CN111542754A - 用于检测和/或定量样品中的分析物的微胶囊 - Google Patents

用于检测和/或定量样品中的分析物的微胶囊 Download PDF

Info

Publication number
CN111542754A
CN111542754A CN201880084693.3A CN201880084693A CN111542754A CN 111542754 A CN111542754 A CN 111542754A CN 201880084693 A CN201880084693 A CN 201880084693A CN 111542754 A CN111542754 A CN 111542754A
Authority
CN
China
Prior art keywords
microcapsules
analyte
reagents
sample
impermeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880084693.3A
Other languages
English (en)
Inventor
托马斯·艾林戈
斯蒂芬·胡博得
伊万·伦卡维克
托尔斯泰·舒尔茨
凯瑟琳·斯蒂尔莫茨
云根·恩尔曼川特
莉亚·坎茨
奥利沃·莱姆茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brink Co
Blink AG
Original Assignee
Brink Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brink Co filed Critical Brink Co
Publication of CN111542754A publication Critical patent/CN111542754A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/5432Liposomes or microcapsules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54306Solid-phase reaction mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明涉及用于检测和/或定量样品中的分析物的微胶囊。此外,本发明涉及使用所述微胶囊检测和/或定量样品中的分析物的方法。此外,本发明涉及用于检测和/或定量样品中的分析物的微胶囊的制备方法。

Description

用于检测和/或定量样品中的分析物的微胶囊
技术领域
本发明涉及用于检测和/或定量样品中的分析物的微胶囊。此外,本发明涉及使用所述微胶囊检测和/或定量样品中的分析物的方法。此外,本发明涉及用于检测和/或定量样品中的分析物的微胶囊的制备方法。
背景技术
存在大量技术可用于检测样品中的分析物或定量分析物浓度的小量差异。特别地,这些技术也已被用于多路测定法格式中。例如,在Fulton等Clinical Chemistry,1997,43(9);pp.1749-1756中公开了一种多路数据获取和分析平台,用于执行多达64种不同分析物的同时测量的基于微球的测定法的流式细胞术分析。为了检测样品中的单个分析物或定量分析物浓度的小量差异,已建立了数字分析技术(Witters等,Lab.Chip,2014,14(17);pp.3225-3232)。为了提供针对特定生物化学反应的限定约束,已建立了乳化技术并将其用于建立数字检测方案(Kanagal-Shamanna,Methods Mol.Biol.,2016,1392;pp.33-42)。这些测定法的质量在相当大程度上取决于所述乳液的稳定性。为此目的,已将提供在非水性相中的某些乳化剂与油包水乳液的水性相中的牛血清白蛋白(BSA)的组合用于形成具有蛋白质外皮的液滴(参见US 2011/0217711 A1)。这种方法也已在Hindson等(Anal.Chem.,2011,83(22);pp.8604-8610)中使用。在这种方法中,将包括BSA在内的PCR试剂与稀释的水性样品混合,并使用微流体装置以便产生水性液滴在含有适合乳化剂的氟碳油中的乳液。在加热至95℃后,在所述液滴周围形成外皮,并在随后用于核酸扩增的热循环步骤期间提供了防止聚结的保护作用。实际的外皮形成效应早已为人所知,并且也已被用于生产用于药物递送或作为食品添加剂的微胶囊(Acton等,Journal of Food Science,1972,37(5);pp.795-796和Gires等,J.Mech.Behav.Biomed.Mater.,2016,58,pp.2-10)。
微胶囊也已被用于进行高度平行的单个聚合酶链反应(Mak等,AdvancedFunctional Materials 2017,18(19);pp.2930-2937)。通过胶囊化技术中的基质辅助的逐层组装(LbL),在具有包埋和溶解的试剂包括待扩增的靶的琼脂糖凝胶粒子上构建了具有选择性可渗透胶囊壁的温度稳定的微胶囊(Bai等,angewandte Chemie,2017,122(30);pp.5316-5320)。在这种方法中,在聚合酶链反应期间,小分子量的构件例如核苷酸(dNTP)从外部供应并通过所述可渗透胶囊壁扩散到内部,使得在PCR期间得到的高分子量PCR产物积累在所述微胶囊内。
所有前述技术要么需要液滴的原位产生,要么难以进行,需要建立精心设计的方案。此外,得到的胶囊不可储存,或者它们难以操控,并且需要遵循精心设计的流程。因此,在本领域中,对允许容易地制造、储存和使用用于检测和/或定量样品中的分析物的微胶囊的改进的方法,存在着需求。在本领域中,对提供用于检测分析物的预制的并允许用于预制的试剂的胶囊,也存在着需求。此外,在本领域中,对提供预制的允许捕获分析物的胶囊,存在着需求。
发明内容
因此,第一方面,本发明涉及一种用于检测和/或定量样品中的分析物的微胶囊,所述微胶囊包含
●能够在待检测和/或定量的分析物存在下产生和/或放大信号的试剂;其中所述试剂处于干燥状态;
●围绕所述试剂的多孔基质,所述多孔基质具有接纳待检测和/或定量的分析物的手段;其中所述干燥状态试剂通过屏障,例如至少一个包围所述试剂的屏障层与所述多孔基质分隔开。
在一个实施方式中,所述接纳待检测和/或定量的分析物的手段是尺寸适合于容纳含有所述分析物的液体样品的间隙孔隙。
在一个实施方式中,所述间隙孔隙的尺寸适合于容纳足够的液体样品以溶解所述干燥试剂。
在一个实施方式中,所述接纳待检测和/或定量的分析物的手段是所述容纳所述液体样品的间隙孔隙或所述间隙孔隙与一种或多种捕获剂的组合,所述捕获剂在所述微胶囊暴露于围绕所述微胶囊并含有待检测和/或定量的分析物的样品后,能够选择性且特异性地结合此类分析物,其中所述一种或多种捕获剂被附着到所述微胶囊的暴露到所述微胶囊的周边环境的部分。
在一个实施方式中,根据本发明所述的微胶囊包含:
●一个或几个不可渗透的核心,优选为不透水的核心,其含有和/或包埋有所述产生和/或放大信号的试剂,并因此将所述干燥状态试剂与所述多孔基质分隔开;
●多孔亲水壳,其形成所述多孔基质并围绕所述一个或几个不可渗透的核心,其中所述一种或多种捕获剂如果存在的话,被附着到所述多孔亲水壳。
当在本文中使用时,术语“不可渗透的”优选打算是指对水的不可渗透性。在优选实施方式中,“不透水的核心”阻止水从所述核心的周围环境扩散到所述核心中和/或穿过所述核心。当在本文中使用时,“不可渗透的核心”含有和/或包埋有能够产生和/或放大信号的试剂,所述试剂处于干燥状态下。因此当在本文中使用时,“不可渗透的核心”有效地将所述干燥状态试剂与周围环境分隔开并将它们维持在干燥状态下。因此在本发明的实施方式中,所述不可渗透的核心代表了包围所述试剂的所述至少一个屏障层。
在一个实施方式中,所述多孔亲水壳由水凝胶形成剂构成或由温敏聚合物构成。
在一个实施方式中,
-所述水凝胶形成剂选自:a)合成聚合物,例如聚甲基丙烯酸甲酯、聚酰胺;b)基于硅基聚合物,例如聚二甲基硅氧烷;c)天然存在的聚合物,其选自多糖例如琼脂糖、几丁质、壳聚糖、葡聚糖、藻酸盐、卡拉胶、纤维素、岩藻多糖、昆布多糖、选自黄原胶、阿拉伯胶、茄替胶、瓜尔胶、刺槐豆胶、黄耆胶、卡拉牙胶的树胶;以及菊粉;多肽、胶原蛋白、明胶、聚氨基酸例如聚赖氨酸;多核苷酸;及其组合;并且
-所述温敏聚合物是LCST温敏聚合物,其优选地选自聚(N-异丙基丙烯酰胺)(PNIPAm)、聚[甲基丙烯酸2-(二甲基氨基)乙基酯](pDMAEMA)、羟丙基纤维素、聚(乙烯基己内酰胺)(P(VCL))和聚乙烯基甲基醚,或者所述温敏聚合物是具有上临界溶解温度(UCST)的温敏聚合物,其优选地选自聚(N-丙烯酰基甘氨酰胺)(PNAGA)、聚(烯丙胺)-共-聚(烯丙基脲)及其衍生物、聚(甲基丙烯酰胺)、聚(N-丙烯酰基天冬酰胺)、聚(N-甲基丙烯酰基谷氨酰胺)、聚(丙烯酰胺)-共-(丙烯腈)、聚(磺基甜莱碱)、聚(磷酰胆碱)。
在一个实施方式中,所述不可渗透的核心由适合于包含和/或包埋所述试剂的材料构成,并且其中所述材料包围所述试剂并将它们与所述微胶囊的其他部分例如所述多孔基质、特别是所述亲水壳隔离开,其中所述材料优选地选自石蜡、甘油三酯、蜡,特别是植物蜡例如巴西棕榈蜡、动物蜡例如蜂蜡、源自于石油的蜡、矿物蜡。
在一个实施方式中,所述不可渗透的核心含有和/或包埋有处于干燥状态的所述能够产生和/或放大信号的试剂,并将它们与所述多孔基质分隔开。由于在优选实施方式中所述不可渗透的核心是不透水的核心,因此这种不透水的核心将所述试剂维持在所述干燥状态下。
在一个实施方式中,所述能够产生和/或放大信号的试剂是
-能够使用核酸分析物进行核酸扩增的试剂,并且其中优选地,所述试剂包括能够扩增所述样品中的所述分析物的分子例如扩增酶、一种或几种促进扩增所述分析物所必需的分子例如一种或几种核酸引物、核苷酸、盐和缓冲液,以及任选地一种或几种检测试剂,或
-一种或几种用于检测所述样品中作为分析物的蛋白质或肽或细胞的检测试剂,其中优选地所述一种或几种检测试剂选自抗体或抗体片段、核酸包括适体、Spiegelmer(镜像寡核苷酸抗核酸酶)、非抗体蛋白质例如受体、受体片段、亲和性蛋白质例如链亲合素,它们各自任选地被适合的报告分子例如染料、酶、化学催化剂标记,或者是能够启动产生表明作为待检测分析物的蛋白质或肽或细胞的存在的光学或其他可检测信号的化学反应的试剂混合物。
在一个实施方式中,所述微胶囊不含待检测的分析物。
在一个实施方式中,所述微胶囊不是原位产生的胶囊或粒子。
在一个实施方式中,所述捕获剂选自抗体、抗体片段、核酸包括适体、spiegelmer、能够特异性结合分析物或分析物复合物的非抗体蛋白质例如受体、受体片段、亲和性蛋白质例如链亲合素、化学基团例如生物素、
Figure BDA0002559294260000051
洋地黄毒苷、二硝基酚、核酸或核酸类似物-标签,或能够被抗体、抗体片段、核酸包括适体、非抗体蛋白质例如受体、受体片段、亲和性蛋白质例如链亲合素以KD=10-8至10-15M范围内的亲和性特异性结合的类似化学组成部分,或者选自能够特异性结合疏水性分子或具有疏水性基团的分子的疏水性结构,其中优选地所述疏水性结构在进行所述分析物的所述检测的条件下具有大于2的logD。
当在本文中使用时,术语“
Figure BDA0002559294260000052
”通常是指具有序列-Ala-Trp-Arg-His-Pro-Gln-Phe-Gly-Gly-COOH
Figure BDA0002559294260000053
或...-Asn-Trp-Ser-His-Pro-Gln-Phe-Glu-Lys-...
Figure BDA0002559294260000054
的肽,其可逆地但以高亲和性结合到链亲合素(
Figure BDA0002559294260000055
Figure BDA0002559294260000056
)或结合到链亲合素的工程化形式即“
Figure BDA0002559294260000057
Figure BDA0002559294260000058
当在本文中使用时,术语“logD”是指分布系数(D)的对数,所述分布系数是平衡时化合物在两种不混溶相的混合物中的浓度的比率。在优选实施方式中,本文中使用的术语“分布系数”与“分配系数”同义地使用。在优选实施方式中,“分布系数”是指化合物在水和1-辛醇的混合物中的浓度比率。通常,这种分布系数的测量通过本领域技术人员已知的任何适合的方法来进行。这种适合的方法包括“摇瓶法”,其中将所讨论的化合物溶解在一定体积的辛醇和水中,然后进一步测量这种化合物在每种溶剂中的浓度。其他适合的方法包括高效液相色谱(HPLC)。在这种HPLC方法中,分布系数(D)及其对数可以通过将其保留时间与具有已知分布系数值的相似化合物相关联来确定。
在一个实施方式中,所述微胶囊另外含有一种或几种保护性试剂,用于保护所述能够在所述水性溶液中产生和/或放大信号的试剂中的一者或几者,其中优选地,所述一种或几种保护性试剂选自环糊精和聚(亚烷基氧化物)。
在一个实施方式中,所述微胶囊另外含有用于标记所述微胶囊的标记物和/或磁性组分,其中所述磁性组分允许随后操作所述微胶囊。
在一个实施方式中,所述能够进行核酸扩增的试剂另外包含一种或几种检测试剂,其中所述一种或几种检测试剂选自抗体或抗体片段、核酸包括适体、Spiegelmer、非抗体蛋白质例如受体、受体片段、亲和性蛋白质例如链亲合素,它们各自任选地被适合的报告分子例如染料、酶、化学催化剂标记,或者是能够启动产生表明待检测分析物的存在的光学或其他可检测信号的化学反应的试剂混合物。
另一方面,本发明涉及一种检测和/或定量样品中的分析物的方法,所述方法包括:
i.提供根据本发明的如上述实施方式中的任一者中所述的微胶囊;
ii.将所述微胶囊暴露于围绕所述微胶囊并含有或怀疑含有待检测和/或定量的分析物的水性样品;
iii.将所述微胶囊从所述水性样品中取出,并将所述微胶囊转移到非水性相;
iv.溶解或破裂所述微胶囊,优选地将所述不可渗透的核心单独地或将所述不可渗透的核心与所述多孔亲水壳一起溶解或破裂,以在非水性环境中产生水性液滴,其中所述水性液滴含有处于溶解形式的所述在待检测和/或定量的分析物存在下能够产生和/或放大信号的试剂;
v.在所述水性液滴内进行产生和/或放大信号的反应,其中信号仅在所述分析物已存在于所述样品中的情况下被产生和/或扩增。
在一个实施方式中,所述在步骤v.中进行的反应是核酸扩增反应或信号放大反应,其中优选地所述在步骤v.中进行的反应是选自PCR或等温扩增反应例如TMA、NASBA、LAMP、3SR、SDA、RCA、LCR、RPA、NEAR的核酸扩增反应。
在一个实施方式中,在步骤iv.中,所述微胶囊、优选地所述不可渗透的核心,通过选自机械手段、化学切割、温度改变、pH改变、溶剂改变、施加电场、施加磁场、将所述微胶囊暴露于电磁辐射特别是限定波长范围的光例如UV光的手段,优选为温度变化,更优选为温度提高来溶解或破坏。
在一个实施方式中,所述微胶囊是根据如上所定义的实施方式中的任一者所述的微胶囊,并且所述多孔亲水壳由LCST(=“下临界溶解温度”)温敏聚合物构成。
在其中所述多孔亲水壳由LCST温敏聚合物构成的一个实施方式中,所述方法在步骤ii.与iii.之间包括另外的步骤
ii.a将所述微胶囊加热到高于所述LCST温敏聚合物的下临界溶解温度(LCST)的温度,随后将所述微胶囊冷却或允许其冷却到低于所述LCST温敏聚合物的下临界溶解温度(LCST)的温度,以便实现结合到所述微胶囊的分析物的富集,并将这种步骤ii.a进行n次,其中n是1至1000、优选地1至500的整数,和/或另外的步骤
ii.b将所述微胶囊在水性溶液中清洗以除去未结合的分析物,其中如果在步骤ii.a之外还进行步骤ii.b,则它在步骤ii.a之前或之后进行。
在另一个实施方式中,所述微胶囊是根据如上所定义的实施方式中的任一者所述的微胶囊,并且所述多孔亲水壳由UCST(=“上临界溶解温度”)温敏聚合物构成。
在其中所述多孔亲水壳由UCST温敏聚合物构成的一个实施方式中,所述方法在步骤ii.与iii.之间包括另外的步骤
ii.a将所述微胶囊冷却到低于所述UCST温敏聚合物的上临界溶解温度(UCST)的温度,随后将所述微胶囊加热或允许其加热到高于所述UCST温敏聚合物的上临界溶解温度(UCST)的温度,以便实现结合到所述微胶囊的分析物的富集,并将这种步骤ii.a进行n次,其中n是1至1000、优选地1至500的整数,和/或另外的步骤
ii.b将所述微胶囊在水性溶液中清洗以除去未结合的分析物,其中如果在步骤ii.a之外还进行步骤ii.b,则它在步骤ii.a之前或之后进行。
另一方面,本发明涉及一种制备用于检测和/或定量样品中的分析物的微胶囊的方法,所述微胶囊如根据本发明的上述实施方式中的任一者中所定义,所述方法包括下述步骤:
a)提供能够在待检测和/或定量的分析物存在下产生和/或放大信号的试剂的水性溶液,其中所述试剂的水性溶液除了所述试剂之外,还任选地包含一种或几种保护性试剂,其用于保护所述能够在所述水性溶液中产生和/或放大信号的试剂中的一者或几者;
b)将所述a)的水性溶液干燥,优选地喷雾干燥或冷冻干燥,由此产生能够产生和/或放大信号的干燥试剂,其优选地采取纳米粒子形式;
c)将所述干燥试剂并入到适合于包含和/或包埋所述试剂的材料中,使得所述材料包围所述试剂并隔离它们,其中所述材料优选地选自石蜡、甘油三酯、蜡,特别是植物蜡例如巴西棕榈蜡、动物蜡例如蜂蜡、源自于石油的蜡、矿物蜡;
d)通过将所述c)的产物干燥、优选地喷雾干燥或冷冻干燥,从所述c)的产物产生微粒,由此产生不可渗透的核心;
e)通过下述方式将所述不可渗透的核心并入到形成多孔基质并围绕所述一个或几个不可渗透的核心的多孔亲水壳中
■将所述不可渗透的核心并入到水凝胶形成剂中,并诱导所述水凝胶形成剂在所述不可渗透的核心周围形成水凝胶,或
■将所述不可渗透的核心并入到温敏聚合物的前体/单体中,并诱导所述前体/单体在所述不可渗透的核心周围聚合成温敏聚合物,或
■将所述不可渗透的核心并入到预制的温敏聚合物中,并允许所述预制的温敏聚合物在所述不可渗透的核心周围成型;
f)任选地,将一种或几种捕获剂偶联到围绕所述一个或几个不可渗透的核心的所述多孔亲水壳,由此产生附着有一种或几种捕获剂的微胶囊,其中在将所述微胶囊暴露到围绕所述微胶囊并含有待检测和/或定量的分析物的样品后,所述一种或几种捕获剂能够选择性且特异性地结合这种分析物;
g)任选地收集所述微胶囊;
h)进一步任选地将所述微胶囊清洗和/或干燥,优选地冷冻干燥。
在根据本发明所述的实施方式中,提供了一种用于检测和/或定量样品中的分析物的微胶囊,其中所述微胶囊包含能够在待检测和/或定量的分析物存在下产生和/或放大信号的试剂,其中所述试剂处于干燥状态并且通过适合的屏障与围绕所述试剂的多孔基质分隔开。根据本发明所述的微胶囊制造容易且简单,它们可以长时间储存,可以在方便时运输,并且不需要在打算使用的时间和地点原位制备。在根据本发明所述的微胶囊中使用的屏障允许将所述试剂保持在干燥状态下。所述屏障可以采取许多不同形式,并且可以例如是包围所述试剂的至少一个屏障层。在另一个实施方式中,所述屏障可以是一个或几个不可渗透的核心,其含有和/或包埋有所述试剂,并因此将它们与围绕所述试剂的多孔基质隔离开。在又一个实施方式中,所述能够产生和/或放大信号的试剂可以被包含在所述微胶囊中与围绕所述试剂的多孔基质分隔开的一个区室内。在优选实施方式中,所述屏障由含有和/或包埋有所述试剂的一个或几个不可渗透的核心的壳形成。在这种实施方式中,这种不可渗透的核心在外侧具有壳,其充当屏障以保护、分隔和隔离位于这种核心内的试剂。
根据本发明的实施方式,围绕所述试剂的多孔基质具有接纳待检测的分析物的手段。
在根据本发明所述的实施方式中,所述微胶囊本身跨越并包围出一定体积,所述体积在所述微胶囊使用期间充当用于检测和/或定量所述分析物的反应空间。这个体积在使用所述微胶囊之前被所述能够产生和/或放大信号的试剂和包含所述试剂的不可渗透的核心以及围绕所述试剂的多孔基质包括接纳分析物的手段占据和填充。
在一个实施方式中,所述接纳分析物的手段是尺寸适合于容纳含有所述分析物的液体(即通常为水性的)样品的多孔基质的间隙孔隙。在一个实施方式中,所述间隙孔隙的尺寸被选择成适合于容纳足够量的液体(例如通常为水性的)样品,以溶解位于微胶囊中的一定量的干燥试剂。换句话说,所述微胶囊、特别是所述多孔基质的尺寸根据包含在所述微胶囊内的干燥试剂的量来选择。在一个实施方式中,所述具有接纳待检测和/或定量的分析物的手段的多孔基质利用所述间隙孔隙像海绵一样起作用,以吸取可能包含分析物的液体样品。通过吸取这种液体样品,所述分析物被所述微胶囊有效地接收。在一个实施方式中,所述接纳待检测的分析物的手段除了所述间隙孔隙之外,还通过存在一种或多种捕获剂而额外形成,所述捕获剂被附着在暴露于其周围的所述微胶囊的一部分上。在其中所述微胶囊包含形成所述多孔基质的多孔亲水壳的那些实施方式中,所述一种或多种捕获剂被附着到所述多孔亲水壳,因为这种多孔亲水壳暴露到所述微胶囊的周围环境并与该微胶囊可能暴露到的任何样品发生接触。
在一个实施方式中,根据本发明所述的微胶囊具有1μm至2000μm、优选地1μm至1500μm、更优选地10μm至1000μm、甚至更优选地20μm至500μm、甚至更优选地30μm至300μm的范围和其间的任何范围内的尺寸。
当在本文中用于根据本发明的微胶囊的情形中时,术语“具有一定尺寸”通常是指这些微胶囊的维度,并且通常是指这些微胶囊的最长维度。在一个实施方式中,术语“尺寸”是指微胶囊的平均直径。
在一个实施方式中,所述微胶囊具有球形、椭圆形、球、卵或不规则圆形体的形状。
当在本文中使用时,术语“微”通常是指在微米范围内的维度。
在一个实施方式中,“微胶囊”是被有效包封的微球,其在内部具有能够在待检测和/或定量的分析物存在下产生和/或放大信号的试剂;其中所述试剂处于干燥状态;并且此外包含围绕所述试剂的多孔基质,所述多孔基质具有接纳待检测和/或定量的分析物的手段;其中所述干燥状态试剂被屏障例如包围所述试剂的至少一个屏障层与所述多孔基质分隔开。在一个实施方式中,这些被包封的微球包含一个或几个不可渗透的核心,其含有和/或包埋有所述能够产生和/或放大信号的试剂,并因此将所述干燥状态试剂与所述多孔基质分隔开;并且此外包含形成所述多孔基质并围绕所述一个或几个不可渗透的核心的多孔亲水壳;其中所述一种或多种捕获剂如果存在的话,被附着到所述多孔基质或者在一个实施方式中附着到所述多孔亲水壳上。
根据本发明的实施方式,根据本发明的微胶囊也可以根据它包围的体积来表征。这种被所述微胶囊包围的体积有效地代表了在其中发生分析物的检测和/或定量的反应空间。在一个实施方式中,被所述微胶囊包围的体积代表了可用于分析物的检测和/或定量的最大反应空间。因此,所述微胶囊凭借所述包围的体积提供了可用于分析物的检测和/或定量的反应空间,所述反应空间在分析物的检测和/或定量期间被水或水性溶液部分或完全填充。通常,在检测和/或定量期间填充所述反应空间的水或水性溶液源自于怀疑含有分析物的样品,或者它源自于在所述分析物已被结合后(即在所述微胶囊以前已被暴露到怀疑含有分析物的样品之后)所述微胶囊被暴露到的清洗溶液或缓冲液。
在一个实施方式中,微胶囊具有0.5fl至4.2μl、优选地0.5fl至1.8nl、更优选地500fl至525nl、甚至更优选地4pl至65nl、甚至更优选地14pl至14nl的范围和其间的任何范围内的体积。
在其中所述微胶囊包含形成所述多孔基质的多孔亲水壳的实施方式中,所述多孔亲水壳不是由聚电解质形成的壳。更具体来说,它不是由已通过逐层沉积技术沉积的聚电解质形成的壳。
由于所述能够产生和/或放大信号的试剂在所述微胶囊使用之前以干燥状态存在于所述微胶囊中,因此根据本发明所述的微胶囊可以以容易的方式生产,并且重要的是在时间和空间上与所述微胶囊打算使用的时间和空间分隔开。因此,根据本发明所述的微胶囊也可以容易地长时间储存,并且可以被运输而不需花费大量精力维持温度或其他储存条件。
在使用期间,可以将根据本发明的实施方式所述的微胶囊暴露到含有分析物的水性液体样品,然后所述水性液体样品被所述微胶囊的多孔基质吸取。有效情况下,如果所述样品含有分析物,则所述多孔基质接纳待检测的分析物。除了所述间隙孔隙之外,所述接纳待检测和/或定量的分析物的手段也可以另外地是一种或多种捕获剂,其被附着到所述微胶囊的暴露到所述微胶囊的周围环境的部分。在将所述微胶囊暴露到围绕所述微胶囊并含有分析物或怀疑含有待检测和/或定量的分析物的样品之后,这一种或多种捕获剂能够选择性且特异性地结合这种分析物。因此,通过这些捕获剂的存在,所述微胶囊接纳和选择性结合待检测和/或定量的分析物的能力被极大增强。在本发明的实施方式中,所述多孔基质的间隙孔隙促进液体样品被所述微胶囊固定和摄取。通过所述间隙孔隙的存在,所述微胶囊的多孔基质充当包括或怀疑包括待检测和/或定量的分析物的用于液体摄取的储液库。
在使用期间,在已暴露到怀疑含有分析物的样品之后,可以将根据本发明的实施方式所述的微胶囊另外暴露到具有限定的浓度和条件例如盐浓度、缓冲剂浓度、pH等的水性液体例如清洗缓冲液或另一种优选的水性介质例如交换缓冲液。然后所述水性液体通常被所述微胶囊的多孔基质吸取并部分或完全填充所述微胶囊的体积,和/或可能驱替存在于那里的来自于以前的反应或暴露的液体。因此,有效情况下,所述微胶囊的体积代表了在其中发生分析物的检测和/或定量的反应空间。
在使用期间,在所述微胶囊已吸取液体样品并任选地已经历一个或几个清洗步骤或缓冲液交换步骤后,将根据本发明所述的微胶囊从所述水性样品或从所述水性样品的水性相取出并转移到非水性相。在所述微胶囊被转移到非水性相后,将单独的所述不可渗透的核心或所述不可渗透的核心与形成所述多孔基质并围绕所述一个或几个不可渗透的核心的多孔亲水壳一起溶解或破坏。作为其结果,对于每个被溶解/破坏的微胶囊产生在非水性环境中的水性液滴。这种水性液滴具有与先前被所述微胶囊吸取的水性液体的体积相应的体积。在一个实施方式中,所述水性液滴的体积基本上对应于所述微胶囊的体积。在另一个实施方式中,所述微胶囊以前未将水性液体吸取到它的全部容量,即吸收到它的全部体积。在这种情况下,所述水性液滴的体积对应于所述微胶囊体积的一部分。所述溶解/破坏通过任何适合的手段来进行,所述手段选自机械手段、化学切割、温度改变,特别是温度提高以允许所述不可渗透的核心和所述多孔亲水壳的熔化。其他适合的手段包括pH改变、溶剂改变、施加电场和/或磁场、将所述微胶囊暴露于电磁辐射特别是限定波长的光例如UV光。通过这种溶解/破坏产生的水性液滴具有与被所述微胶囊跨越/包围的体积相同的体积或基本上相同的体积。所述水性液滴含有所有所述能够产生和/或放大信号的试剂,并且如果所述微胶囊以前已被暴露到的液体样品也含有分析物的话,则所述水性液滴也含有这种分析物。因此,所述水性液滴提供了允许检测和/或定量样品中的分析物的反应空间。在这种反应空间中,通常信号在所述水性液滴内产生和/或放大,其中这种信号仅在所述分析物已存在于所述微胶囊以前已被暴露到的样品中的情况下产生和/或放大。在一个实施方式中,所述产生和/或放大信号的反应是核酸扩增反应或者是信号放大反应。在一个实施方式中,所述分析物利用扩增反应来扩增,并且所述因此扩增的产物利用检测试剂来检测,这在所述分析物是核酸并且所述扩增反应是核酸扩增反应的情况下是特别优选的。这种核酸扩增反应的实例是聚合酶链反应(PCR)或等温扩增反应例如转录介导的扩增(TMA)、基于核酸序列的扩增(NASBA)、环介导的等温扩增(LAMP)、自我维持的序列复制(3SR)、链置换扩增(SDA)、滚环扩增(RCA)、连接酶链反应(LCR)、重组酶聚合酶扩增(RPA)和切口酶扩增反应(NEAR)。本领域技术人员充分了解这些扩增反应中的任一者,并且能够根据需要进行这些扩增反应。在另一个实施方式中,所述分析物的检测可以通过首先进行信号放大反应并随后检测因此放大的信号来进行。在所述后一个实施方式中,信号仅在起初存在信号的情况下才被放大,即信号仅在存在待检测的分析物时才出现,并且例如如果核酸是所述检测试剂的一部分或形成所述检测试剂的一部分,则所述信号放大反应可以是核酸扩增。可选地,如果酶是所述检测试剂的一部分或形成所述检测试剂的一部分,则所述信号放大反应可以是基于酶的信号放大。
根据本发明的实施方式,还提供了一种用于检测和/或定量样品中的分析物的微胶囊的制备方法,这种微胶囊如上述实施方式中的任一项中所定义。在这种方法中,根据步骤a),提供试剂的水性溶液,其中所述试剂能够在待检测和/或定量的分析物存在下产生和/或放大信号,其中所述试剂的水性溶液除了所述试剂之外,还任选地包含一种或几种保护性试剂,其用于保护所述能够在所述水性溶液中产生和/或放大信号的试剂中的一者或几者。根据这种制备方法,在下一个步骤即步骤b)中,将所述步骤a)的水性溶液干燥,优选地喷雾干燥或冷冻干燥,由此产生能够产生和/或放大信号的干燥试剂。优选地,干燥产生采取纳米粒子形式的所述试剂。在下一个步骤即步骤c)中,将从步骤b)得到的所述干燥试剂并入到适合于包含和/或包埋所述试剂的材料中,使得所述材料包围所述试剂并隔离它们。在优选实施方式中,包围所述试剂的材料选自石蜡、甘油三酯、蜡,特别是植物蜡例如巴西棕榈蜡、动物蜡例如蜂蜡、源自于石油的蜡和矿物蜡。这些石蜡、甘油三酯和/或蜡的目的是提供屏障,通过所述屏障将所述能够产生和/或放大信号的试剂与所述微胶囊的多孔基质分隔开。在一个实施方式中,这些石蜡、甘油三酯和/或蜡具有50℃至80℃范围内的冷凝点。在一个实施方式中,所述冷凝点按照ASTM D938来测量。正如上文概述的,所述试剂处于干燥/已经干燥状态,并且应该尽可能长地保持在这种状态下,即直至所述屏障被故意溶解之前。也正如上文进一步概述的,所述多孔基质优选地围出用于容纳液体样品的间隙孔隙,然而,所述能够产生和/或放大信号的试剂不应过早地与所述液体样品发生接触。上面提到的蜡/甘油三酯/石蜡是适合用于这种目的的屏障材料。
在步骤c)中已将来自于步骤b)的干燥试剂并入到所述材料中之后,随后进行下一个步骤d),其中通过将所述步骤c)的产物干燥、优选地喷雾干燥或冷冻干燥,从所述c)的产物产生微粒,由此产生含有和/或包埋有所述能够产生和/或放大信号的试剂的不可渗透的核心。随后在下一个步骤即步骤e)中将所述在步骤d)中产生的不可渗透的核心并入到多孔亲水壳中。所述多孔亲水壳形成多孔基质并围绕所述一个或几个不可渗透的核心。所述不可渗透的核心并入到所述多孔亲水壳是通过下述任一方式实现的:
-将所述不可渗透的核心并入到水凝胶形成剂中,并通过诱导所述水凝胶形成剂在所述不可渗透的核心周围形成水凝胶,或
-将所述不可渗透的核心并入到温敏聚合物的前体/单体中,并诱导所述前体/单体在所述不可渗透的核心周围聚合成温敏聚合物,或
-将所述不可渗透的核心并入到预制的温敏聚合物中,并允许所述预制的温敏聚合物在所述不可渗透的核心周围成型。
应该指出,在上述涉及温敏聚合物的实施方式中,所述温敏聚合物形成所述多孔亲水壳,所述不可渗透的核心被并入其中。
在一个实施方式中,所述根据本发明的制备微胶囊的方法任选地含有另一个步骤f)将一种或几种捕获剂偶联到围绕所述一个或几个不可渗透的核心的所述多孔亲水壳,由此产生附着有一种或几种捕获剂的微胶囊,其中在将所述微胶囊暴露到围绕所述微胶囊并含有待检测和/或定量的分析物的样品后,所述一种或几种捕获剂能够选择性且特异性地结合这种分析物。
在一个实施方式中,所述根据本发明的制备微胶囊的方法任选地含有在其中收集所述微胶囊的另一个步骤g)。在一个实施方式中,所述根据本发明的制备微胶囊的方法另外含有另一个任选的步骤h),即将所述微胶囊清洗和/或干燥,优选地冷冻干燥。
在根据本发明所述的微胶囊的实施方式中,所述微胶囊只含有被多孔亲水壳围绕的单个不可渗透的核心。在另一个实施方式中,根据本发明所述的微胶囊含有多个不可渗透的核心,这些多个核心被所述多孔亲水壳围绕。
在一个实施方式中,所述多孔亲水壳由水凝胶形成剂构成或由温敏聚合物构成。在一个实施方式中,所述水凝胶形成剂选自a)合成聚合物,例如聚甲基丙烯酸甲酯、聚酰胺;b)基于硅基聚合物,例如聚二甲基硅氧烷;c)天然存在的聚合物,其选自多糖例如琼脂糖、几丁质、壳聚糖、葡聚糖、藻酸盐、卡拉胶、纤维素、岩藻多糖、昆布多糖、选自黄原胶、阿拉伯胶、茄替胶、瓜尔胶、刺槐豆胶、黄耆胶、卡拉牙胶的树胶以及菊粉,多肽、胶原蛋白、明胶、聚氨基酸例如聚赖氨酸,多核苷酸,及其组合。水凝胶形成剂对于本领域技术人员来说是已知的,并且例如描述在
Figure BDA0002559294260000161
European Polymer Journal,2015,65,pp.252-267中。
在一个实施方式中,所述多孔亲水壳由可能形成也可能不形成水凝胶的温敏聚合物形成。温敏聚合物是依赖于温度表现出它们的一种或几种物理性质的不连续变化的聚合物。所述改变的物理性质的典型实例是溶解度,例如在水中的溶解度。示例性的典型温敏聚合物在低温下在水中可溶并透明,并且随着温度升高对其在水中的溶解度而言经历可逆的相变,在高温下在水性溶液中产生浑浊或形成沉淀物。发生这种相变的固有温度被称为下临界溶解温度(LCST)。
另一种示例性的典型温敏聚合物在高温下在水中可溶并透明,并且随着温度降低对其在水中的溶解度而言经历可逆的相变,在低温下在水性溶液中产生浑浊或形成沉淀物。发生这种相变的固有温度被称为上临界溶解温度(UCST)。
在根据本发明所述的微胶囊的一个实施方式中,所述多孔亲水壳由温敏聚合物构成,其中优选地,所述温敏聚合物是LCST(=下临界溶解温度)温敏聚合物。在一个实施方式中,这种LCST温敏聚合物选自聚(N-异丙基丙烯酰胺)(PNIPAm)、聚[甲基丙烯酸2-(二甲基氨基)乙基酯](pDMAEMA)、羟丙基纤维素、聚(乙烯基己内酰胺)(P(VCL))和聚乙烯基甲基醚。
在根据本发明所述的微胶囊的另一个实施方式中,所述多孔亲水壳由温敏聚合物构成,其中优选地所述温敏聚合物是UCST(=上临界溶解温度)温敏聚合物。在一个实施方式中,这种UCST温敏聚合物选自聚(N-丙烯酰基甘氨酰胺)(PNAGA)、聚(烯丙胺)-共-聚(烯丙基脲)及其衍生物、聚(甲基丙烯酰胺)、聚(N-丙烯酰基天冬酰胺)、聚(N-甲基丙烯酰基谷氨酰胺)、聚(丙烯酰胺)-共-(丙烯腈)、聚(磺基甜莱碱)、聚(磷酰胆碱)。
根据本发明所述的微胶囊的其中所述多孔亲水壳由温敏聚合物,特别是LCST温敏聚合物构成的实施方式,特别适合于用所述微胶囊富集分析物。这是因为使用这种实施方式,可以将所述微胶囊加热到高于所述LCST温敏聚合物的下临界溶解温度(LCST)的温度,作为其结果它在水中的溶解度将快速降低,并且作为其结果整个微胶囊将收缩/紧缩,并因此改变被所述微胶囊跨越或包围的总体积。通过这种收缩,溶剂特别是水将被赶出所述微胶囊,特别是所述多孔亲水壳。然后,将所述微胶囊随后再次冷却或允许其冷却到低于所述LCST温敏聚合物的下临界溶解温度(LCST)的温度,作为其结果所述温敏聚合物的溶解度将再次提高,因此所述多孔亲水壳将再次膨大,从而允许所述多孔亲水壳的孔眼被含有分析物的溶液填充。通过这种加热和冷却到高于和低于下临界溶解温度的过程,实现了所述分析物在所述多孔亲水壳中的富集。这种加热和冷却的步骤是可逆的,并且可以任选地重复一次或几次,例如多达1000次或甚至更多,优选地多达500次,并且这将导致所述分析物的富集。在某些实施方式中,所述加热和冷却的步骤可以被重复几千次,例如多达10000次或1000次至10000次之间的任何数目。如果一种或多种捕获剂被附着到所述多孔亲水壳,所述效果甚至将被提高,在这种情况下,在所述多孔亲水壳膨大后,所述分析物可以被结合到所述捕获剂。
根据本发明所述的微胶囊的其中所述多孔亲水壳由温敏聚合物、特别是UCST温敏聚合物构成的其他实施方式,特别适合于用所述微胶囊富集分析物。这是因为使用这种实施方式,可以将所述微胶囊冷却到低于所述UCST温敏聚合物的上临界溶解温度(UCST)的温度,作为其结果它在水中的溶解度将快速降低,并且作为其结果整个微胶囊将收缩/紧缩,并因此改变被所述微胶囊跨越或包围的总体积。通过这种收缩,溶剂特别是水将被赶出所述微胶囊,特别是所述多孔亲水壳。然后,将所述微胶囊随后再次加热或允许其加热到高于所述UCST温敏聚合物的上临界溶解温度(UCST)的温度,作为其结果所述温敏聚合物的溶解度将再次提高,因此所述多孔亲水壳将再次膨大,从而允许所述多孔亲水壳的孔眼被含有分析物的溶液填充。通过这种冷却和加热到低于和高于上临界溶解温度的过程,实现了所述分析物在所述多孔亲水壳中的富集。任选地,这种冷却和加热的步骤可以被重复一次或几次,例如多达1000次或甚至更多,优选地多达500次,并且这将导致所述分析物的富集。如果一种或多种捕获剂被附着到所述多孔亲水壳,所述效果甚至将被提高,在这种情况下,在所述多孔亲水壳膨大后,所述分析物可以被结合到所述捕获剂。
附图说明
此外,参考下述附图说明,在所述附图中:
图1示出了根据本发明所述的微胶囊的各种不同实施方式的示意图。图A示出了具有单一包埋的试剂内含物的不可渗透的核心的实施方式。所述试剂处于干燥状态并维持原样。所述不可渗透的核心包被有将所述干燥试剂与周围环境分隔开的甘油三酯层,例如蜡层;图B示出了具有多个试剂内含物的不可渗透的核心的实施方式,所述试剂内含物被包埋在甘油三酯基质例如蜡基质中;图C示出了具有单个不可渗透的核心的微胶囊的实施方式,能够产生和/或放大信号的试剂被包含在所述核心中。所述微胶囊另外包含围绕所述不可渗透的核心的亲水壳基质,并且此外具有附着到所述亲水壳的捕获剂。图D示出了具有多个不可渗透的核心的微胶囊的实施方式,所述核心在内部含有试剂并被亲水壳基质围绕。同样地,捕获剂被附着到所述亲水壳。图E示出了包括单个具有试剂的不可渗透的核心并具有高度多孔亲水壳的微胶囊的实施方式,所述亲水壳形成围绕所述具有试剂的单个不可渗透的核心的多孔基质。捕获剂被附着到所述亲水壳。
图2示出了根据本发明所述的微胶囊的实施方式的示意性制造流程图。
图3示出了根据本发明所述的微胶囊的实施方式的使用的示意图。更具体来说,在步骤1中,将具有内部含有干燥试剂的单一不可渗透的核心并具有用于所述分析物的捕获剂的微胶囊暴露到怀疑含有分析物(并且事实上含有这种分析物)的样品的水性溶液。在所述样品的水性溶液中还含有检测标记物,其本身也能够结合所述分析物。在暴露到所述样品之后,分析物被所述捕获剂结合并被所述检测标记物标记。随后在清洗步骤(步骤2)中洗掉任何非特异性结合的检测标志物,然而所述步骤是任选的。在步骤3中,将所述微胶囊转移到非水性相中并例如通过适合的温度改变或pH改变溶解/破坏,同时伴有水性液滴形成和试剂释放,然后进行扩增和/或检测。所述微胶囊提供了在其中发生这种扩增和/或检测的反应空间。
图4示出了根据本发明所述的微胶囊的实施方式的示意性使用流程图。
图5示出了一种微胶囊的实施方式,所述微胶囊包含其中包埋有试剂的单个不可渗透的核心,并且还包含由能够随外部参数的变化而发生相变的材料例如温敏聚合物构成的多孔亲水壳。在所述多孔亲水壳的膨胀状态下,孔眼被含有分析物和检测标记物的水性溶液填充。在周围环境条件例如温度改变后,所述壳变得紧缩,并且液体从所述孔眼排出,同时任何结合的分析物仍保留在所述微胶囊内。所述过程是可逆的,因此所述微胶囊可以在膨胀状态与紧缩状态之间循环。
图6示出了一种微胶囊的实施方式的照片图像,所述微胶囊具有围绕不可渗透的核心的多孔亲水壳,所述核心包埋有荧光染料(左上照片示出了单个试剂粒子的光学透射图像)。所述微胶囊含有完全成型的含有水的多孔亲水壳,并且所述微胶囊被非水性相围绕。
-微胶囊在矿物油中,在显微镜载片上具有大约500μm的直径
-壳由1%琼脂糖(A0576型)构成
-多个核心粒子占粒子重量的7%
-核心粒子通过将10%(wt)罗丹明/Cavasol粉喷雾干燥来产生
-蜡的Tm=58℃
-琼脂糖的Tm=75℃
下方的一系列照片示出了所述微胶囊从30℃到70℃到95℃再降到30℃的加热过程的四个阶段。
T=30℃:低荧光,干燥染料被疏水核心基质包围
T=70℃:核心基质熔化,荧光染料释放;在荧光染料溶解在琼脂糖凝胶壳中包含的水性缓冲液中之后,荧光信号增加
T=95℃:琼脂糖基质熔化,染料充分重悬浮;核心基质材料融合成单个大液滴
T=30℃:粒子具有分布在琼脂糖凝胶基质中的荧光染料;核心材料释放到周围的油中
在30℃下,所述包含在不可渗透的核心中的干燥染料显示出低荧光。在加热到70℃后,所述不可渗透的核心的基质熔化,并且所述荧光染料被释放出来。当所述染料溶解在所述多孔亲水壳中包含的溶液中时,荧光信号增加。在进一步加热到95℃后,所述亲水壳材料例如琼脂糖也熔化,并且荧光染料充分溶解。所述核心材料融合成单个大液滴。在将所述粒子再次冷却到30℃后,所述荧光染料已变得分布在整个多孔亲水壳基质中,而来自于所述不可渗透的核心的核心材料已被释放到周围的非水性相中。
图7示出了根据本发明所述的微胶囊的实施方式的实例,其中将成粒的冷冻干燥的PCR试剂并入到石蜡中,并将由此产生的蜡包被的粒子(“不可渗透的核心”)转移到一定液体体积的琼脂糖溶液中,以产生围绕所述不可渗透的核心的多孔亲水壳。将由此产生的微胶囊干燥,随后在含有或不含分析物的水性溶液中温育。然后将所述微胶囊转移到非水性相,并进行PCR。在被称为“阳性1”、“阳性2”、“阳性3”、“阳性4”的设置中,可以观察到荧光的增加,显示出发生了扩增/检测。在被称为“阴性对照1”和“阴性对照2”的设置中,未能观察到荧光的增加,因此表明未发生扩增。更具体来说,扩增/检测包含下述步骤:
-将成粒的冷冻干燥的PCR试剂用石蜡(Tm 58℃)包被,以便提供不透水的层
-将蜡包被的粒子转移到以适合的最终试剂浓度重悬浮所述包被的试剂所必需的液体体积的1%琼脂糖溶液中;已将琼脂糖保持在高于凝胶点(A2576型琼脂糖,Tg≤20℃,Tm=62℃)
-将干燥的琼脂糖粒子与不含分析物(样品阴性对照1和2)和含有分析物(样品阳性1、2、3、4)的水性溶液温育
-将水性溶液用石蜡油代替
-根据标准程序为各个容器进行PCR循环和实时检测
此外,参考下述实施例,提供所述实施例是为了说明而不是限制本发明。
实施例
实施方式1.含有微胶囊的单分散试剂的制造
微胶囊溶液的制备
将凝胶点≤20℃并且熔点≤62℃的超低胶凝温度琼脂糖A2576(Sigma)用反应性生物素单氯三嗪基染料(INNOVENT)标记。或者,琼脂糖可以首先被活化,然后偶联到EZ-LinkTM Amine-PEG11生物素。此外,所述活化可以通过溴化氰修饰、温和氧化(醛基的产生)、羰基二咪唑(CDI)或通过已知的其他方法来进行。在初步测试中通过滴定确定最适生物素覆盖率,以便在保持琼脂糖的基质性质(熔化和凝胶形成行为、低非特异性结合)的同时最大化链霉亲和素结合能力。
组分1:
●生物素标记的超低胶凝温度琼脂糖A2576溶液(1%w/v)
●无核酸酶水
●2%(v/v)聚乙烯醇
将组分1的组成成分吸取在一起,在涡旋混合器上简短振摇并离心。随后,将混合物在轻柔振荡(100rpm)下在72℃温育30min,以便熔化琼脂糖并获得均匀的琼脂糖溶液,然后将所述溶液保持在42℃下直至进一步使用。
也使用Cavasol W7或W8(Sigma)在无核酸酶水中制备(2-羟丙基)-у-环糊精储备溶液(100%),并在室温下储存。容纳了所有待包封的试剂,用于PCR的最终混合物含有下述组分:
组分2:
●1.25U/μl Hot Start Taq DNA聚合酶(biotechrabbit GmbH)
●4.0mM dNTP(biotechrabbit GmbH)
●8.0μM正义引物(5’-GCAGTGGCGCCCGAACAGG-3’)(Metabion International AG)
●8.0μM反义引物(5’-ACTGACGCTCTCGCACCCATCT-3’)(Metabion InternationalAG)
●8.0μM Taq-Man探针(5’-Cy5-CTCCGACGCAACGGGCTCG-BHQ3-3’)(MetabionInternational AG)或10x
Figure BDA0002559294260000221
荧光DNA染色剂(Jena Bioscience GmbH)
●聚磷酸钠(Merck)
●9%(w/v)(2-羟丙基)-у-环糊精(Sigma)
使用Nano喷雾干燥器B-90(Büchi Labortechnik GmbH)将所述试剂混合物喷雾干燥,以获得纳米粒子尺寸的试剂。随后将纳米粒子在真空下干燥,然后立即使用S-450D数字超声波仪(Branson)在高温(80-90℃)下进行超声处理,将它们以10%(w/v)的最高浓度分散在作为三硬脂酸甘油酯的甘油三酯Softenol 3118(IOI Oleo GmbH)中。
单分散的微胶囊的产生
组分3:
a.
●矿物油/石蜡油(Sigma)
●2%(w/v)Span80
b.
●HFE 7500(Dolomite Microfluidics)
●2-5%Picosurf 1(Dolomite MIcrofluidics)
含有甘油三酯包埋的试剂的单分散琼脂糖微粒,可以使用简单的双流动聚焦装置(Dolomite Microfluidics)在双乳液形成的一步过程中制造。具体来说,使用线性连接器作为流体的入口和出口,将两个Dolomite液滴联结芯片安装在芯片架上,其中一个芯片是普通玻璃芯片(亲水的,100μm),第二个芯片是疏水本质的(190μm)。通过选择这种芯片顺序,获得适合于稳定的油/水/油两相液滴形成的通道表面润湿性。将具有最高10:1的蜡与试剂比例的甘油三酯包埋的试剂和组分1(冷却至42℃)以及组分3均用2μm滤器预先过滤,然后将它们放置在液滴系统的P-泵(Mitos)中。将用于芯片1的温度控制装置设定到高于所述甘油三酯的冻凝温度(75℃),并将用于芯片2的温度控制装置设定到42℃。使用流动控制软件在2000mbar下灌注流体管线1分钟。使用接口将线性连接器的两端连接到芯片。将内部、中间与外部的流量比分别调整为1:10:100。需要对流速进行优化以获得稳定的两相液滴形成。参数使用Dolomite Flow Control Advanced软件来监测。含有试剂的甘油三酯在第一联结处被剪切,产生延伸到第二联结处的射流并形成同轴射流,所述射流再次被切割,或者产生在第二联结处被包封的液滴。将O/W/O液滴收集在冰上,以引发甘油三酯的冻凝和琼脂糖的固化。
所述过程产生直径大约190μm的琼脂糖微胶囊,其具有含有确定体积的干燥反应混合物的甘油三酯实施方式。通过经筛结构(SEFAR
Figure BDA0002559294260000231
筛网(w=44μm))离心(200xg),从油相提取所述功能性微胶囊,并将其用0.1%(v/v)TritonX-100清洗5次,然后重悬浮在无核酸酶水、0.02%叠氮化钠(v/v)中,并在冰箱中在7℃下储存,以备进一步处理。
在HFE 7500(2-5%Picosurf 1)中产生液滴的情况下,将50μl 1%(v/v)TritonX-100水溶液吸取到微粒中。
然后将试管以2000g离心1min。油相(底部)和水性相(顶部)现在被良好地分离,并且中间相含有所述粒子。现在将200μl密度梯度介质(Optiprep,Axis shield)缓慢吸取到试管中。重要的是防止所述水性相与密度梯度介质的过度混合。理想情况下,大多数密度梯度介质在粒子相下方滑动。将所述试管以2000g离心2min。随后,所述密度梯度介质相位于油相与粒子相之间。现在可以将所述粒子相转移到新的试管。在这个步骤中需要小心,以便不将任何体积的油和尽可能小体积的密度梯度介质转移到所述新的试管中。
将1mL PCR级水中的0.1%(v/v)Triton X-100添加至含有粒子的试管中。将所述体积混合并以2000g离心2min。所述粒子现在沉积到试管的底部。除去上清液,将所述粒子留在试管中。向试管再次添加1mL0.1%(v/v)Triton X-100,并将所述清洗过程重复5次。最后,将粒子吸取到适合于下述过程的体积的PCR级水、0.02%叠氮化钠(v/v)或缓冲液中。
可选地,使用Büchi Mini喷雾干燥机B-290通过喷雾干燥来制造含有亚微米尺寸的干燥试剂的蜡珠,产生平均直径为10μm的珠子。然后将确定量的甘油三酯蜡珠重悬浮在低于所述蜡的熔点的熔融琼脂糖中。为了产生蜡珠的均匀分散系,将琼脂糖首先悬浮在50%乙醇溶液中,并在分发期间轻柔搅拌。然后通过使用MD-K-140分液器头(Microdrop)将直径200μm的琼脂糖液滴分发在矿物油中来产生微胶囊。
用链亲合素包被微胶囊
将微胶囊用清洗缓冲液(20mM Trix-HCl,22mM KCl,22mM NH4Cl,3mM MgCl2,5%(v/v)甘油)清洗一次。所述微胶囊用链亲合素的包被在相同缓冲液中完成。选择链亲合素的浓度,使得在微胶囊表面上没有可获取的生物素残留。在任何情况下链亲合素被过量施加,以便避免所述微胶囊的交联。链亲合素的最适浓度已在初步测试中通过使用标记的链亲合素确定平台表面覆盖率而确定。在与链亲和素偶联后,将微胶囊在44μm SEFAR PETEX离心装置上用不含链亲和素的清洗缓冲液洗涤清洗几次。随后,通过在DHC-N01(Neubauer改良型)计数室(INCYTO)中在显微镜下计数或在CytoFlex流式细胞仪(BeckmanCoulter)上进行细胞计数来确定微胶囊浓度。也利用单氯三嗪基染料标记物以光谱法评估标记/涂层的程度。将含有约100,000个珠子的等分试样重悬浮在9%(w/v)(2-羟丙基)-y-环糊精溶液中,然后冷冻干燥或真空干燥。
实施方式2:将单分散的微胶囊用于进行数字PCR
分析物捕获
将通过反转录用生物素标记的纯化的HIV-1RNA(亚型O)富集在包封有链亲合素修饰的试剂的水凝胶微粒上。将全部体积的反转录(RT)反应添加到确定量的冻干或干燥的微胶囊。将珠子小心地重悬浮并与RT反应混合物温育。允许微胶囊吸收一部分施加的液体,溶胀并结合生物素标记的cDNA。为了避免团集,可以使用超声。随后将悬液施加到装备有SEFAR
Figure BDA0002559294260000251
网布(w=44μm)的离心管中。通过以300xg离心柱除去上清液。为了进行清洗,将先前使用的清洗缓冲液添加到所述柱并且也以300xg离心。将清洗重复几次,最终将微胶囊吸取到组分4中。在这个步骤中,微胶囊从溶液结合分析物,并通过扩散吸取PCR所需的其余组分。
组分4由下述试剂(终浓度)构成:
●20mM Trix-HCl,22mM KCl,22mM NH4Cl,3mM MgCl2,5%(v/v)甘油
●MgCl2[Invitrogen]或MgSO4[Sigma]
●生物素标记的cDNA模板具有下述序列:
5‘-Bio-CAGTGGCGCCCGAACAGGGACTTTAAAGAGAAAGTGAAACCAGGGAAGAAAACCTCCGACGCAACGGGCTCGGCTTAGCGGAGTGCACCTGCTAAGAGGCGAGAGGAACTCACAGAGGGTGAGTAATTTTGCTGGCAGTGGCCAGACCTAGGGGAAGGGCGAAGTCTCTAGGGGAGGAAGATGGGTGCGAGAGCGTCAGT-3‘
通过转移到非水性相进行区室化
通过将微胶囊用含有表面活性剂Triton-X 100(0.1%w/w)(Sigma)和乳化剂ABILEM-90(3%w/w)(Evonik Industries)或其他物质的石蜡油(Sigma)清洗3次以避免微胶囊的凝聚,将它们转移到非水性相中。清洗通过使用装备有SEFAR
Figure BDA0002559294260000252
网布(w=44μm)的离心管以200xg离心1min来进行。
通过将微胶囊分散在氟碳油例如分散在Novec 7500油中的5%PicoSurfTM(Dolomite Microfluidics)中,来产生具有确定体积的微区室。可以使用含有乳化剂的轻矿物油来代替重氟碳油,例如含有5%(w/w)Span 80(Sigma)的石蜡油(Sigma)。
将完全水性的相在Eppendorf管中与过量油发生接触。使用SonifierTM S-450和Ultrasonics SonifierTM角状杯(Branson)施加1分钟超声。将载有cDNA的微胶囊和组分3的上清液两者在油相中分散并乳化。产生的组分3的上清液的水性液滴与微胶囊在体积上相差显著,所述液滴具有小得多的体积。将产生的乳液吸取到筛网宽度为44μm的SEFAR
Figure BDA0002559294260000261
网布上。通过温和离心除去较小的液滴以及可能不含微胶囊的较大液滴。使用相同油的重复清洗除去所有液滴。通过以相反方向将过滤器装置引入到适合的离心管中,从筛网提取浓缩的微胶囊。
试剂的释放和捕获的cDNA在微区室中的直接扩增
将含有微胶囊的油转移到面积为大约2cm2并且层厚度为大约50-1000μm的检测室中。所述室的相反表面由透明疏水材料制成。不论是通过反应室的尺寸还是其他手段例如柔性管路,迫使悬浮在石蜡油中的微胶囊形成单层。因此,所述微胶囊为随后的数字PCR提供了均匀间隔的微型反应容器。
使用PELTIER元件30x30x4.7mm,19.3W(Quick-Ohm,Küpper&Co.GmbH,#QC-71-1.4-3.7M)对微胶囊进行温度循环。将反应室加热到高于蜡的熔解温度5℃至少2min,以在琼脂糖熔化和微胶囊转化成被油包围的液滴之前将干燥试剂平滑地释放到水凝胶基质中。各个cDNA分子的扩增在产生的微型反应区室中发生。
使用的热条件是:
初始变性在95℃下2min(可能足以释放试剂并熔化琼脂糖粒子),然后进行95℃变性15sec、65℃退火15sec和72℃延伸30sec的45个循环。在所述热流程完成后,在室温下将所述反应室的内含物在具有激发λexc=470nm和>496nm的长通发射或具有激发λexc=660nm和670nm发射波长的透射白光和荧光模式中成像。确定微胶囊的总数和具有高于限定强度阈值的荧光信号的微胶囊的数目。所述阈值从以前进行的不含模板的扩增反应推衍。反应中模板的数目通过将确定的阳性和阴性液滴的数目应用于泊松统计来确定。
实施方式3:肉眼可见的试剂胶囊的制造
在可选方法中,使用下述流程产生了直径约为1.5mm的胶囊。
将完整PCR试剂混合物(参见实施方式1)冷冻干燥以形成直径约为0.8mm的试剂球粒。通过在略高于石蜡的熔点的温度下将各个试剂球粒在熔融石蜡中浸涂来施加蜡涂层。随后,将各个包被的球粒暴露到氧低温等离子体处理,以降低蜡表面的接触角。使用与实施方式1中相同的流程将高胶凝点琼脂糖生物素化,然后将球粒转移到含有确定体积琼脂糖的空腔中,所述琼脂糖被熔化并维持接近琼脂糖的胶凝温度。然后用真空移液器挑取琼脂糖,如实施方式1中所述进行清洗并用链亲合素包被。试剂的捕获和清洗类似实施方式2中的流程来进行,同时将胶囊轻柔温育并用缓冲液冲洗。胶囊在非水性相中的转移和用矿物油的清洗通过冲洗所述胶囊来进行。
PCR类似于实施方式2来进行。
实施方式4:基于pNIPAM的单分散扩增微胶囊的制造和用于进行组合的靶捕获/数字PCR测定法的用途
本实施例描述了使用基于pNIPAM的单分散扩增微胶囊来进行组合的核酸靶捕获/数字PCR测定法。在这种应用中,所述微胶囊提供了几种功能:
1.它们提供了结合基团以及外表面或内和外表面,以在随后步骤中将发生扩增的位置处捕获测定靶。
2.它们提供了可以利用pNIPAM聚合物的LCST行为容易地用水性溶液填充和排空的基质。
3.所述聚合物还提供了允许将粒子中包含的水性相带入到油乳液中的基质。使用所述微胶囊作为基质的优点在于可以实现水体积在油中的均匀的尺寸分布,而不需使用微流体或其他复杂的技术装置。
4.所述pNIPAM含有包埋在不透水的核心中的进行PCR扩增所需的所有试剂。
在这个实验中,将在单独步骤中产生的cDNA用作PCR模板。当使用RNA作为模板时,所述粒子可以被RT-PCR反应混合物填充,并且RT-PCR过程的整个过程可以基于DAB进行。
pNIPAM微胶囊溶液的产生
组分1(水性聚合相):
生物素修饰的单体-混合物的产生:
生物素修饰的丙烯酸单体在独立的反应中产生。所述反应混合物由丙烯酸N-羟基琥珀酰亚胺酯(一种活化的氨基反应性丙烯酸单体)和生物素-dPEG7-NH2(一种用末端带有氨基的PEG7间隔臂修饰的生物素衍生物)组成
2,5%生物素修饰的单体混合物
添加到总体积的PBS(mL) 0,114
丙烯酸N-羟基琥珀酰亚胺酯(mg) 2,8
生物素-dPEG7-NH2(mg) 10,0
将所述反应混合物在25℃温育30分钟。该混合物不需任何进一步纯化直接用于pNIPAM聚合反应中。
每mL聚合混合物的组分
反应混合物
20%(w/v)N-异丙基丙烯酰胺(NIPAM) 250μl
2,5%(w/v)N,N′-亚甲基双丙烯酰胺 20μl
2,5%生物素修饰的单体 10μl
5%(w/v)过硫酸铵 150μl
<u>去离子水</u> <u>570μl</u>
组分2(试剂相):
也使用Cavasol W7或W8(Sigma)在无核酸酶水中制备(2-羟丙基)-у-环糊精储备溶液(100%),并在室温下储存。容纳了所有待包封的试剂,用于PCR的最终混合物含有下述组分:
组分2:
●1.25U/μl Hot Start Taq DNA聚合酶(biotechrabbit GmbH)
●4.0mM dNTP(biotechrabbit GmbH)
●8.0μM正义引物(5’-GCAGTGGCGCCCGAACAGG-3’)(Metabion International AG)
●8.0μM反义引物(5’-ACTGACGCTCTCGCACCCATCT-3’)(Metabion InternationalAG)
●8.0μM Taq-Man探针(5’-CF647-CTCCGACGCAACGGGCTCG-BHQ3-3’)(MetabionInternational AG)或10x
Figure BDA0002559294260000291
荧光DNA染色剂(Jena Bioscience GmbH)
●聚磷酸钠(Merck)
●9%(w/v)(2-羟丙基)-у-环糊精(Sigma)
使用Nano喷雾干燥器B-90(Büchi Labortechnik GmbH)将所述试剂混合物喷雾干燥,以获得纳米粒子尺寸的试剂。随后将纳米粒子在真空下干燥,然后立即通过使用S-450D数字超声波仪(Branson)在高温(80-90℃)下进行超声处理,将它们以10%(w/v)的最高浓度分散在三硬脂酸甘油酯Softenol 3118(IOI Oleo GmbH)中。
组分3(用于聚合的油相):
<u>Pico-Surf<sup>TM</sup> 1,10ml,2%,在Novec 7500中</u> 1485μl
N,N,N′,N′-四甲基乙二胺 15μl
单分散微胶囊的产生
单分散性的含有三硬脂酸甘油酯包埋的试剂的基于pNIPAM(=基于聚(N-异丙基丙烯酰胺))的微粒,可以使用简单的双流动聚焦装置(Dolomite Microfluidics)在双乳液形成的一步过程中制造。具体来说,使用线性连接器作为流体的入口和出口,将两个Dolomite液滴联结芯片安装在芯片架上,其中一个芯片是普通玻璃芯片(亲水的,100μm),第二个芯片是疏水本质的(190μm)。通过选择这种芯片顺序,获得适合于稳定的油/水/油两相液滴形成的通道表面润湿性。将具有最高10:1的蜡与试剂比例的组分2以及组分1和组分3均用2μm滤器预先过滤,然后将它们放置在液滴系统的P-泵(Mitos)中。将用于芯片1的温度控制装置设定到高于Softenol的冻凝温度(75℃),并将用于芯片2的温度控制装置设定到25℃。使用流动控制软件在2000mbar下灌注流体管线1分钟。使用接口将线性连接器的两端连接到芯片。将内部、中间与外部的流量比分别调整为1:10:100。需要对流速进行优化以获得稳定的两相液滴形成。参数使用Dolomite Flow Control Advanced软件来监测。含有试剂的甘油三酯在第一联结处被剪切,产生在第二联结处被包封的液滴。将O/W/O液滴在20℃下收集在管中,以引发甘油三酯的冻凝和pNIPAM的聚合。
所述过程产生直径大约190μm的pNIPAM微胶囊,并具有含有确定体积的干燥反应混合物的三硬脂酸甘油酯实施方式。
微胶囊的回收和向水性相的转移
在所述聚合过程完成后,使用移液管从液滴储库轻柔地取出尽可能多的油相,注意不要取出pNIPAM粒子。然后将50μl 1%(v/v)TritonX-100水溶液吸取到所述粒子。通过上下吸打将所述体积混合,使得粒子不粘附于液滴芯片的壁。将所述体积转移到Eppendorf管,并将所述过程再重复一次。所述转移过程可以在双筒显微镜下监测,以防止在这个步骤中粒子大量损失。
然后将所述试管以2000g离心1min。油相(底部)和水性相(顶部)现在被良好地分离,并且中间相含有所述粒子。现在将200μl密度梯度介质(Optiprep,Axis shield)缓慢吸取到试管中。重要的是防止所述水性相与密度梯度介质的过度混合。理想情况下,大多数密度梯度介质在粒子相下方滑动。将所述试管以2000g离心2min。随后,所述密度梯度介质相位于油相与粒子相之间。现在可以将所述粒子相转移到新的试管。在这个步骤中需要小心,以便不将任何体积的油和尽可能小体积的密度梯度介质转移到所述新的试管中。
向所述含有粒子的试管中添加1mL PBS、0.1%(v/v)Triton X-100。将所述体积混合并以2000g离心2min。所述粒子现在沉积到试管的底部。除去上清液,将所述粒子留在试管中。向试管再次添加1mL PBS、0.1%(v/v)Triton X-100,并将所述清洗过程重复5次。最后,将粒子吸取到含有0.1%Triton X-100的PBS中。
基于pNIPAM的单分散微胶囊用链亲合素的包被
所述微胶囊用链亲合素的包被在以前使用的清洗缓冲液中完成。选择链亲合素的浓度,使得在微胶囊表面上没有可获取的生物素残留。在任何情况下链亲合素被过量施加,以便避免微胶囊的交联。链亲合素的最适浓度已在初步测试中通过使用标记的链亲合素确定平台表面覆盖率而确定。
温育混合物:
每100.000粒子
PBS,0,1%Triton X-100中的链亲合素(2mg/ml) 250μl
偶联在Eppendorf Thermoshaker中进行,其中将溶液以350rpm搅拌30min,并在25℃与37℃之间进行5次温度振荡。在与链亲合素偶联后,将所述微胶囊清洗以除去过量链亲合素。向含有所述粒子的试管添加1mL PBS、0.1%(v/v)Triton X-100。将所述体积混合并将温度设置到40℃。粒子收缩并且内部液体被排出。随后将所述粒子以2000g在40℃下离心2min。粒子现在沉积到管的底部。除去上清液,将粒子留在试管中。向试管中添加1mL 20℃PBS、0.1%(v/v)Triton X-100。粒子膨胀并吸取清洗缓冲液。将所述体积混合并将温度再次设置到40℃。将这个清洗过程重复5次。最后,将粒子吸取到含有0,01%Triton X-100的水中。随后,通过在DHC-N01(Neubauer改良型)计数室(INCYTO)中在显微镜下计数或在CytoFlex流式细胞仪(Beckman Coulter)上进行细胞计数来确定微胶囊浓度。
生物素修饰的HIV-1cDNA模板的制备
生物素化的HIV-1cDNA通过在PCR反向引物存在下进行反转录来产生。将反应混合物在在50℃温育15分钟,并通过将所述反应混合物加热至70℃10分钟来停止反应。
温育混合物:
○纯化的HIV-1RNA(~106个拷贝)
○1μM生物素化的反向引物5’生物素-ACT GAC GCT CTC GCACCC ATC T-3’
○1x反应缓冲液(cDNA合成试剂盒Thermo Fisher)
○dNTP(各1mM)
○RevertAid反转录酶(200U,Thermo Fisher)
将所述cDNA反应混合物用PBS 0.1%Triton X-100稀释,以得到~104cp/μl的终浓度。
HIV-1cDNA靶在链亲合素修饰的微胶囊上的捕获
将通过反转录用生物素标记的HIV-1RNA被捕获在链亲合素修饰的微胶囊上。
将~100000pNIPAM微胶囊转移到反应管并加热至50℃,以从所述粒子驱除液体相。将所述粒子以2000g简短离心并保持在40℃。收缩且沉积的粒子紧密粘附在一起,使得被驱除的液体可以从所述沉积物完全移除。然后,向所述沉积物添加下述温育混合物
○1μl cDNA混合物(~104个拷贝)
○49μl含有0.1%Triton X-100的PBS
捕获在Eppendorf Thermoshaker中进行,其中将溶液以350rpm搅拌30min,并在25℃与37℃之间进行5次温度振荡。
在靶捕获后,将所述微胶囊加热至50℃以从所述微胶囊驱除液体相。将所述粒子以2000g简短离心并保持在40℃。收缩且沉积的微胶囊紧密粘附在一起,使得被驱除的液体可以从所述沉积物完全移除。
向所述微胶囊添加10μl含有0,01%Tritonx-100的水。水体积需要小于可以被所述粒子吸取的体积。这主要取决于所述粒子的数目和尺寸。在这个实施例中,使用的粒子能够吸取12μl的体积。
通过将微胶囊分散在油中进行区室化
通过将微胶囊分散在氟碳油例如分散在Novec 7500油中的5%PicoSurfTM(Dolomite Microfluidics,#3200214)中,来产生具有确定体积的微区室。可以使用含有乳化剂的轻矿物油来代替重氟碳油,例如含有5%(w/w)Span 80(Sigma Aldrich,#85548)的矿物油(Sigma-Aldrich,#M5904 Sigma)。
将所述微胶囊沉积物在Eppendorf管中与过量油发生接触。施加超声直至所述沉积物被分散并且所述微胶囊均匀分布。现在将载有HIV-1cDNA靶的pNIPAM微胶囊在油相中乳化。将含有微胶囊的油转移到面积为大约2cm2并且层厚度为大约1mm的检测室中。所述室的相反表面由透明疏水材料制成。如果使用氟碳油,由于所述珠子与油之间的密度差,所述微胶囊在所述疏水上表面上组装成单层(致密堆积)。如果使用矿物油,则所述微胶囊将积累在下表面处。因此,所述微胶囊为随后的数字PCR提供了微型反应容器。
在微区室中的扩增反应
使用PELTIER元件30x30x4.7mm,19.3W(Quick-Ohm,Küpper&Co.GmbH,#QC-71-1.4-3.7M),在同一个室中对悬浮在油中的微胶囊进行温度循环。将所述微胶囊加热到80℃的温度,这导致pNIPAM胶囊的收缩和Softenol的熔化。所述包埋的试剂暴露到水相。这个过程得到25℃至80℃之间的热循环的几个循环的支持。试剂溶解在高温下从pNIPAM排出的水体积中。在所述凝缩的微胶囊周围形成单个水性液滴,其充当微型反应区室。反应混合物与在PCR期间在所述微型区室中扩增的被捕获的各个cDNA靶发生接触。
使用的热条件是:
初始变性在95℃下2min,然后进行95℃变性15sec、65℃退火15sec和72℃延伸30sec的45个循环。在所述热流程完成后,在21℃下将所述反应室的内含物在具有激发λexc=650nm和>670nm的长通发射的透射白光和荧光模式中成像。确定微型区室的总数和具有高于限定强度阈值的荧光信号的微型区室的数目。所述阈值从以前进行的不含模板的扩增反应推衍。反应中模板的数目通过将确定的阳性和阴性液滴的数目应用于泊松统计来确定。
在说明书、权利要求书和/或附图中公开的本发明的特点,可以分开地和以其任何组合成为以各种不同形式实现本发明的材料。
序列表
<110> 布林克公司
<120> 用于检测和/或定量样品中的分析物的微胶囊
<130> AJ4799PT2001
<150> EP 17 211 031.4
<151> 2017-12-29
<160> 8
<170> BiSSAP 1.3.6
<210> 1
<211> 9
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> Strep-tag
<400> 1
Ala Trp Arg His Pro Gln Phe Gly Gly
1 5
<210> 2
<211> 9
<212> PRT
<213> 人工序列(Artificial Sequence)
<220>
<223> Strep-tag II
<400> 2
Asn Trp Ser His Pro Gln Phe Glu Lys
1 5
<210> 3
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 正义引物
<400> 3
gcagtggcgc ccgaacagg 19
<210> 4
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 反义引物
<400> 4
actgacgctc tcgcacccat ct 22
<210> 5
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 标记 Cy5的Taq-Man探针
<400> 5
ctccgacgca acgggctcg 19
<210> 6
<211> 200
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 生物素标记的cDNA模板
<400> 6
cagtggcgcc cgaacaggga ctttaaagag aaagtgaaac cagggaagaa aacctccgac 60
gcaacgggct cggcttagcg gagtgcacct gctaagaggc gagaggaact cacagagggt 120
gagtaatttt gctggcagtg gccagaccta ggggaagggc gaagtctcta ggggaggaag 180
atgggtgcga gagcgtcagt 200
<210> 7
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 标记CF647的Taq-Man探针
<400> 7
ctccgacgca acgggctcg 19
<210> 8
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 生物素标记的反义引物
<400> 8
actgacgctc tcgcacccat ct 22

Claims (16)

1.一种用于检测和/或定量样品中的分析物的微胶囊,所述微胶囊包含:
·能够在待检测和/或定量的分析物存在下产生和/或放大信号的试剂;其中所述试剂处于干燥状态;
·围绕所述试剂的多孔基质,所述多孔基质具有接纳待检测和/或定量的分析物的手段;其中所述干燥状态试剂通过屏障例如至少一个包围所述试剂的屏障层与所述多孔基质分隔开。
2.根据权利要求1所述的微胶囊,其中所述接纳待检测和/或定量的分析物的手段是尺寸适合于容纳含有所述分析物的液体样品的间隙孔隙。
3.根据权利要求2所述的微胶囊,其中所述间隙孔隙的尺寸适合于容纳足够的液体样品以溶解所述干燥试剂。
4.根据权利要求2-3中任一项所述的微胶囊,其中所述接纳待检测和/或定量的分析物的手段是所述容纳所述液体样品的间隙孔隙或所述间隙孔隙与一种或多种捕获剂的组合,所述捕获剂在所述微胶囊暴露于围绕所述微胶囊并含有待检测和/或定量的分析物的样品时,能够选择性且特异性地结合此类分析物,其中所述一种或多种捕获剂被附着在暴露于其周围的所述微胶囊的一部分。
5.根据前述权利要求中任一项所述的微胶囊,其包含:
·一个或几个不可渗透的核心,优选为不透水的核心,其含有和/或包埋有所述产生和/或放大信号的试剂,因此将所述干燥状态试剂与所述多孔基质分隔开;
·多孔亲水壳,其形成所述多孔基质并围绕所述一个或几个不可渗透的核心;其中所述一种或多种捕获剂被附着到所述多孔亲水壳。
6.根据权利要求5所述的微胶囊,其中所述多孔亲水壳由水凝胶形成剂构成或由温敏聚合物构成,其中优选地
-所述水凝胶形成剂选自以下组:a)合成聚合物,例如聚甲基丙烯酸甲酯、聚酰胺;b)基于硅基聚合物,例如聚二甲基硅氧烷;c)天然存在的聚合物,其选自多糖例如琼脂糖、几丁质、壳聚糖、葡聚糖、藻酸盐、卡拉胶、纤维素、岩藻多糖、昆布多糖、选自黄原胶、阿拉伯胶、茄替胶、瓜尔胶、刺槐豆胶、黄耆胶、卡拉牙胶的树胶;以及菊粉;多肽、胶原蛋白、明胶、聚氨基酸例如聚赖氨酸;多核苷酸;及其组合;并且
-所述温敏聚合物是LCST温敏聚合物,其优选地选自聚(N-异丙基丙烯酰胺)(PNIPAm)、聚[甲基丙烯酸2-(二甲基氨基)乙基酯](pDMAEMA)、羟丙基纤维素、聚(乙烯基己内酰胺)(P(VCL))和聚乙烯基甲基醚,或者所述温敏聚合物是具有上临界溶解温度(UCST)的温敏聚合物,其优选地选自聚(N-丙烯酰基甘氨酰胺)(PNAGA)、聚(烯丙胺)-共-聚(烯丙基脲)及其衍生物、聚(甲基丙烯酰胺)、聚(N-丙烯酰基天冬酰胺)、聚(N-甲基丙烯酰基谷氨酰胺)、聚(丙烯酰胺)-共-(丙烯腈)、聚(磺基甜莱碱)、聚(磷酰胆碱)。
7.根据权利要求5-6中任一项所述的微胶囊,其中所述不可渗透的核心由适合于包含和/或包埋所述试剂的材料构成,并且其中所述材料包围所述试剂并将它们与所述微胶囊的其他部分例如所述多孔基质,特别是所述亲水壳隔离开,其中所述材料优选地选自石蜡、甘油三酯、蜡,特别是植物蜡例如巴西棕榈蜡、动物蜡例如蜂蜡、源自于石油的蜡、矿物蜡。
8.根据权利要求5-7中任一项所述的微胶囊,其中所述不可渗透的核心含有和/或包埋有处于干燥状态的所述能够产生和/或放大信号的试剂,并将它们与所述多孔基质分隔开。
9.根据前述权利要求中任一项所述的微胶囊,其中所述能够产生和/或放大信号的试剂是
-能够使用核酸分析物进行核酸扩增的试剂,并且其中优选地,所述试剂包括能够扩增所述样品中的所述分析物的分子例如扩增酶、一种或几种促进扩增所述分析物所必需的分子例如一种或几种核酸引物、核苷酸、盐和缓冲液,以及任选地一种或几种检测试剂,或
-一种或几种用于检测所述样品中作为分析物的蛋白质或肽或细胞的检测试剂,其中优选地所述一种或几种检测试剂选自抗体或抗体片段、核酸包括适体、Spiegelmer(镜像寡核苷酸抗核酸酶)、非抗体蛋白质例如受体、受体片段、亲和性蛋白质例如链亲合素,它们各自任选地被适合的报告分子例如染料、酶、化学催化剂标记,或者是能够启动产生表明作为待检测分析物的蛋白质或肽或细胞的存在的光学或其他可检测信号的化学反应的试剂混合物。
10.根据前述权利要求中任一项所述的微胶囊,其中所述捕获剂选自抗体、抗体片段、核酸包括适体、spiegelmer(镜像寡核苷酸抗核酸酶)、能够特异性结合分析物或分析物复合物的非抗体蛋白质例如受体、受体片段、亲和性蛋白质例如链亲合素、化学基团例如生物素、
Figure FDA0002559294250000031
(链霉菌标签)、洋地黄毒苷、二硝基酚、核酸或核酸类似物-标签,或能够被抗体、抗体片段、核酸包括适体、非抗体蛋白质例如受体、受体片段、亲和性蛋白质例如链亲合素以KD=10-8至10-15M范围内的亲和性特异性结合的类似化学基团,或者选自能够特异性结合疏水性分子或具有疏水性基团的分子的疏水性结构,其中优选地所述疏水性结构在进行所述分析物的所述检测的条件下具有大于2的logD。
11.根据权利要求9-10中的任一项所述的微胶囊,其中所述能够进行核酸扩增的试剂另外包含一种或几种检测试剂,其中所述一种或几种检测试剂选自抗体或抗体片段、核酸包括适体、Spiegelmer(镜像寡核苷酸抗核酸酶)、非抗体蛋白质例如受体、受体片段、亲和性蛋白质例如链亲合素,它们各自任选地被适合的报告分子例如染料、酶、化学催化剂标记,或者是能够启动产生表明待检测分析物的存在的光学或其他可检测信号的化学反应的试剂混合物。
12.一种检测和/或定量样品中的分析物的方法,所述方法包括:
i.提供根据权利要求1-11中任一项所述的微胶囊;
ii.将所述微胶囊暴露于围绕所述微胶囊并含有或怀疑含有待检测和/或定量的分析物的水性样品;
iii.将所述微胶囊从所述水性样品中取出,并将所述微胶囊转移到非水性相;
iv.溶解或破裂所述微胶囊,优选地将所述不可渗透的核心单独地或将所述不可渗透的核心与所述多孔亲水壳一起溶解或破裂,以在非水性环境中产生水性液滴,其中所述水性液滴含有处于溶解形式的所述在待检测和/或定量的分析物存在下能够产生和/或放大信号的试剂;
v.在所述水性液滴内进行产生和/或放大信号的反应,其中信号仅在所述分析物已存在于所述样品中的情况下被产生和/或扩增,其中优选地所述在步骤v.中进行的反应是核酸扩增反应或信号放大反应,其中更优选地所述在步骤v.中进行的反应是选自PCR或等温扩增反应例如TMA、NASBA、LAMP、3SR、SDA、RCA、LCR、RPA、NEAR的核酸扩增反应。
13.根据权利要求12所述的方法,其中在步骤iv.中,所述微胶囊、优选地单独的所述不可渗透的核心或与所述多孔亲水壳一起的所述不可渗透的核心,通过选自机械手段、化学切割、温度改变、pH改变、溶剂改变、施加电场、施加磁场、将所述微胶囊暴露于电磁辐射特别是限定波长范围的光例如UV光的手段,优选为温度变化,更优选为温度提高来溶解或破坏。
14.根据权利要求12-13中任一项所述的方法,其中所述微胶囊是在权利要求6-13中的任一项中所定义的微胶囊,并且所述多孔亲水壳由LCST温敏聚合物构成。
15.根据权利要求14所述的方法,其中所述方法在步骤ii.与iii.之间包括另外的步骤
ii.a将所述微胶囊加热到高于所述LCST温敏聚合物的下临界溶解温度(LCST)的温度,随后将所述微胶囊冷却或允许其冷却到低于所述LCST温敏聚合物的下临界溶解温度(LCST)的温度,以便实现结合到所述微胶囊的分析物的富集,并将这种步骤ii.a进行n次,其中n是1至1000、优选地1至500的整数,和/或另外的步骤
ii.b将所述微胶囊在水性溶液中清洗以除去未结合的分析物,其中如果在步骤ii.a之外还进行步骤ii.b,则它在步骤ii.a之前或之后进行。
16.一种制备用于检测和/或定量样品中的分析物的微胶囊的方法,所述微胶囊如权利要求1-15中的任一项中所定义,所述方法包括下述步骤:
a)提供能够在待检测和/或定量的分析物存在下产生和/或放大信号的试剂的水性溶液,其中所述试剂的水性溶液除了所述试剂之外,还任选地包含一种或几种保护性试剂,其用于保护所述能够在所述水性溶液中产生和/或放大信号的试剂中的一者或几者;
b)将所述a)的水性溶液干燥,优选地喷雾干燥或冷冻干燥,由此产生能够产生和/或放大信号的干燥试剂,其优选地采取纳米粒子形式;
c)将所述干燥试剂并入到适合于包含和/或包埋所述试剂的材料中,使得所述材料包围所述试剂并隔离它们,其中所述材料优选地选自石蜡、甘油三酯、蜡,特别是植物蜡例如巴西棕榈蜡、动物蜡例如蜂蜡、源自于石油的蜡、矿物蜡;
d)通过将所述c)的产物干燥、优选地喷雾干燥或冷冻干燥,从所述c)的产物产生微粒,由此产生不可渗透的核心;
e)通过下述方式将所述不可渗透的核心并入到形成多孔基质并围绕所述一个或几个不可渗透的核心的多孔亲水壳中
■将所述不可渗透的核心并入到水凝胶形成剂中,并诱导所述水凝胶形成剂在所述不可渗透的核心周围形成水凝胶,或
■将所述不可渗透的核心并入到温敏聚合物的前体/单体中,并诱导所述前体/单体在所述不可渗透的核心周围聚合成温敏聚合物,或
■将所述不可渗透的核心并入到预制的温敏聚合物中,并允许所述预制的温敏聚合物在所述不可渗透的核心周围成型;
f)任选地,将一种或几种捕获剂偶联到围绕所述一个或几个不可渗透的核心的所述多孔亲水壳,由此产生附着有一种或几种捕获剂的微胶囊,其中在将所述微胶囊暴露到围绕所述微胶囊并含有待检测和/或定量的分析物的样品后,所述一种或几种捕获剂能够选择性且特异性地结合这种分析物;
g)任选地收集所述微胶囊;
h)进一步任选地将所述微胶囊清洗和/或干燥,优选地冷冻干燥。
CN201880084693.3A 2017-12-29 2018-12-19 用于检测和/或定量样品中的分析物的微胶囊 Pending CN111542754A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17211031.4 2017-12-29
EP17211031.4A EP3505933A1 (en) 2017-12-29 2017-12-29 A microcapsule for detecting and/or quantitating an analyte in a sample
PCT/EP2018/085880 WO2019129580A1 (en) 2017-12-29 2018-12-19 A microcapsule for detecting and/or quantitating an analyte in a sample

Publications (1)

Publication Number Publication Date
CN111542754A true CN111542754A (zh) 2020-08-14

Family

ID=61017737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880084693.3A Pending CN111542754A (zh) 2017-12-29 2018-12-19 用于检测和/或定量样品中的分析物的微胶囊

Country Status (9)

Country Link
US (1) US20200333333A1 (zh)
EP (2) EP3505933A1 (zh)
JP (1) JP7378154B2 (zh)
CN (1) CN111542754A (zh)
AU (1) AU2018397152A1 (zh)
BR (1) BR112020011870A2 (zh)
CA (1) CA3084885A1 (zh)
ES (1) ES2923458T3 (zh)
WO (1) WO2019129580A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476031A (zh) * 2017-04-04 2019-11-19 日东电工株式会社 冷冻干燥体的制造方法及其制造装置
WO2021221629A1 (en) * 2020-04-29 2021-11-04 Hewlett-Packard Development Company, L.P. Nucelic acid amplification
US20230221298A1 (en) * 2020-06-12 2023-07-13 Tokushima University Superabsorbent polymer for classification of particles and classification method using the same
CN112410405B (zh) * 2020-11-24 2022-03-25 浙江大学 一种复杂样品中细菌的快速检测方法
CN114984874B (zh) * 2022-06-20 2023-04-25 重庆理工大学 一种微流控制备磁性/荧光/温敏胶体晶体微球的方法及其产品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842971A (ja) * 1981-09-07 1983-03-12 Fuji Photo Film Co Ltd 抗体を感作させたマイクロカプセルを用いる細胞性免疫測定法
US7258990B2 (en) 2004-08-19 2007-08-21 Biocept, Inc. Alleviation of non-specific binding in microarray assays
JP4991478B2 (ja) 2007-10-18 2012-08-01 富士フイルム株式会社 有害物質除去材及び有害物質除去方法
US9598725B2 (en) 2010-03-02 2017-03-21 Bio-Rad Laboratories, Inc. Emulsion chemistry for encapsulated droplets
BR112015003354A8 (pt) * 2012-08-14 2018-01-16 10X Genomics Inc métodos e composições de microcápsula
CN117491623A (zh) 2015-08-20 2024-02-02 豪夫迈·罗氏有限公司 使用聚乙二醇化分析物特异性结合剂的基于颗粒的免疫测定法
JP2017203665A (ja) 2016-05-10 2017-11-16 国立大学法人信州大学 光開裂性マイクロカプセル、それを用いたセンサ、及びそれを用いた被測定物質の測定方法

Also Published As

Publication number Publication date
EP3714269B1 (en) 2022-04-20
BR112020011870A2 (pt) 2020-11-24
ES2923458T3 (es) 2022-09-27
AU2018397152A1 (en) 2020-06-18
JP2021508040A (ja) 2021-02-25
EP3714269A1 (en) 2020-09-30
EP3505933A1 (en) 2019-07-03
JP7378154B2 (ja) 2023-11-13
CA3084885A1 (en) 2019-07-04
WO2019129580A1 (en) 2019-07-04
US20200333333A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
CN111542754A (zh) 用于检测和/或定量样品中的分析物的微胶囊
AU2018203012B2 (en) Microcapsule compositions and methods
CA2544262A1 (en) Gel-shell beads with adsorbed or bound biomolecules
JP2018518950A (ja) 生物医学的な反応及び分析で使用するための移動固相組成物
EP3563155B1 (en) A prefabricated microparticle for performing a detection of an analyte
CA2949537A1 (en) Substrate-mediated reactors for bioassays
JP2002513323A (ja) 微孔質エレメントの製造方法、該方法により製造した微孔質エレメントおよびその使用
JP2023506260A (ja) 製作済み微粒子およびその前駆体のライブラリー
CN101932730B (zh) 浓集核酸分子的方法
WO2013059294A1 (en) Methods and devices for detecting and separating target analyte species using anisotropic micro-particles
NZ544585A (en) Saquinavir mesylate oral dosage form
EP3717911A1 (en) A sensor body for binding and/or enriching and/or detecting an analyte in a sample
JP5115312B2 (ja) 核酸分離用担体の製造方法、及び核酸分離用担体とマイクロ流路系、並びに核酸分離方法と核酸分離装置
EP1548440A1 (en) Particle composite and process for producing particle composite
Henderson et al. LDRD final report on microencapsulated immunoreagents for development of one-step ELISA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination