CN111549155A - 一种通过肠道菌群相对丰度预测肝脏疾病的分析技术 - Google Patents
一种通过肠道菌群相对丰度预测肝脏疾病的分析技术 Download PDFInfo
- Publication number
- CN111549155A CN111549155A CN202010404396.1A CN202010404396A CN111549155A CN 111549155 A CN111549155 A CN 111549155A CN 202010404396 A CN202010404396 A CN 202010404396A CN 111549155 A CN111549155 A CN 111549155A
- Authority
- CN
- China
- Prior art keywords
- bacteria
- liver
- intestinal
- relative abundance
- payload
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000968 intestinal effect Effects 0.000 title claims abstract description 54
- 208000019423 liver disease Diseases 0.000 title claims abstract description 29
- 238000004458 analytical method Methods 0.000 title claims abstract description 18
- 208000019425 cirrhosis of liver Diseases 0.000 claims abstract description 36
- 244000005700 microbiome Species 0.000 claims abstract description 28
- 208000008338 non-alcoholic fatty liver disease Diseases 0.000 claims abstract description 17
- 206010016654 Fibrosis Diseases 0.000 claims abstract description 13
- 230000007882 cirrhosis Effects 0.000 claims abstract description 13
- 201000007270 liver cancer Diseases 0.000 claims abstract description 13
- 208000014018 liver neoplasm Diseases 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 7
- 230000035945 sensitivity Effects 0.000 claims abstract description 5
- 238000012408 PCR amplification Methods 0.000 claims abstract description 4
- 108700022487 rRNA Genes Proteins 0.000 claims abstract description 4
- 238000012163 sequencing technique Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims abstract description 3
- 241000894006 Bacteria Species 0.000 claims description 43
- 230000001580 bacterial effect Effects 0.000 claims description 21
- 241000194017 Streptococcus Species 0.000 claims description 8
- 241001202853 Blautia Species 0.000 claims description 6
- 241000192142 Proteobacteria Species 0.000 claims description 6
- 230000001447 compensatory effect Effects 0.000 claims description 6
- 241000606125 Bacteroides Species 0.000 claims description 4
- 241000095588 Ruminococcaceae Species 0.000 claims description 4
- 241001135756 Alphaproteobacteria Species 0.000 claims description 2
- 241000606126 Bacteroidaceae Species 0.000 claims description 2
- 241000606215 Bacteroides vulgatus Species 0.000 claims description 2
- 241000588921 Enterobacteriaceae Species 0.000 claims description 2
- 241000588724 Escherichia coli Species 0.000 claims description 2
- 241001608234 Faecalibacterium Species 0.000 claims description 2
- 229940023064 escherichia coli Drugs 0.000 claims description 2
- 238000012216 screening Methods 0.000 claims description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 108020004465 16S ribosomal RNA Proteins 0.000 abstract description 3
- 239000003814 drug Substances 0.000 abstract description 2
- 210000004185 liver Anatomy 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 230000035479 physiological effects, processes and functions Effects 0.000 description 3
- 208000004930 Fatty Liver Diseases 0.000 description 2
- 206010019708 Hepatic steatosis Diseases 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 208000010706 fatty liver disease Diseases 0.000 description 2
- 210000003608 fece Anatomy 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 231100000240 steatosis hepatitis Toxicity 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 208000007848 Alcoholism Diseases 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 206010008635 Cholestasis Diseases 0.000 description 1
- 206010019668 Hepatic fibrosis Diseases 0.000 description 1
- 206010019799 Hepatitis viral Diseases 0.000 description 1
- 208000002720 Malnutrition Diseases 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 201000007930 alcohol dependence Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 231100000359 cholestasis Toxicity 0.000 description 1
- 230000007870 cholestasis Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 244000005709 gut microbiome Species 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001071 malnutrition Effects 0.000 description 1
- 235000000824 malnutrition Nutrition 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 206010053219 non-alcoholic steatohepatitis Diseases 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 208000015380 nutritional deficiency disease Diseases 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 201000004409 schistosomiasis Diseases 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 201000001862 viral hepatitis Diseases 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种肠道菌群相对丰度预测肝脏疾病的分析技术,属于生物技术及医学技术领域,包括步骤一,取健康人、非酒精性脂肪肝、肝硬化、肝癌患者中段粪便并提取总RNA,通过对微生物16S rRNA基因V4可变区进行PCR扩增,进行文库构建,对微生物rRNA基因V4可变区进行测序,分析粪便中肠道菌群相对丰度;步骤二,将上述肠道菌群相对丰度进行ROC分析,获得AUC、灵敏度、特异度和cut‑off值,选取AUC>0.7,相对丰度cut‑off值>0.001的肠道微生物作为检测指标预测肝脏疾病。本发明根据上述患者肠道菌群相关菌群丰度,筛选出预测肝脏疾病的肠道微生物,之后以筛选出的肠道微生物作为检测指标综合判断,可以有效预测和监测肝脏疾病的易感人群或者发现早期患者,以及监控肝脏疾病的治疗效果。
Description
技术领域
本发明属于生物技术及医学技术领域,具体是涉及一种通过肠道菌群相对丰度预测肝脏疾病的分析技术。
背景技术
在人类的肠道中,存在着大量微生物。这些肠道微生物除了传统意义上的肠道细菌群,还包括古细菌、病毒和原生动物,其中98%以上是细菌,统称为肠道菌群。正常肠道菌群有500~1500种不同细菌种类,其中绝大多数为厌氧菌。从基因层面上看,人体自身的基因组大约携带了2.5万个基因,而人体肠道微生物编码的基因总数约是人自身基因总数的150倍,被视作人类“第二基因组”。人体肠道微生物的全部基因信息称为人体肠道宏基因组(Matagenome)。
肠道既是吸收营养物质的主要器官,也是机体抵御食物中有害物质的重要免疫屏障,更与肝脏的免疫细胞构成免疫平衡,共同维持机体稳态,肝脏疾病的发生、发展与肠道菌群的变化关系紧密。
肝脏疾病是发生在肝脏的所有疾病的总称,包括一、肝硬化(Liver cirrhosis),肝硬化是临床常见的慢性进行性肝病,由一种或多种病因长期或反复作用形成的弥漫性肝损害。肝硬化是许多肝脏疾病的晚期病变,是由病毒性肝炎、酒精中毒、营养障碍、胆汁淤积、血吸虫病、循环障碍等各种原因所致,其特点是肝细胞变性和坏死。早期肝硬化通过及时防治可以逆转或不再进展,而晚期将不可逆转,严重影响患者的生活质量,甚至危及生命。
二、非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)包括单纯性脂肪肝、非酒精性脂肪性肝炎、肝纤维化和肝癌,是常见的与肥胖相关的代谢性疾病之一。一项关于中国NAFLD的流行病学研究表明中国NAFLD的综合患病率从2008-2010年的25.4%上升到2015-2018年的32.3%,患病率增长速度是西方国家的两倍。
然而,与肝硬化和NAFLD进程相关的肠道微生物的系统发育及功能成分的变化还不清楚,对这种菌群失衡影响的认识仍很局限。
发明内容
本发明要解决的问题是提供一种通过肠道菌群相对丰度预测肝脏疾病的分析技术,有助于更加全面的理解菌群对宿主生理和病理的影响,将肠道菌群作为检测指标预测肝脏疾病,为人群健康监测提供指导和依据。
为解决上述技术问题,本发明采用的技术方案是:一种肠道菌群相对丰度预测肝脏疾病的分析技术,包括如下步骤:
步骤一,取健康人、非酒精性脂肪肝、肝硬化、肝癌患者中段粪便并提取总RNA,通过对微生物16S rRNA基因V4可变区进行PCR扩增,进行文库构建,对微生物rRNA基因V4可变区进行测序,分析粪便中肠道菌群相对丰度;
步骤二,将上述肠道菌群相对丰度进行ROC分析,获得AUC、灵敏度、特异度和cut-off值,选取AUC>0.7,相对丰度cut-off值>0.001的肠道微生物作为检测指标预测肝脏疾病。
在步骤一中,取健康人、非酒精性脂肪肝、肝硬化、肝癌患者100mg中段粪便并提取总RNA。
在步骤一中,所述肝硬化患者包括代偿性肝硬化、轻度失代偿性肝硬化、重度失代偿性肝硬化患者。
经分析筛选后,作为预测非酒精性脂肪肝的肠道微生物包括:p_firmicutes,c_clostridia,o_clostridiales,f_ruminococcaceae,f_bacteroidaceae,g_bacteroides,g_lachnoclostridium,s_bacteroides_vulgatus,s_blautia_obeum,p_bacteroidetes/p_firmicutes;作为预测代偿性肝硬化的肠道微生物包括:p_proteobacteria,g_streptococcus;作为预测轻度失代偿性肝硬化的肠道微生物包括:c_clostridia,o_clostridiales,f_lachnospiraceae,g_blautia,g_unidentified_lachnospiraceae,c_bacilli,o_lactobacillales,f_streptococcaceae,g_streptococcus,s_ruminococcus_sp_5_1_39bfaa,c_negativicutes,o_selenomonadales,f_veillonellaceae,g_romboutsia,g_unidentified_ruminococcaceae,g_fusicatenibacter,s_bifidobacterium_adolescentis,s_lactobacillus_salivarius,s_blautia_obeum,o_pasteurellales,f_pasteurellaceae,g_anaerostipes,g_veillonella,f_lactobacillaceae,g_lactobacillus;作为预测重度失代偿性肝硬化的肠道微生物包括:o_enterobacteriales,f_enterobacteriaceae,c_gammaproteobacteria,g_unidentified_enterobacteriaceae,s_escherichia_coli,p_proteobacteria,c_bacilli,o_lactobacillales,f_streptococcaceae,g_streptococcus,g_veillonella,o_pasteurellales,f_pasteurellaceae,p_firmicutes,c_clostridia,o_clostridiales,f_lachnospiraceae,f_ruminococcaceae,g_faecalibacterium,p_actinobacteria,g_unidentified_lachnospiraceae,g_blautia,o_bifidobacteriales,f_bifidobacteriaceae,g_bifidobacterium,s_ruminococcus_sp_5_1_39bfaa,c_erysipelotrichia,o_erysipelotrichales,f_erysipelotrichaceae,g_romboutsia,f_bacteroidaceae,g_bacteroides,g_dorea,g_roseburia,g_fusicatenibacter,g_anaerostipes,g_unidentified_ruminococcaceae,s_bacteroides_uniformis,s_bifidobacterium_adolescentis,s_bacteroides_uniformis,f_tannerellaceae,g_parabacteroides;作为预测肝癌的肠道微生物包括:p_bacteroidetes/p_firmicutes,p_firmicutes,c_clostridia,o_clostridiales,f_lachnospiraceae,f_ruminococcaceae,p_proteobacteria,g_faecalibacterium,g_blautia,c_gammaproteobacteria,o_enterobacteriales,f_enterobacteriaceae,c_negativicutes,o_selenomonadales,c_alphaproteobacteria,f_porphyromonadaceae,g_parabacteroides,g_ruminococcus_torques_group,s_ruminococcus_sp_5_1_39bfaa,f_veillonellaceae,s_bacteroides_fragilis,o_sphingobacteriales,g_fusicatenibacter,c_erysipelotrichia,o_erysipelotrichales,f_erysipelotrichaceae,o_rhizobiales,s_parabacteroides_distasonis,g_romboutsia,s_bacteroides_plebeius,p_tenericutes,c_mollicutes,g_dorea,f_streptococcaceae,g_prevotella_9,f_rikenellaceae,g_alistipes,g_anaerostipes,g_streptococcus,g_megamonas,f_lactobacillaceae,g_lactobacillus,s_blautia_obeum,g_veillonella,g_unidentified_ruminococcaceae。
与现有技术相比,本发明的有益效果在于:从宏基因组水平研究患者肠道菌群的总体构成特点,有助于更加全面的理解菌群对宿主生理和病理的影响。根据健康人、非酒精性脂肪肝、肝硬化、肝癌患者肠道菌群相关菌群丰度,筛选出预测肝脏疾病的肠道微生物,之后以筛选出的肠道微生物作为检测指标综合判断,可以有效预测和监测肝脏疾病的易感人群或者发现早期患者,以及监控肝脏疾病的治疗效果。
具体实施方式
下面结合实施例进一步叙述本发明:
本发明提供了一种肠道菌群相对丰度预测肝脏疾病的分析技术,包括如下步骤:
步骤一,取健康人、非酒精性脂肪肝、肝硬化、肝癌患者100mg中段粪便并提取总RNA,通过对微生物16S rRNA基因V4可变区进行PCR扩增,进行文库构建,对微生物rRNA基因V4可变区进行测序,分析粪便中肠道菌群相对丰度;所述肝硬化患者包括代偿性肝硬化、轻度失代偿性肝硬化、重度失代偿性肝硬化患者;
步骤二,将上述分析后得到的差异性肠道菌群相对丰度进行ROC分析,获得AUC、灵敏度、特异度和cut-off值,选取AUC>0.7,相对丰度cut-off值>0.001(AUC(AreaUnderCurve)被定义为ROC曲线下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。同时,实验证明cut-off值小于0.001准确度低,不作为参考)的肠道微生物作为检测指标预测肝脏疾病,筛选出可作为预测非酒精性脂肪肝、肝硬化、肝癌疾病进程的肠道微生物。
通过上述方法筛选出的非酒精性脂肪肝、肝硬化、肝癌诊断的肠道菌群AUC、灵敏度、特异度和cut-off值见表1至表5,肠道微生物符合以下cut-off的患者则具有患有相应肝脏疾病的可能。
表1脂肪肝预测相关菌群丰度
表2代偿性肝硬化预测相关菌群丰度
表3轻度失代偿性肝硬化预测相关菌群丰度
表4重度失代偿性肝硬化预测相关菌群丰度
表5肝癌预测相关菌群丰度
从宏基因组水平研究患者肠道菌群的总体构成特点,有助于更加全面的理解菌群对宿主生理和病理的影响。根据健康人、非酒精性脂肪肝、肝硬化、肝癌患者肠道菌群相关菌群丰度,筛选出预测肝脏疾病的肠道微生物,之后以筛选出的肠道微生物作为检测指标综合判断,可以有效预测和监测肝脏疾病的易感人群或者发现早期患者,以及监控肝脏疾病的治疗效果。
以上对本发明的实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明范围所作的均等变化与改进等,均应仍归属于本专利涵盖范围之内。
Claims (4)
1.一种肠道菌群相对丰度预测肝脏疾病的分析技术,其特征在于:包括如下步骤:
步骤一,取健康人、非酒精性脂肪肝、肝硬化、肝癌患者中段粪便并提取总RNA,通过对微生物16SrRNA基因V4可变区进行PCR扩增,进行文库构建,对微生物rRNA基因V4可变区进行测序,分析粪便中肠道菌群相对丰度;
步骤二,将上述肠道菌群相对丰度进行ROC分析,获得AUC、灵敏度、特异度和cut-off值,选取AUC>0.7,相对丰度cut-off值>0.001的肠道微生物作为检测指标预测肝脏疾病。
2.根据权利要求1所述的肠道菌群相对丰度预测肝脏疾病的分析技术,其特征在于:在步骤一中,取健康人、非酒精性脂肪肝、肝硬化、肝癌患者100mg中段粪便并提取总RNA。
3.根据权利要求2所述的肠道菌群相对丰度预测肝脏疾病的分析技术,其特征在于:在步骤一中,所述肝硬化患者包括代偿性肝硬化、轻度失代偿性肝硬化、重度失代偿性肝硬化患者。
4.根据权利要求3所述的肠道菌群相对丰度预测肝脏疾病的分析技术,其特征在于:经分析筛选后,作为预测非酒精性脂肪肝的肠道微生物包括:p_firmicutes,c_clostridia,o_clostridiales,f_ruminococcaceae,f_bacteroidaceae,g_bacteroides,g_lachnoclostridium,s_bacteroides_vulgatus,s_blautia_obeum,p_bacteroidetes/p_firmicutes;作为预测代偿性肝硬化的肠道微生物包括:p_proteobacteria,g_streptococcus;作为预测轻度失代偿性肝硬化的肠道微生物包括:c_clostridia,o_clostridiales,f_lachnospiraceae,g_blautia,g_unidentified_lachnospiraceae,c_bacilli,o_lactobacillales,f_streptococcaceae,g_streptococcus,s_ruminococcus_sp_5_1_39bfaa,c_negativicutes,o_selenomonadales,f_veillonellaceae,g_romboutsia,g_unidentified_ruminococcaceae,g_fusicatenibacter,s_bifidobacterium_adolescentis,s_lactobacillus_salivarius,s_blautia_obeum,o_pasteurellales,f_pasteurellaceae,g_anaerostipes,g_veillonella,f_lactobacillaceae,g_lactobacillus;作为预测重度失代偿性肝硬化的肠道微生物包括:o_enterobacteriales,f_enterobacteriaceae,c_gammaproteobacteria,g_unidentified_enterobacteriaceae,s_escherichia_coli,p_proteobacteria,c_bacilli,o_lactobacillales,f_streptococcaceae,g_streptococcus,g_veillonella,o_pasteurellales,f_pasteurellaceae,p_firmicutes,c_clostridia,o_clostridiales,f_lachnospiraceae,f_ruminococcaceae,g_faecalibacterium,p_actinobacteria,g_unidentified_lachnospiraceae,g_blautia,o_bifidobacteriales,f_bifidobacteriaceae,g_bifidobacterium,s_ruminococcus_sp_5_1_39bfaa,c_erysipelotrichia,o_erysipelotrichales,f_erysipelotrichaceae,g_romboutsia,f_bacteroidaceae,g_bacteroides,g_dorea,g_roseburia,g_fusicatenibacter,g_anaerostipes,g_unidentified_ruminococcaceae,s_bacteroides_uniformis,s_bifidobacterium_adolescentis,s_bacteroides_uniformis,f_tannerellaceae,g_parabacteroides;作为预测肝癌的肠道微生物包括:p_bacteroidetes/p_firmicutes,p_firmicutes,c_clostridia,o_clostridiales,f_lachnospiraceae,f_ruminococcaceae,p_proteobacteria,g_faecalibacterium,g_blautia,c_gammaproteobacteria,o_enterobacteriales,f_enterobacteriaceae,c_negativicutes,o_selenomonadales,c_alphaproteobacteria,f_porphyromonadaceae,g_parabacteroides,g_ruminococcus_torques_group,s_ruminococcus_sp_5_1_39bfaa,f_veillonellaceae,s_bacteroides_fragilis,o_sphingobacteriales,g_fusicatenibacter,c_erysipelotrichia,o_erysipelotrichales,f_erysipelotrichaceae,o_rhizobiales,s_parabacteroides_distasonis,g_romboutsia,s_bacteroides_plebeius,p_tenericutes,c_mollicutes,g_dorea,f_streptococcaceae,g_prevotella_9,f_rikenellaceae,g_alistipes,g_anaerostipes,g_streptococcus,g_megamonas,f_lactobacillaceae,g_lactobacillus,s_blautia_obeum,g_veillonella,g_unidentified_ruminococcaceae。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010404396.1A CN111549155A (zh) | 2020-05-13 | 2020-05-13 | 一种通过肠道菌群相对丰度预测肝脏疾病的分析技术 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010404396.1A CN111549155A (zh) | 2020-05-13 | 2020-05-13 | 一种通过肠道菌群相对丰度预测肝脏疾病的分析技术 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111549155A true CN111549155A (zh) | 2020-08-18 |
Family
ID=71996666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010404396.1A Pending CN111549155A (zh) | 2020-05-13 | 2020-05-13 | 一种通过肠道菌群相对丰度预测肝脏疾病的分析技术 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111549155A (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113186310A (zh) * | 2021-04-23 | 2021-07-30 | 复旦大学附属中山医院 | 一种通过肠道菌群相对丰度预测健康性老化的方法 |
CN113699260A (zh) * | 2021-09-29 | 2021-11-26 | 复旦大学附属中山医院 | 一种肠道菌群丰度检测在肝纤维化、肝硬化中的应用 |
CN113913490A (zh) * | 2021-11-25 | 2022-01-11 | 上海锐翌生物科技有限公司 | 非酒精性脂肪肝标志微生物及其应用 |
CN114854884A (zh) * | 2022-05-27 | 2022-08-05 | 山东农业大学 | 用属水平的粪便微生物预警或无创诊断脂肪肝奶牛的方法 |
CN115011706A (zh) * | 2022-05-27 | 2022-09-06 | 山东农业大学 | 粪便微生物标志物在无创识别/预警围产期脂肪肝奶牛中的应用 |
CN116497135A (zh) * | 2023-04-20 | 2023-07-28 | 广东华微医疗科技有限公司 | 用于非酒精性脂肪性肝炎患病风险预测或诊断的微生物标志物 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104195146A (zh) * | 2014-07-15 | 2014-12-10 | 浙江大学 | 肝硬化微生物标志物及应用 |
CN106611094A (zh) * | 2015-10-15 | 2017-05-03 | 北京寻因生物科技有限公司 | 基于肠道微生物菌群预测及干预化疗药物毒副反应的方法 |
CN108504739A (zh) * | 2018-05-15 | 2018-09-07 | 浙江大学 | 一种用于肝癌早期诊断的生物标志物及其应用 |
CN109371147A (zh) * | 2018-11-01 | 2019-02-22 | 任志刚 | 一种用于区别肝癌和非肝癌的肠道微生物基因标志物及其应用 |
CN109897906A (zh) * | 2019-03-04 | 2019-06-18 | 福建西陇生物技术有限公司 | 一种肠道菌群16S rRNA基因的检测方法及其应用 |
CN112553351A (zh) * | 2020-11-25 | 2021-03-26 | 温州医科大学附属第一医院 | 基于肠道微生物相对丰度的胆管癌非侵入性标志物、筛选方法及应用 |
-
2020
- 2020-05-13 CN CN202010404396.1A patent/CN111549155A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104195146A (zh) * | 2014-07-15 | 2014-12-10 | 浙江大学 | 肝硬化微生物标志物及应用 |
CN106611094A (zh) * | 2015-10-15 | 2017-05-03 | 北京寻因生物科技有限公司 | 基于肠道微生物菌群预测及干预化疗药物毒副反应的方法 |
CN108504739A (zh) * | 2018-05-15 | 2018-09-07 | 浙江大学 | 一种用于肝癌早期诊断的生物标志物及其应用 |
CN109371147A (zh) * | 2018-11-01 | 2019-02-22 | 任志刚 | 一种用于区别肝癌和非肝癌的肠道微生物基因标志物及其应用 |
CN109897906A (zh) * | 2019-03-04 | 2019-06-18 | 福建西陇生物技术有限公司 | 一种肠道菌群16S rRNA基因的检测方法及其应用 |
CN112553351A (zh) * | 2020-11-25 | 2021-03-26 | 温州医科大学附属第一医院 | 基于肠道微生物相对丰度的胆管癌非侵入性标志物、筛选方法及应用 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113186310A (zh) * | 2021-04-23 | 2021-07-30 | 复旦大学附属中山医院 | 一种通过肠道菌群相对丰度预测健康性老化的方法 |
CN113699260A (zh) * | 2021-09-29 | 2021-11-26 | 复旦大学附属中山医院 | 一种肠道菌群丰度检测在肝纤维化、肝硬化中的应用 |
CN113913490A (zh) * | 2021-11-25 | 2022-01-11 | 上海锐翌生物科技有限公司 | 非酒精性脂肪肝标志微生物及其应用 |
CN113913490B (zh) * | 2021-11-25 | 2024-06-04 | 上海锐翌生物科技有限公司 | 非酒精性脂肪肝标志微生物及其应用 |
CN114854884A (zh) * | 2022-05-27 | 2022-08-05 | 山东农业大学 | 用属水平的粪便微生物预警或无创诊断脂肪肝奶牛的方法 |
CN115011706A (zh) * | 2022-05-27 | 2022-09-06 | 山东农业大学 | 粪便微生物标志物在无创识别/预警围产期脂肪肝奶牛中的应用 |
CN116497135A (zh) * | 2023-04-20 | 2023-07-28 | 广东华微医疗科技有限公司 | 用于非酒精性脂肪性肝炎患病风险预测或诊断的微生物标志物 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111549155A (zh) | 一种通过肠道菌群相对丰度预测肝脏疾病的分析技术 | |
Kim et al. | Design of PCR assays to specifically detect and identify 37 Lactobacillus species in a single 96 well plate | |
Teng et al. | Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling | |
Engen et al. | The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota | |
Andoh et al. | Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn’s disease using terminal restriction fragment length polymorphism analysis | |
Rios-Covian et al. | Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria | |
Vlčková et al. | Evaluation of different storage methods to characterize the fecal bacterial communities of captive western lowland gorillas (Gorilla gorilla gorilla) | |
Ma et al. | Differential pattern of indigenous microbiome responses to probiotic Bifidobacterium lactis V9 consumption across subjects | |
Liu et al. | Effects of bifidobacteria-produced exopolysaccharides on human gut microbiota in vitro | |
CA3025697A1 (en) | Use of a microbiome profile to detect liver disease | |
WO2017216820A1 (en) | Metagenomic method for in vitro diagnosis of gut dysbiosis | |
Chen et al. | Relationship between alterations of urinary microbiota and cultured negative lower urinary tract symptoms in female type 2 diabetes patients | |
CN109913567A (zh) | 系统性红斑狼疮致病相关的肠道菌群的检测方法及试剂盒 | |
CN114144387A (zh) | 用于从微生物的不同群体中提取核酸分子的通用方法 | |
Chen et al. | Gut microbiota affect the formation of calcium oxalate renal calculi caused by high daily tea consumption | |
Li et al. | The prebiotic‐like effects of Coprinus comatus polysaccharides on gut microbiota in normal mice and those with acute alcoholic liver injury: A comparative study | |
Peng et al. | Whole genome and acid stress comparative transcriptome analysis of Lactiplantibacillus plantarum ZDY2013 | |
US20230227885A1 (en) | Microbial niche mapping | |
CN112011602A (zh) | 与免疫恢复相关的肠道菌群及其应用 | |
Gresse et al. | Weaning-associated feed deprivation stress causes microbiota disruptions in a novel mucin-containing in vitro model of the piglet colon (MPigut-IVM) | |
TW202227644A (zh) | 診斷疾病之方法 | |
Saffar et al. | Analyzing of colorectal cancerrelated genes and microRNAs expression profiles in response to probiotics Lactobacillus acidophilus and Saccharomyces cerevisiae in colon cancer cell lines | |
Sethi et al. | Whole Genome Mining and Characterization of a New Probiotic Strain Levilactobacillus brevis ILSH3 from Handia: An Ethnic Fermented Beverage of Odisha, India | |
Huang et al. | In-situ substitution and community dynamics modeling for enhanced safety in Chinese rice wine brewing | |
Kil et al. | Probiotic potential of Saccharomyces cerevisiae GILA with alleviating intestinal inflammation in a dextran sulfate sodium induced colitis mouse model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200818 |