CN111535525A - Heat preservation ventilation unit on low carbon building roof - Google Patents

Heat preservation ventilation unit on low carbon building roof Download PDF

Info

Publication number
CN111535525A
CN111535525A CN202010376555.1A CN202010376555A CN111535525A CN 111535525 A CN111535525 A CN 111535525A CN 202010376555 A CN202010376555 A CN 202010376555A CN 111535525 A CN111535525 A CN 111535525A
Authority
CN
China
Prior art keywords
heat
building roof
insulation layer
low
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010376555.1A
Other languages
Chinese (zh)
Other versions
CN111535525B (en
Inventor
张景君
官铖
蔡玉卓
姜润峰
袁茂强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongya Decoration Co Ltd
Original Assignee
Dongya Decoration Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongya Decoration Co Ltd filed Critical Dongya Decoration Co Ltd
Priority to CN202110211560.1A priority Critical patent/CN112796469B/en
Priority to CN202010376555.1A priority patent/CN111535525B/en
Publication of CN111535525A publication Critical patent/CN111535525A/en
Application granted granted Critical
Publication of CN111535525B publication Critical patent/CN111535525B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/16Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
    • E04D13/1606Insulation of the roof covering characterised by its integration in the roof structure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/17Ventilation of roof coverings not otherwise provided for
    • E04D13/172Roof insulating material with provisions for or being arranged for permitting ventilation of the roof covering

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

The invention belongs to the technical field of low-carbon buildings, in particular to a heat-preservation ventilation device for a low-carbon building roof, and provides a scheme for solving the problem of poor heat-preservation effect of the building roof in the prior art. According to the invention, the separation cavity is formed between the first heat insulation layer and the second heat insulation layer, water is filled in the bottom of the separation cavity, a gap is reserved between the water surface and the first heat insulation layer, and the heat conductivity of water is lower than that of air, so that the first heat insulation layer with the top directly insulating heat is prevented from directly conducting heat to the second heat insulation layer at the bottom and the building, and the actual heat insulation effect is improved.

Description

Heat preservation ventilation unit on low carbon building roof
Technical Field
The invention relates to the technical field of low-carbon buildings, in particular to a heat-insulating and ventilating device for a roof of a low-carbon building.
Background
The low-carbon building is characterized in that the use of fossil energy is reduced, the energy efficiency is improved, the carbon dioxide emission is reduced in the whole life cycle of building material and equipment manufacturing, construction and building use, and the low-carbon building gradually becomes the mainstream trend of the international building world at present along with the continuous enhancement of environment protection awareness of residents.
The roof surface of traditional building can be because receiving the sunlight for a long time and shine, can lead to the fact the high temperature to the room with heat conduction, low carbon building roof among the prior art can be provided with the insulating layer that aluminum product or thermal insulation material laid between top surface basic unit and superficial layer, the heat that makes the roof surface stand the sunlight for a long time shines leaves to have in the insulating layer and realizes the heat preservation effect to in the building, but in the long-time use, a large amount of heats of insulating layer gathering can be to the inside conduction of building, and influence actual heat preservation effect.
Disclosure of Invention
Based on the technical problem of poor heat preservation effect of the building roof in the prior art, the invention provides a heat preservation and ventilation device of a low-carbon building roof.
The invention provides a heat preservation and ventilation device for a low-carbon building roof, which comprises a base, wherein a panel is fixed at the top of the base, a first heat insulation layer is fixed at the bottom of the panel, the base is arranged into a box-shaped structure with an open top, the first heat insulation layer is arranged at the top end of the inner wall of the base, a second heat insulation layer is fixed on the inner wall of the bottom of the base, a separation cavity is formed between the top of the second heat insulation layer and the bottom of the first heat insulation layer, a waterproof layer is coated on the inner wall of the base, a water replenishing pipe is fixed at the bottom end of the inner wall of one side of the separation cavity, a water guide pipe is fixed at the top of the inner wall of one side of the separation cavity.
Preferably, a plurality of small openings have all been seted up to the both ends and the both sides of panel top outer wall, and the connecting hole that pierces through the setting is seted up to the position that first insulating layer top and small opening correspond, and the small opening sets up complete L type structure, and the top of small opening sets up round platform column structure.
Preferably, a plurality of limiting parts are fixed on the inner wall of the bottom of the separation cavity, a plurality of grid cavities are arranged around the limiting parts, and a plurality of through holes are formed in the bottom of the outer wall of the limiting part.
Preferably, the bottom of the first heat insulation layer and the top of the limiting part are fixedly connected with heat conducting pieces distributed at equal intervals in the horizontal direction, the cross sections of the heat conducting pieces are arranged to be in a trapezoidal structure, and the top end of the water guide pipe is located at the bottom of the heat conducting piece.
Preferably, the inner wall of the bottom of the separation cavity and the position corresponding to the lattice cavity are rotatably connected with a vertically placed fixing rod through a bearing, and the top end of the outer wall of the fixing rod is fixed with guide strips distributed in an annular array.
Preferably, the cross section of the flow guide strip is semicircular, the top of the flow guide strip is arc-shaped, and the flow guide strip is arranged in a streamline structure.
Preferably, a plurality of flow guide holes which are arranged in a penetrating mode are formed in the top of the flow guide strip.
Preferably, the top of the first heat insulation layer is provided with a plurality of grooves with arc structures, and the inner walls of the grooves are not in contact with the panel.
Preferably, the bottom of the first heat insulation layer is provided with a plurality of auxiliary grooves, and the inner wall of the top of each auxiliary groove is of an arc-shaped structure.
Compared with the prior art, the invention provides a heat preservation and ventilation device for a low-carbon building roof, which has the following beneficial effects:
1. this heat preservation ventilation unit on low carbon building roof, the device sets the base to open-top's casing column structure, and it is whole to constitute the roof plane at the top fixed panel of base, the device is fixed with first insulating layer and second insulating layer respectively at panel bottom and base bottom inner wall, and make to constitute between first insulating layer and the second insulating layer and separate the chamber, it has water to separate the bottom packing in the intracavity, make and leave the clearance between surface of water and the first insulating layer, and avoid direct contact between first insulating layer and the second insulating layer, the heat conductivity of utilizing water is less than the heat conductivity of air, and avoid the direct thermal-insulated first insulating layer in top directly with heat conduction to the second insulating layer and the building of bottom, thereby improve actual heat preservation effect.
2. This heat preservation ventilation unit on low carbon building roof, lead to the connecting hole intercommunication that a plurality of small openings and first insulating layer correspond is seted up to the device at the border position of panel, can insulate against heat the use to separating the intracavity with the rainwater water conservancy diversion, and the intercommunication through small opening and connecting hole can realize separating the ventilation effect that the intracavity is located the surface of water top, the heat conductivility that utilizes water is compared in the heat conductivility of air poor, usable ventilation is discharged the steam of amassing between first insulating layer and the surface of water and is improved the radiating effect to first insulating layer bottom, and set the small opening into the L type structure of buckling, avoid sunshine to penetrate directly to separating the intracavity, thereby guarantee the long-time effectual thermal-insulated effect of first insulating layer.
3. This heat preservation ventilation unit on low carbon building roof, the device is provided with a plurality of locating parts and encloses into a plurality of check chambeies in the bottom of separating the chamber, and be connected with the heat-conducting piece that the horizontal direction equidistance distributes between locating part top and first insulating layer, make the bottom of heat-conducting piece and the top contact of separating the intracavity water, and make the surface of water position pass through solid heat-conducting piece and first insulating layer direct contact, the sunshine that building roof surface was shone by the radiation can be the incline direction, and the temperature that makes roof surface position is difference in the short time, because the direct heat conduction of heat-conducting piece makes the surface of water temperature also have the difference in the short time, it can flow because the difference in temperature produces and keep off the water conservancy diversion strip and rotate to realize the surface of water region, thereby increase thermal dispersion effect in.
4. This heat preservation ventilation unit on low carbon building roof, it is further, the recess of a plurality of arc structures is seted up at the top of first insulating layer to the device, and reduces the direct contact surface of first insulating layer top and panel, and avoids the heat accumulation at first insulating layer top too fast to set up a plurality of arc structure's auxiliary tank with the bottom of first insulating layer, and strengthen the radiating effect at its top, thereby further guarantee the heat preservation effect of roof in long-time use.
Drawings
FIG. 1 is a schematic overall structure diagram of a heat preservation and ventilation device for a low-carbon building roof, which is provided by the invention;
FIG. 2 is a schematic overall sectional structural view of the heat preservation and ventilation device for the low-carbon building roof provided by the invention;
FIG. 3 is an enlarged schematic structural view of part A of the heat preservation and ventilation device for the low-carbon building roof, which is provided by the invention;
FIG. 4 is a schematic structural view of a limiting member of the heat preservation and ventilation device for the low-carbon building roof according to the present invention;
FIG. 5 is a schematic structural view of a guide strip of the heat preservation and ventilation device for the low-carbon building roof, which is provided by the invention;
fig. 6 is a partial structure schematic view of the connection position of a panel and a first heat insulation layer of the heat preservation and ventilation device of the low-carbon building roof.
In the figure: the heat-insulating layer comprises a base 1, a first heat-insulating layer 2, a panel 3, a second heat-insulating layer 4, a separation cavity 5, a limiting part 6, a heat-conducting part 7, a waterproof layer 8, a water supplementing pipe 9, a water guide pipe 10, a through hole 11, a leak hole 12, a connecting hole 13, a fixing rod 14, a flow guide strip 15, a flow guide hole 16, a groove 17 and an auxiliary groove 18.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments.
In the description of the present invention, it is to be understood that the terms "upper", "lower", "front", "rear", "left", "right", "top", "bottom", "inner", "outer", and the like, indicate orientations or positional relationships based on the orientations or positional relationships shown in the drawings, are merely for convenience in describing the present invention and simplifying the description, and do not indicate or imply that the device or element being referred to must have a particular orientation, be constructed and operated in a particular orientation, and thus, should not be construed as limiting the present invention.
Example 1
Referring to fig. 1-5, the heat preservation and ventilation device for the low-carbon building roof comprises a base 1, a panel 3 is fixed at the top of the base 1, a first heat insulation layer 2 is fixed at the bottom of the panel 3, the base 1 is arranged to be of a box-shaped structure with an open top, the first heat insulation layer 2 is arranged at the top end of the inner wall of the base 1, a second heat insulation layer 4 is fixed on the inner wall of the bottom of the base 1, a separation cavity 5 is formed between the top of the second heat insulation layer 4 and the bottom of the first heat insulation layer 2, a waterproof layer 8 is coated on the inner wall of the base 1, a water replenishing pipe 9 is fixed at the bottom end of the inner wall of one side of the separation cavity 5, a water guide pipe 10 is fixed at the top end of the inner wall.
In the invention, a plurality of leak holes 12 are respectively arranged at two ends and two sides of the outer wall at the top of a panel 3, a connecting hole 13 which is arranged in a penetrating way is arranged at the position, corresponding to the leak hole 12, of the top of a first heat insulation layer 2, the leak hole 12 is arranged into a complete L-shaped structure, and the top end of the leak hole 12 is arranged into a circular truncated cone-shaped structure;
a plurality of limiting pieces 6 are fixed on the inner wall of the bottom of the separation cavity 5, a plurality of grid cavities are surrounded by the limiting pieces 6, a plurality of through holes 11 are formed in the bottom of the outer wall of each limiting piece 6, heat conducting pieces 7 which are distributed in the horizontal direction at equal intervals are fixedly connected between the bottom of the first heat insulation layer 2 and the tops of the limiting pieces 6, the cross sections of the heat conducting pieces 7 are arranged to be of a trapezoidal structure, and the top end of the water guide pipe 10 is located at the bottom of each heat conducting piece 7;
the position that 5 bottom inner walls in compartment and check chamber correspond is rotated through the bearing and is connected with vertical dead lever 14 of placing, and the top of the 14 outer walls of dead lever is fixed with the water conservancy diversion strip 15 that annular array distributes, the cross-section of water conservancy diversion strip 15 sets to semi-circular, and the top of water conservancy diversion strip 15 sets to the arc, water conservancy diversion strip 15 sets up the streamline type structure, thereby reduce the resistance that its outer wall received when guaranteeing water conservancy diversion strip 15 stirring effect, a plurality of water conservancy diversion holes 16 that run through the setting are seted up at the top of water conservancy diversion strip 15.
When the heat insulation structure is used, the separation cavity 5 is formed between the first heat insulation layer 2 and the second heat insulation layer 4, rainwater is guided into the separation cavity 5 through the leakage hole 12 for heat insulation, or water is injected into the separation cavity 5 through the water replenishing pipe 9, the first heat insulation layer 2 is prevented from being in direct contact with the second heat insulation layer 4, the heat conductivity of water is lower than that of air, the first heat insulation layer 2 with direct heat insulation at the top is prevented from directly conducting heat to the second heat insulation layer 4 at the bottom and a building, the ventilation effect above the water surface in the separation cavity 5 can be realized through the communication of the leakage hole 12 and the connecting hole 13, the heat conductivity of water is lower than that of air, hot air accumulated between the first heat insulation layer 2 and the water surface can be discharged through ventilation, the heat dissipation effect on the bottom of the first heat insulation layer 2 is improved, and the leakage hole 12 is arranged into a bent L-shaped structure, the sunlight is prevented from directly irradiating into the separation cavity 2, so that the long-time effective heat insulation effect of the first heat insulation layer 2 is ensured;
the sunshine that building roof surface was shone can be the incline direction and change, can make the temperature of roof surface position there is the difference in the short time, because the direct heat conduction of heat-conducting member 7 makes surface of water temperature also have the difference in the short time, realizes that the surface of water region can drive water conservancy diversion strip 15 to rotate because the difference in temperature produces the flow to increase the radiating effect of thermal dispersion effect in order to strengthen actual ventilation.
Example 2
Referring to fig. 1-6, in the heat preservation and ventilation device for the low-carbon building roof, a plurality of grooves 17 with arc structures are formed in the top of a first heat insulation layer 2, the inner walls of the grooves 17 are not in contact with a panel 3, a plurality of auxiliary grooves 18 are formed in the bottom of the first heat insulation layer 2, and the inner walls of the tops of the auxiliary grooves 18 are arranged to be in arc structures.
During the use, the recess 17 of a plurality of arc structures is seted up at the top of first insulating layer 2 to the device, and reduces the direct contact surface of 2 tops of first insulating layer and panel 3, and avoids the heat accumulation at 2 tops of first insulating layer too fast to offer a plurality of arc structure's auxiliary tank 18 with the bottom of first insulating layer 2, and strengthen the radiating effect at its top, thereby further guarantee the heat preservation effect of roof in long-time use.
The above description is only for the preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art should be considered to be within the technical scope of the present invention, and the technical solutions and the inventive concepts thereof according to the present invention should be equivalent or changed within the scope of the present invention.

Claims (9)

1. The heat-insulating and ventilating device for the low-carbon building roof comprises a base (1), a panel (3) is fixed at the top of the base (1), a first heat-insulating layer (2) is fixed at the bottom of the panel (3), it is characterized in that the base (1) is arranged into a box-shaped structure with an opening at the top, the first heat insulation layer (2) is arranged at the top end of the inner wall of the base (1), the inner wall of the bottom of the base (1) is fixed with the second heat insulation layer (4), and a separation cavity (5) is formed between the top of the second heat-insulating layer (4) and the bottom of the first heat-insulating layer (2), the inner wall of the base (1) is coated with a waterproof layer (8), the bottom end of the inner wall of one side of the separation cavity (5) is fixed with a water replenishing pipe (9), and a water guide pipe (10) is fixed at the top of the inner wall of one side of the separation cavity (5), and a gap is reserved between the top end of the water guide pipe (10) and the bottom of the first heat insulation layer (2).
2. The heat-insulation and ventilation device for the low-carbon building roof is characterized in that a plurality of leakage holes (12) are formed in two ends and two sides of the outer wall of the top of the panel (3), connecting holes (13) penetrating through the positions, corresponding to the leakage holes (12), of the top of the first heat-insulation layer (2), the leakage holes (12) are arranged to be of a complete L-shaped structure, and the top ends of the leakage holes (12) are arranged to be of a circular truncated cone-shaped structure.
3. The heat preservation and ventilation device for the low-carbon building roof as claimed in claim 2, wherein a plurality of limiting members (6) are fixed to the inner wall of the bottom of the separation cavity (5), a plurality of grid cavities are defined by the limiting members (6), and a plurality of through holes (11) are formed in the bottom of the outer wall of the limiting members (6).
4. The heat preservation and ventilation device for the low-carbon building roof is characterized in that heat conducting members (7) which are distributed at equal intervals in the horizontal direction are fixedly connected between the bottom of the first heat insulation layer (2) and the top of the limiting member (6), the cross sections of the heat conducting members (7) are arranged into a trapezoidal structure, and the top end of the water guide pipe (10) is located at the bottom position of the heat conducting members (7).
5. The heat preservation and ventilation device for the low-carbon building roof is characterized in that a vertically-placed fixing rod (14) is rotatably connected to the position, corresponding to the grid cavity, of the inner wall of the bottom of the separation cavity (5) through a bearing, and top ends of outer walls of the fixing rod (14) are fixed with guide strips (15) distributed in an annular array.
6. The heat preservation and ventilation device for the low carbon building roof as claimed in claim 5, wherein the cross section of the flow guide strips (15) is arranged in a semicircular shape, the top of the flow guide strips (15) is arranged in an arc shape, and the flow guide strips (15) are arranged in a streamline structure.
7. The heat preservation and ventilation device for the low-carbon building roof is characterized in that a plurality of flow guide holes (16) are formed in the top of the flow guide strip (15) in a penetrating mode.
8. The heat preservation and ventilation device for the low-carbon building roof is characterized in that a plurality of grooves (17) with arc-shaped structures are formed in the top of the first heat insulation layer (2), and the inner walls of the grooves (17) are not in contact with the panel (3).
9. The heat preservation and ventilation device for the low-carbon building roof is characterized in that a plurality of auxiliary grooves (18) are formed in the bottom of the first heat insulation layer (2), and the inner walls of the tops of the auxiliary grooves (18) are arranged into an arc-shaped structure.
CN202010376555.1A 2020-05-07 2020-05-07 Heat preservation ventilation unit on low carbon building roof Active CN111535525B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110211560.1A CN112796469B (en) 2020-05-07 2020-05-07 Heat preservation ventilation unit on low carbon building roof
CN202010376555.1A CN111535525B (en) 2020-05-07 2020-05-07 Heat preservation ventilation unit on low carbon building roof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010376555.1A CN111535525B (en) 2020-05-07 2020-05-07 Heat preservation ventilation unit on low carbon building roof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110211560.1A Division CN112796469B (en) 2020-05-07 2020-05-07 Heat preservation ventilation unit on low carbon building roof

Publications (2)

Publication Number Publication Date
CN111535525A true CN111535525A (en) 2020-08-14
CN111535525B CN111535525B (en) 2021-05-07

Family

ID=71973489

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010376555.1A Active CN111535525B (en) 2020-05-07 2020-05-07 Heat preservation ventilation unit on low carbon building roof
CN202110211560.1A Active CN112796469B (en) 2020-05-07 2020-05-07 Heat preservation ventilation unit on low carbon building roof

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110211560.1A Active CN112796469B (en) 2020-05-07 2020-05-07 Heat preservation ventilation unit on low carbon building roof

Country Status (1)

Country Link
CN (2) CN111535525B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117738376A (en) * 2024-01-23 2024-03-22 北京梵客家居科技有限公司 Ventilating, heat-insulating and heat-preserving integrated roof system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957992B (en) * 2021-11-09 2023-05-23 华中伟业建设集团有限公司 Heat insulation system and heat insulation method for building

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061479A (en) * 2001-08-24 2003-03-04 Nisshoku Corp Plant raising container, vegetation base and method for roof greening
CN2818625Y (en) * 2005-07-02 2006-09-20 桓台县长江粮油仓储机械有限公司 Temperature-lowering and thermal-insulative magnesite roof product
CN200946285Y (en) * 2006-08-01 2007-09-12 韩建秀 Filtering and storing device for roof rain water
CN203201033U (en) * 2013-01-18 2013-09-18 广东工业大学 Water storage roof thermal-insulation module with empty space
CN106245859A (en) * 2016-07-27 2016-12-21 灌阳县陈工选矿机械制造有限公司 A kind of heat radiation building board
CN106245860A (en) * 2016-07-27 2016-12-21 灌阳县陈工选矿机械制造有限公司 A kind of building board
CN206542744U (en) * 2016-12-30 2017-10-10 周志坚 A kind of lightweight roof garden paving structure
CN206722229U (en) * 2017-05-16 2017-12-08 四川建筑职业技术学院 A kind of insulation component of roof Sun block

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002100002A4 (en) * 2001-01-02 2002-03-28 George Anthony Contoleon Exhaust fan system
CN103629774A (en) * 2012-08-27 2014-03-12 上海东冠纸业有限公司 Heat dissipation system of vacuum pump house
CN110138144B (en) * 2019-06-06 2020-05-19 南京理工自动化研究院有限公司 Permanent magnet synchronous motor cooling system for electric automobile and control method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061479A (en) * 2001-08-24 2003-03-04 Nisshoku Corp Plant raising container, vegetation base and method for roof greening
CN2818625Y (en) * 2005-07-02 2006-09-20 桓台县长江粮油仓储机械有限公司 Temperature-lowering and thermal-insulative magnesite roof product
CN200946285Y (en) * 2006-08-01 2007-09-12 韩建秀 Filtering and storing device for roof rain water
CN203201033U (en) * 2013-01-18 2013-09-18 广东工业大学 Water storage roof thermal-insulation module with empty space
CN106245859A (en) * 2016-07-27 2016-12-21 灌阳县陈工选矿机械制造有限公司 A kind of heat radiation building board
CN106245860A (en) * 2016-07-27 2016-12-21 灌阳县陈工选矿机械制造有限公司 A kind of building board
CN206542744U (en) * 2016-12-30 2017-10-10 周志坚 A kind of lightweight roof garden paving structure
CN206722229U (en) * 2017-05-16 2017-12-08 四川建筑职业技术学院 A kind of insulation component of roof Sun block

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117738376A (en) * 2024-01-23 2024-03-22 北京梵客家居科技有限公司 Ventilating, heat-insulating and heat-preserving integrated roof system

Also Published As

Publication number Publication date
CN111535525B (en) 2021-05-07
CN112796469A (en) 2021-05-14
CN112796469B (en) 2023-01-20

Similar Documents

Publication Publication Date Title
CN111535525B (en) Heat preservation ventilation unit on low carbon building roof
CN101591953B (en) Curtain wall with functions of heat preservation, heat supply and photovoltaic power generation
CN106545096B (en) A kind of solar heat-preservation formula passive solar house
CN109184007A (en) A kind of building heat preservation structure
CA3012907C (en) Sandwich roof panels to serve as thermal collectors
CN202578028U (en) Solar house
CN116607698B (en) Energy-saving heat-insulating wall structure of assembled building
CN210507902U (en) Phase change thermal insulation wall of green building
CN114838509A (en) Photovoltaic coupling phase change thermal storage shingle nail composite heating system
CN202081703U (en) Energy-saving water-saving building
CN102535940A (en) Solar building
CN206888306U (en) A kind of roof structure of green building
CN202853142U (en) Inlaid type vacuum pipe type complete green building integration solar water heater
CN202767407U (en) Self-heat-dissipation type building integrated photovoltaic (BIPV) power generating tile
CN112593730A (en) Heat dissipation and heat insulation integrated photovoltaic panel energy storage greenhouse box body
CN207609020U (en) A kind of mobile prefabricated house of easy disassembly
CN205637201U (en) Energy -concerving and environment -protective type building with heating function
CN214117264U (en) Heat insulation device of assembly type building
CN219976782U (en) Solar heat collector and split solar water heater
CN214094968U (en) Anti-freezing flat plate type solar water heating device
CN213984036U (en) Energy-saving and environment-friendly warm air device
CN212001954U (en) Integrated modular photovoltaic roof
CN201852312U (en) Solar heat collecting device
CN201962830U (en) Combined solar wall and window
CN201883566U (en) Solar wall

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant