CN111541235B - 一种基于混合调制的单相级联离网光储混合系统控制方法 - Google Patents
一种基于混合调制的单相级联离网光储混合系统控制方法 Download PDFInfo
- Publication number
- CN111541235B CN111541235B CN202010366537.5A CN202010366537A CN111541235B CN 111541235 B CN111541235 B CN 111541235B CN 202010366537 A CN202010366537 A CN 202010366537A CN 111541235 B CN111541235 B CN 111541235B
- Authority
- CN
- China
- Prior art keywords
- voltage
- chain link
- output
- output voltage
- harmonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/01—Arrangements for reducing harmonics or ripples
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
- H02J2300/26—The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/40—Arrangements for reducing harmonics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electrical Variables (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开一种基于混合调制的单相级联离网光储混合系统控制方法,其特征在于,在光伏链节单元和储能单元组成的光储混合系统中,引入一个额外的电容链节单元,光伏链节单元和储能单元充当此系统的主链节并提供全部期望输出的正弦波电压,电容链节单元充当此系统的辅助链节并补偿主链节产生的谐波;对主链节采用基于基波频率调制的基波电压控制策略,在保证光伏电池工作在最大功率点的同时稳定输出电压;采用移相控制策略,根据辅助电容电压,调节主链节输出电压相位,实现辅助电容稳压;对辅助链节采用基于高频调制的谐波补偿控制策略,减小输出电压中的谐波。本发明能实现输出电压恒定、谐波含量小,能保证系统稳定运行,并具有良好的动态特性。
Description
技术领域
本发明涉及微电网与储能技术,具体涉及一种基于混合调制的单相级联离网光储混合系统控制方法。
背景技术
高频调制是目前在离网光储混合系统中应用最广泛的调制策略,其优点是,输出波形中只包含开关次以及更高次的谐波,容易滤除。然而,由于开关频率较高,其开关损耗比较大。基频调制能有效减少开关损耗,然而输出波形中包含大量难以滤除的低次谐波。
为了克服基频调制导致出现大量低次谐波这一缺点,目前通常采用的级联方法,通过增加电平数来减小谐波,但这种方法会大幅提高成本并且增加变换器的体积。
发明内容
本发明的目的在于提供一种基于混合调制的单相级联离网光储混合系统控制方法。
实现本发明目的的技术解决方案为:一种基于混合调制的单相级联离网光储混合系统控制方法,光伏链节单元和储能单元采用基于基波频率调制的基波电压控制策略,使得光伏电池工作在MPP并稳定输出电压;引入一个额外的辅助电容链节,采用移相控制策略稳定电容电压,并采用基于高频调制的谐波补偿控制策略以减小输出电压中的谐波。
本发明与现有技术相比,其显著优点为:1)本发明控制方法对由光伏链节单元和储能单元级联而成的主链节,采用了基于基频调制的基波电压控制策略,在保证光伏电池工作在MPP的同时,保证了输出电压恒定;2)本发明控制方法对电容采用移相控制策略,在稳定电容电压的同时,保证电容链节单元仅补偿谐波而没有基波输出;3)本发明控制方法对辅助电容链节单元采用基于高频调制的谐波补偿控制策略,采用幅值计算函数,使得谐波补偿具有良好的动态特性。
附图说明
图1为基于混合调制的单相级联离网光储混合系统结构示意图;
图2为系统控制方法示意图;
图3为期望输出电压波形图;
图4为移相控制策略矢量分析图;
图5为以期望输出电压为参考值和采用幅值计算函数的矢量分析对比图;
图6为电压电流测试结果图;
图7为功率测试结果图;
图8为谐波补偿测试结果图。
具体实施方式
下面结合附图和具体实施例对本发明方案作进一步描述。
如图1所示,改进后的单相级联离网光储混合系统由主链节和辅助链节构成,其中主链节由光伏链节单元和储能单元级联组成,v1为主链节输出电压;辅助链节由电容链节单元构成,v2为辅助链节输出电压;该系统总输出电压为vout=v1+v2;负载电流为iload。
在此基础上,本发明提出了一种基于混合调制的单相级联离网光储混合系统控制方法,如图2所示,该方法对主链节采用基频调制,对辅助链节采用高频调制,并由基波电压控制、移相控制和谐波补偿控制三部分组成。
通过所提控制方法,期望得到的输出电压波形如图3所示。期望系统输出正弦波电压,记为vout,ref=Vm,refsin(ωt),其中ω为系统角频率,Vm,ref为系统输出电压的期望幅值。根据该控制方法,主链节采用基频调制,提供全部系统期望输出电压,辅助链节采用高频调制,补偿主链节输出的谐波的作用。主链节输出电压为五电平阶梯波,记为v1,ref=vout,ref+hn(nωt),其基波输出v1f=vout,ref,谐波输出为hn(nωt);辅助链节输出电压为谐波,与主链节输出的谐波电压抵消,故辅助链节的输出电压为v2,ref=-hn(nωt),其基波输出电压v2f=0。
对光伏链节单元和储能单元构成的主链节,采用基波电压控制策略。其中光伏链节单元采用最大功率点跟踪(MPPT)控制,利用光伏电池的电压Vpv和电流Ipv,通过MPPT计算出光伏电池的最大功率点电压Vpv,ref,并将其与光伏电池电压比较,通过PI控制得到光伏电池工作在最大功率点(MPP)时的导通角αpv,作为光伏链节单元的调制信号,使光伏电池工作在MPP,输出最大功率。储能单元起稳定系统输出电压的作用,将系统输出电压幅值Vm与其参考值比较,通过PI控制得到储能单元所需输出的电压,该电压可等效为储能单元导通角的余角0.5π-αdc,进一步可以得出储能单元的导通角αdc,并作为储能单元的调制信号。光伏链节单元与储能单元输出电压的相位一致,且主链节提供全部系统输出电压,故系统输出电压幅值可表示为:
Vm=Vm,pv+Vm,dc
其中,Vm,pv、Vm,dc分别为光伏链节单元与储能单元输出的基波电压幅值,Vpv和Vdc分别为光伏链节单元和储能单元的直流侧电压。
为实现辅助电容稳压,采用移相控制策略,将辅助电容电压与其参考值比较,通过PI控制得到能够反映辅助电容稳压所需功率交换的移相角Δα,使主链节输出电压相位向右移动Δα,通过改变主链节输出的有功功率,调节系统有功功率分配,实现电容稳压。通常情况下系统负载呈感性,负载电流滞后系统输出电压θ,故系统矢量模型可表示为图4,当Δα=0°时,由于辅助链节只起补偿谐波的作用,故辅助链节输出的基波电压v2f为0;当Δα<0°时,主链节注入系统的有功功率减小,则辅助链节会补偿这部分不足的有功,此时电容放电;当Δα>0°时,主链节注入系统的有功功率增大,此时辅助链节会吸收这部分冗余的有功,电容充电。由于通过这种移相方式能够调节电容的充放电状态,因此电容稳压能够通过该移相控制策略实现。
对辅助电容链节,采用谐波补偿控制策略。为补偿主链节输出电压中的谐波,辅助链节输出电压等于主链节输出电压中的基波分量与主链节输出电压v1之差,主链节输出电压中的基波分量可通过如下函数所计算出的v1f *等效:
利用光伏链节单元与储能单元的直流侧电压,结合基波电压控制中得到的导通角,可计算等效主链节基波输出电压v1f *,通过该函数,可有效保证系统的动态稳定性。如图5所示,当光照条件变化时,假设此时光伏链节单元输出电压降低,主链节输出电压也会随之降低,若不采用v1f *而是以期望输出电压为参考值,则辅助链节将会输出不足的基波电压,在此情况下,辅助链节将始终输出基波电压,无法只起到补偿谐波的作用,移相控制失效。若采用幅值计算函数,计算出的参考值的幅值与主链节输出基波电压的幅值始终相等,类似于图4的原理,辅助链节仍能通过移相控制实现电容稳压,并只起到补偿谐波的作用。
为保证谐波补偿控制不出现过调制,辅助链节直流侧电容电压Vcap必须大于谐波电压的峰值。由图2,谐波电压的峰值可能出现在开关管切换状态的瞬间或基波电压达到峰值的时刻。在该控制策略中,光伏链节单元的输出功率与光伏电池的最大功率近似相等,因此,电容电压参考值Vcap,ref应满足如下关系:
其中,Vpv —和Vpv +表示光伏链节单元开关管切换时主链节输出的谐波电压幅值,Vbat —和Vbat +表示储能单元开关管切换时主链节输出的谐波电压幅值,VΔm表示当系统输出电压达到峰值时主链节输出的谐波电压幅值,ω表示系统的角频率,Vpv和Vdc分别为光伏电池电压和储能单元的直流侧电压,αpv和αdc分别为基波电压控制得到的光伏链节单元和储能单元的导通角,Vm,pv为光伏链节单元输出的基波电压幅值,Ppv,max为光伏电池的最大功率,iload为负载电流,Vm为系统输出电压幅值,Vpeak为主链节输出的谐波电压的峰值。
实施例
为了验证所提控制策略的有效性,在一个220V单相级联离网光储混合系统上进行仿真验证。该系统在光伏链节单元和储能单元级联的基础上增加了一个辅助电容链节单元以补偿谐波。本实施例系统参数如表1所示。
表1 220V单相级联离网光储混合系统电路参数
为验证控制策略的有效性,进行了以下3个实验。实验中,光伏电池的温度恒为25℃,辐照度于3秒时由1000W/m2降为800W/m2,于4.5秒时由800W/m2降为600W/m2。
实验一为电压电流测试,实验结果如图6所示。光伏电池电压Vpv、电容电压Vcap和输出电压幅值Vm波形如图6(a)所示,输出电压vout、负载电流iload波形,以及其在动态过程中的局部放大波形如图6(b)所示。在稳态下,光伏电池能精确跟踪其MPP,同时电容电压和输出电压幅值均能正确跟踪其参考值,输出电压和负载电流保持稳定。当辐照度在3秒以及4.5秒发生变化时,光伏电池能够继续跟踪其新的MPP,因此,电容电压、输出电压幅值、输出电压和负载电流都能在几个周期内恢复至稳态。该实验证明了所提控制策略能够有效控制输出电压、稳定电容电压,并具有良好的动态响应能力。
实验二为功率测试,实验结果如图7所示。图7分别展示了各链节单元注入系统的有功功率P以及电容链节单元产生的无功功率Qcap。当辐照度在3秒以及4.5秒发生变化时,光伏链节单元产生的有功会随之减少,这部分减少的有功全部由储能单元补偿,电容链节单元所产生的有功几乎为0,总有功保持不变。由此可以证明所有有功均由主链节产生并且储能单元补偿了光伏链节单元的输出。电容链节单元输出的无功同样也约为0,由此可以证明电容链节单元几乎没有基波输出。
实验三为谐波补偿测试,实验结果如图8所示。图8展示了输出电压vout以及辅助链节输出电压v2的THD分析,从图8中可以看出,输出电压中各低次谐波含量均不超过0.5%,且谐波由辅助链节补偿。该实验证明了所提谐波补偿控制策略对于消除谐波尤其是低次谐波的有效性。
Claims (3)
1.一种基于混合调制的单相级联离网光储混合系统控制方法,其特征在于,在光伏链节单元和储能单元组成的光储混合系统中,引入一个额外的电容链节单元,光伏链节单元和储能单元充当此系统的主链节并提供全部期望输出的正弦波电压,电容链节单元充当此系统的辅助链节并补偿主链节产生的谐波;
对主链节采用基于基波频率调制的基波电压控制策略,在保证光伏电池工作在最大功率点的同时稳定输出电压;采用移相控制策略,根据辅助电容电压,调节主链节输出电压相位,实现辅助电容稳压;对辅助链节采用基于高频调制的谐波补偿控制策略,减小输出电压中的谐波;
采用移相控制策略,根据辅助电容电压,调节主链节输出电压相位,以实现辅助电容稳压,具体是:
将辅助电容电压Vcap与其参考值比较,通过PI控制得到能够反映辅助电容稳压所需功率交换的移相角Δα,使主链节输出电压向右移动Δα以调节主链节输出的有功功率,进而调节辅助链节输出的有功功率,以此改变辅助电容充放电状态,实现辅助电容稳压;
对辅助链节采用基于高频调制的谐波补偿控制策略,补偿主链节输出电压谐波,以减小系统输出电压谐波,具体是:
辅助链节期望补偿主链节输出电压中的谐波,故辅助链节输出电压应与主链节输出电压波形中的谐波分量相反,即等于主链节输出电压中的基波分量与主链节输出电压v1之差,主链节输出电压中的基波分量通过如下函数所计算出的v1f *等效:
其中,Vm为系统输出电压幅值,ω表示系统的角频率,Vpv和Vdc分别为光伏电池电压和储能单元的直流侧电压,αpv和αdc分别为基波电压控制得到的光伏链节单元和储能单元的导通角。
2.根据权利要求1所述的基于混合调制的单相级联离网光储混合系统控制方法,其特征在于,对于主链节采用基于基波频率调制的基波电压控制策略,具体是:
对光伏链节单元采用最大功率点跟踪控制,利用光伏电池的电压Vpv和电流Ipv,通过MPPT计算出光伏电池的最大功率点电压的参考值Vpv,ref,将其与光伏电池电压比较,通过PI控制得到光伏电池工作在最大功率点时的导通角αpv,作为光伏链节单元的调制信号;
对储能单元采用输出电压控制,将系统输出电压幅值Vm与其参考值比较,通过PI控制得到储能单元所需输出的电压,该电压等效为储能单元导通角的余角0.5π-αdc,进一步计算出储能单元的调制信号,即储能单元的导通角αdc。
3.根据权利要求1所述的基于混合调制的单相级联离网光储混合系统控制方法,其特征在于,辅助电容电压Vcap的选取应保证谐波补偿控制不会出现过调制,即大于谐波电压的峰值;由于谐波电压峰值只出现在开关管状态切换或系统输出电压达到峰值的时刻,且在所提基波电压控制策略下,光伏链节单元输出功率近似等于光伏电池最大功率,故电容电压参考值Vcap,ref应满足如下关系式:
其中,Vpv —和Vpv +表示光伏链节单元开关管切换时主链节输出的谐波电压幅值,Vbat —和Vbat +表示储能单元开关管切换时主链节输出的谐波电压幅值,VΔm表示当系统输出电压达到峰值时主链节输出的谐波电压幅值,ω表示系统的角频率,Vpv和Vdc分别为光伏电池电压和储能单元的直流侧电压,αpv和αdc分别为基波电压控制得到的光伏链节单元和储能单元的导通角,Vm,pv为光伏链节单元输出的基波电压幅值,Ppv,max为光伏电池的最大功率,iload为负载电流,Vm为系统输出电压幅值,Vpeak为主链节输出的谐波电压的峰值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010366537.5A CN111541235B (zh) | 2020-04-30 | 2020-04-30 | 一种基于混合调制的单相级联离网光储混合系统控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010366537.5A CN111541235B (zh) | 2020-04-30 | 2020-04-30 | 一种基于混合调制的单相级联离网光储混合系统控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111541235A CN111541235A (zh) | 2020-08-14 |
CN111541235B true CN111541235B (zh) | 2022-09-27 |
Family
ID=71970321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010366537.5A Active CN111541235B (zh) | 2020-04-30 | 2020-04-30 | 一种基于混合调制的单相级联离网光储混合系统控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111541235B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112383082B (zh) * | 2020-08-26 | 2022-09-16 | 平高集团有限公司 | 一种光储混合系统及其多模态冗余控制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108736479A (zh) * | 2018-07-04 | 2018-11-02 | 中南大学 | 一种基于光伏并网系统的自适应精细化谐波补偿方法及装置 |
CN110011355A (zh) * | 2019-03-29 | 2019-07-12 | 南京理工大学 | 不对称三相星形级联多电平混合储能系统的分相控制方法 |
CN110299718A (zh) * | 2019-07-11 | 2019-10-01 | 东南大学 | 一种基于链式混合储能系统的故障控制策略 |
CN110311406A (zh) * | 2019-06-06 | 2019-10-08 | 合肥工业大学 | 一种扩大级联h桥光伏逆变器运行范围的控制方法 |
-
2020
- 2020-04-30 CN CN202010366537.5A patent/CN111541235B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108736479A (zh) * | 2018-07-04 | 2018-11-02 | 中南大学 | 一种基于光伏并网系统的自适应精细化谐波补偿方法及装置 |
CN110011355A (zh) * | 2019-03-29 | 2019-07-12 | 南京理工大学 | 不对称三相星形级联多电平混合储能系统的分相控制方法 |
CN110311406A (zh) * | 2019-06-06 | 2019-10-08 | 合肥工业大学 | 一种扩大级联h桥光伏逆变器运行范围的控制方法 |
CN110299718A (zh) * | 2019-07-11 | 2019-10-01 | 东南大学 | 一种基于链式混合储能系统的故障控制策略 |
Also Published As
Publication number | Publication date |
---|---|
CN111541235A (zh) | 2020-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tsengenes et al. | A multi-function grid connected PV system with three level NPC inverter and voltage oriented control | |
JP6289887B2 (ja) | 電力変換装置 | |
CN103560690A (zh) | 一种单相lcl型并网逆变器谐波阻尼控制方法 | |
CN108988343B (zh) | 一种弱网下多逆变器并网系统的全局高频振荡抑制方法 | |
Senguttuvan et al. | Solar photovoltaic system interfaced shunt active power filter for enhancement of power quality in three-phase distribution system | |
Awasth et al. | Reactive power compensation using D-STATCOM | |
JP6196071B2 (ja) | 電力変換装置 | |
JP2014233126A (ja) | 電力変換装置 | |
KR101892123B1 (ko) | 불평형 계통에 연결 가능한 하이브리드 무정전 전원장치 | |
CN111541235B (zh) | 一种基于混合调制的单相级联离网光储混合系统控制方法 | |
Chennai et al. | Unified power quality conditioner based on a three-level NPC inverter using fuzzy control techniques for all voltage disturbances compensation | |
Pereira et al. | Single-phase multifunctional inverter with dynamic saturation scheme for partial compensation of reactive power and harmonics | |
Prajapati et al. | Comparative Analysis of Single and Double-Stage Grid-Tied PV Systems | |
Hu et al. | Robustness and harmonics suppression of grid-connected inverters with different grid voltage feedforward compensations in weak grid | |
CN110649619A (zh) | 一种模块化多电平有源电力滤波器滑模控制方法 | |
CN107154640B (zh) | 一种适用于带储能的混合级联光伏系统的协同调制方法 | |
Liu et al. | Research on Control Method of Neutral Point Potential Balance of T-Type Three-Level Inverter Based on PLECS | |
You et al. | Control method for ripple current reduction and grid current correction in a single phase DC-AC DAB converter | |
Pozzebon et al. | A grid-connected multilevel converter for interfacing PV arrays and energy storage devices | |
Wasnik et al. | Compensation of Sag and Swell Voltage by using Dynamic Voltage Restorer | |
Xue et al. | Capacitor voltage balancing control strategy for single-phase five-level ANPC photovoltaic inverter | |
Qin et al. | A Voltage Control Strategy of Differential Buck-Boost Inverter Based on Third Harmonic Injection | |
Wang et al. | Fast-transient repetitive controller based current control strategy for a cascaded DSTATCOM | |
Mahato et al. | Solar Fed Boost Inverter with Closed Loop Proportional Resonant Controller for Grid Application | |
Akdogan et al. | MDSOGI Based Selective Virtual Impedance Method for Grid-Connected Inverters in an Unbalanced and Distorted Weak Grid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Liu Zhao Inventor after: Lu Yiyan Inventor after: Yu Jie Inventor after: Gong Jian Inventor before: Lu Yiyan Inventor before: Liu Zhao Inventor before: Yu Jie Inventor before: Gong Jian |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |