半導体装置
JP5914209B2 (ja) 半導体装置
CN116093130A (zh) 半导体器件
TW201737461A (zh) 具有 esd保護元件的半導體裝置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant