CN111533531B - 一种多孔莫来石及其制备方法 - Google Patents
一种多孔莫来石及其制备方法 Download PDFInfo
- Publication number
- CN111533531B CN111533531B CN202010286662.5A CN202010286662A CN111533531B CN 111533531 B CN111533531 B CN 111533531B CN 202010286662 A CN202010286662 A CN 202010286662A CN 111533531 B CN111533531 B CN 111533531B
- Authority
- CN
- China
- Prior art keywords
- porous mullite
- ceramic slurry
- ceramic
- bacterial cellulose
- green body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/1305—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/131—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/1315—Non-ceramic binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
- C04B35/185—Mullite 3Al2O3-2SiO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6263—Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/636—Polysaccharides or derivatives thereof
- C04B35/6365—Cellulose or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/0605—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances by sublimating
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种多孔莫来石及其制备方法。本发明的多孔莫来石具有定向排列的孔结构,孔径为20~200μm,孔隙率为71%~92%,其制备方法包括以下步骤:1)将椰果浸入碱液进行预处理,用水浸泡置换除去碱,进行破碎,得到细菌纤维素水凝胶;2)将高岭土、磷酸三钙、六偏磷酸钠和细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料;3)将陶瓷浆料脱气后倒入模具进行冷冻成型,脱模,进行冷冻干燥,得到陶瓷生坯;4)将陶瓷生坯置于空气气氛中升温进行烧结。本发明的多孔莫来石具有定向排列的孔结构,其制备工艺简单、生产成本低、安全环保,在催化剂载体、高温烟气过滤、熔融金属过滤等领域具有广阔的应用前景。
Description
技术领域
本发明涉及一种多孔莫来石及其制备方法,属于陶瓷材料技术领域。
背景技术
莫来石是一系列由铝硅酸盐组成的矿物的统称,是一种新兴的高温耐火材料,具有熔点高、热传导系数低、耐腐蚀性好等优点。莫来石陶瓷是指主晶相为莫来石的陶瓷,被广泛应用于耐火材料、高温工程材料、电子封装材料、光学材料等领域。
目前,工业上应用的莫来石都是人工合成的,常见的生产工艺是先将高岭土粉碎,再外加适量的氧化铝粉,1600℃煅烧10h左右,该工艺的能耗过高,成本投入较大,导致其经济效益低。另外,研究发现具有有序孔结构的多孔陶瓷材料在催化剂载体、高温烟气过滤、熔融金属过滤等领域具有更为广阔的应用前景。
因此,有必要开发一种流程简单、生产成本低、绿色环保的多孔莫来石制备工艺,并开发出具有定向排列的孔结构的多孔莫来石。
发明内容
本发明的目的在于提供一种多孔莫来石及其制备方法。
本发明所采取的技术方案是:
一种多孔莫来石,具有定向排列的孔结构,孔径为20~200μm,孔隙率为71%~92%。
上述多孔莫来石的制备方法,包括以下步骤:
1)将椰果浸入碱液进行预处理,用水浸泡置换除去碱,进行破碎,得到细菌纤维素水凝胶;
2)将高岭土、磷酸三钙、六偏磷酸钠和细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料;
3)将陶瓷浆料脱气后倒入模具进行冷冻成型,脱模,进行冷冻干燥,得到陶瓷生坯;
4)将陶瓷生坯置于空气气氛中升温进行烧结,得到多孔莫来石。
优选的,步骤1)所述碱液为浓度3~4mol/L的氢氧化钠溶液。
优选的,步骤1)所述预处理的温度为70~90℃,时间为5~6h。
优选的,步骤1)所述细菌纤维素水凝胶的含水量大于99%。
优选的,步骤2)所述磷酸三钙的添加量为高岭土质量的4%~8%。
优选的,步骤2)所述六偏磷酸钠的添加量为高岭土和磷酸三钙总质量的0.8%~1.5%。
优选的,步骤2)所述陶瓷浆料的固含量为5%~30%。
优选的,步骤3)所述冷冻成型的温度为-196~-45℃。
优选的,步骤3)所述冷冻干燥是在抽真空条件下进行。
优选的,步骤4)所述升温的速率为3~7℃/min。
优选的,步骤4)所述烧结的温度1200~1300℃,时间为60~120min。
本发明的有益效果是:本发明的多孔莫来石具有定向排列的孔结构,其制备工艺简单、生产成本低、安全环保,在催化剂载体、高温烟气过滤、熔融金属过滤等领域具有广阔的应用前景。
具体来说:
1)本发明的多孔莫来石具有定向排列的孔结构,作为催化剂载体时可以提高通量、增强孔排列方向上的力学强度,且这种显微结构与木材中的孔结构类似,可以作为仿生材料;
2)本发明通过调控陶瓷浆料的固含量即可调控样品的孔隙率,通过调整冷冻温度即可调控样品的孔径和孔形貌,进而实现对样品热力学性能的调控;
3)本发明通过细菌纤维素的纤维网络结构可以使陶瓷浆料保持高度稳定分散,且细菌纤维素表面大量的羟基使水凝胶具有极强的保水性,在冷冻过程中可有效改善整体的冷冻均匀性,此外细菌纤维素所占体积极小,烧失的过程中对多孔陶瓷坯体无影响;
4)本发明通过六偏磷酸钠与磷酸三钙中的钙离子形成黏胶状络合物,可以吸附陶瓷浆料中少量的游离水,而磷酸三钙在冷冻过程中具有抗冻剂作用,两者同时作用,可以保证冰晶均匀生长,避免冷冻过程中出现局部粗化的冰晶,最终可以使烧结后的多孔莫来石具有均匀的孔径。
附图说明
图1为实施例1的多孔莫来石的XRD图。
图2为实施例1的多孔莫来石的SEM图。
图3为实施例2的多孔莫来石的SEM图。
图4为实施例3的多孔莫来石的SEM图。
图5为实施例3的多孔莫来石经过氢氟酸处理后的SEM图。
图6为实施例4的多孔莫来石的SEM图。
图7为实施例5的多孔莫来石的SEM图。
图8为实施例8的多孔莫来石的SEM图。
图9为对比例2的多孔莫来石的数码照片。
图10为对比例3的多孔莫来石的数码照片。
图11为实施例1~9和对比例2~3中进行冷冻干燥所采用的冷冻装置的结构示意图。
图12为不同冷冻温度得到的陶瓷生坯在烧结过程中的收缩率-固含量关系图。
具体实施方式
下面结合具体实施例对本发明作进一步的解释和说明。
实施例1:
一种多孔莫来石,其制备方法包括以下步骤:
1)将18.8g的高岭土、1.2g的磷酸三钙、0.2g的六偏磷酸钠和180g的细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料(固含量约10%);
2)将陶瓷浆料抽真空脱气30min后倒入模具,-45℃使浆料完全冷冻,脱模,再抽真空进行冷冻干燥,得到陶瓷生坯;
3)将陶瓷生坯置于空气气氛中,以5℃/min的速率升温至500℃,保温60min,再以5℃/min的速率升温至1250℃,保温90min,得到多孔莫来石(XRD图如图1所示,SEM图如图2所示)。
实施例2:
一种多孔莫来石,其制备方法包括以下步骤:
1)将28.2g的高岭土、1.8g的磷酸三钙、0.3g的六偏磷酸钠和170g的细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料(固含量约15%);
2)将陶瓷浆料抽真空脱气30min后倒入模具,-45℃使浆料完全冷冻,脱模,再抽真空进行冷冻干燥,得到陶瓷生坯;
3)将陶瓷生坯置于空气气氛中,以5℃/min的速率升温至500℃,保温60min,再以5℃/min的速率升温至1250℃,保温90min,得到多孔莫来石(SEM图如图3所示)。
实施例3:
一种多孔莫来石,其制备方法包括以下步骤:
1)将37.6g的高岭土、2.4g的磷酸三钙、0.4g的六偏磷酸钠和160g的细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料(固含量约20%);
2)将陶瓷浆料抽真空脱气30min后倒入模具,-45℃使浆料完全冷冻,脱模,再抽真空进行冷冻干燥,得到陶瓷生坯;
3)将陶瓷生坯置于空气气氛中,以5℃/min的速率升温至500℃,保温60min,再以5℃/min的速率升温至1250℃,保温90min,得到多孔莫来石(SEM图如图4所示,经氢氟酸处理后的多孔莫来石的SEM图如图5所示)。
实施例4:
一种多孔莫来石,其制备方法包括以下步骤:
1)将47g的高岭土、3g的磷酸三钙、0.5g的六偏磷酸钠和150g的细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料(固含量约25%);
2)将陶瓷浆料抽真空脱气30min后倒入模具,-45℃使浆料完全冷冻,脱模,再抽真空进行冷冻干燥,得到陶瓷生坯;
3)将陶瓷生坯置于空气气氛中,以5℃/min的速率升温至500℃,保温60min,再以5℃/min的速率升温至1250℃,保温90min,得到多孔莫来石(SEM图如图6所示)。
实施例5:
一种多孔莫来石,其制备方法包括以下步骤:
1)将37.6g的高岭土、2.4g的磷酸三钙、0.4g的六偏磷酸钠和160g的细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料(固含量约20%);
2)将陶瓷浆料抽真空脱气30min后倒入模具,-78℃使浆料完全冷冻,脱模,再抽真空进行冷冻干燥,得到陶瓷生坯;
3)将陶瓷生坯置于空气气氛中,以5℃/min的速率升温至500℃,保温60min,再以5℃/min的速率升温至1250℃,保温90min,得到多孔莫来石(SEM图如图7所示)。
实施例6:
一种多孔莫来石,其制备方法包括以下步骤:
1)将18.8g的高岭土、1.2g的磷酸三钙、0.2g的六偏磷酸钠和180g的细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料(固含量约10%);
2)将陶瓷浆料抽真空脱气30min后倒入模具,-196℃使浆料完全冷冻,脱模,再抽真空进行冷冻干燥,得到陶瓷生坯;
3)将陶瓷生坯置于空气气氛中,以5℃/min的速率升温至500℃,保温60min,再以5℃/min的速率升温至1250℃,保温90min,得到多孔莫来石。
实施例7:
一种多孔莫来石,其制备方法包括以下步骤:
1)将28.2g的高岭土、1.8g的磷酸三钙、0.3g的六偏磷酸钠和170g的细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料(固含量约15%);
2)将陶瓷浆料抽真空脱气30min后倒入模具,-196℃使浆料完全冷冻,脱模,再抽真空进行冷冻干燥,得到陶瓷生坯;
3)将陶瓷生坯置于空气气氛中,以5℃/min的速率升温至500℃,保温60min,再以5℃/min的速率升温至1250℃,保温90min,得到多孔莫来石。
实施例8:
一种多孔莫来石,其制备方法包括以下步骤:
1)将37.6g的高岭土、2.4g的磷酸三钙、0.4g的六偏磷酸钠和160g的细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料(固含量约20%);
2)将陶瓷浆料抽真空脱气30min后倒入模具,-196℃使浆料完全冷冻,脱模,再抽真空进行冷冻干燥,得到陶瓷生坯;
3)将陶瓷生坯置于空气气氛中,以5℃/min的速率升温至500℃,保温60min,再以5℃/min的速率升温至1250℃,保温90min,得到多孔莫来石(SEM图如图8所示)。
实施例9:
一种多孔莫来石,其制备方法包括以下步骤:
1)将37.6g的高岭土、2.4的磷酸三钙、0.4g的六偏磷酸钠和160g的细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料(固含量约20%);
2)将陶瓷浆料抽真空脱气30min后倒入模具,-78℃使浆料完全冷冻,脱模,再抽真空进行冷冻干燥,得到陶瓷生坯;
3)将陶瓷生坯置于空气气氛中,以5℃/min的速率升温至500℃,保温60min,再以5℃/min的速率升温至1250℃,保温90min,得到多孔莫来石。
对比例1:
一种多孔莫来石,其制备方法包括以下步骤:
将18.8g的高岭土、1.2g的磷酸三钙、0.2g的六偏磷酸钠和180g的去离子水混合后进行球磨,得到陶瓷浆料(固含量约10%),静置10min后出现明显分层,浆料无法在完全冷冻前保持均匀,无法进行后继操作,未能制备得到多孔莫来石。
对比例2:
一种多孔莫来石,其制备方法包括以下步骤:
1)将18.8g的高岭土、1.2g的磷酸三钙、0.2g的六偏磷酸钠、90g的细菌纤维素水凝胶和90g的去离子水混合后进行球磨,得到陶瓷浆料(固含量约10%);
2)将陶瓷浆料抽真空脱气30min后倒入模具,-45℃使浆料完全冷冻,脱模,再抽真空进行冷冻干燥,得到陶瓷生坯;
3)将陶瓷生坯置于空气气氛中,以5℃/min的速率升温至500℃,保温60min,再以5℃/min的速率升温至1250℃,保温90min,得到多孔莫来石(数码照片如图9所示)。
由图9可知:多孔莫来石局部出现由于冰晶过度生长留下的大孔,说明细菌纤维素水凝胶中的纤维的吸水量已经达到饱和,外加的去离子水在浆料中以自由水的形式存在,冰晶在自由水中生长速度快,形成了粗大冰晶。
对比例3:
一种多孔莫来石,其制备方法包括以下步骤:
1)将18.8g的高岭土、1.2g的磷酸三钙和180g的细菌纤维素水凝胶(含水量99.64%)混合后进行球磨,得到陶瓷浆料(固含量约10%);
2)将陶瓷浆料抽真空脱气30min后倒入模具,-45℃使浆料完全冷冻,脱模,再抽真空进行冷冻干燥,得到陶瓷生坯;
3)将陶瓷生坯置于空气气氛中,以5℃/min的速率升温至500℃,保温60min,再以5℃/min的速率升温至1250℃,保温90min,得到多孔莫来石(数码照片如图10所示)。
由图10可知:多孔莫来石中出现少量大孔缺陷,说明细菌纤维素水凝胶块破碎的过程中由于纤维被打断,释放出少量的自由水。通过和实施例1进行对比可知,六偏磷酸钠的加入可以有效抑制冷冻过程形成的缺陷。
注:
实施例1~9和对比例2~3中的细菌纤维素水凝胶通过以下方法制备得到:将椰果浸入浓度3mol/L的氢氧化钠溶液中,85℃浸泡5h,再将椰果过滤分离出来后用50℃的去离子水浸泡置换至pH=7,再将椰果搅碎,得到细菌纤维素水凝胶(含水量99.64%)。
实施例1~9和对比例2~3中进行冷冻干燥所采用的冷冻装置的结构示意图如图11所示。
性能测试:
1)对实施例1~9的多孔莫来石进行性能测试,测试结果如下表所示:
表1实施例1~9的多孔莫来石的性能测试结果
注:
孔隙率:采用阿基米德排水法测试;
抗压强度:采用INSTRON-5567万能试验机进行测试,试样尺寸为25mm×20mm,加压速度为0.05mm/min,每种样品至少4个,分别测试抗压强度后取平均值;
热导率(常温):采用HotDisk热常数分析仪进行测试,试样尺寸为25mm×20mm;
实施例1~8的抗压强度和热导率测试面为垂直于冷冻方向的表面,实施例9的抗压强度和热导率测试面为平行于冷冻方向的表面。
2)参照实施例1的操作,测试不同冷冻温度得到的陶瓷生坯在烧结过程中的收缩率-固含量关系曲线,测试结果如图12所示。
由图12可知:不同冷冻温度得到的陶瓷生坯在烧结过程中均有一定的收缩,但冷冻温度对收缩率的影响不大。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (9)
1.一种多孔莫来石的制备方法,其特征在于:包括以下步骤:
1)将椰果浸入碱液进行预处理,用水浸泡置换除去碱,进行破碎,得到细菌纤维素水凝胶;
2)将高岭土、磷酸三钙、六偏磷酸钠和细菌纤维素水凝胶混合后进行球磨,得到陶瓷浆料;
3)将陶瓷浆料脱气后倒入模具进行冷冻成型,脱模,进行冷冻干燥,得到陶瓷生坯;
4)将陶瓷生坯置于空气气氛中升温进行烧结,得到多孔莫来石。
2.根据权利要求1所述的制备方法,其特征在于:步骤1)所述预处理的温度为70~90℃,时间为5~6h。
3.根据权利要求1或2所述的制备方法,其特征在于:步骤1)所述细菌纤维素水凝胶的含水量大于99%。
4.根据权利要求1所述的制备方法,其特征在于:步骤2)所述磷酸三钙的添加量为高岭土质量的4%~8%;步骤2)所述六偏磷酸钠的添加量为高岭土和磷酸三钙总质量的0.8%~1.5%。
5.根据权利要求1或2或4所述的制备方法,其特征在于:步骤2)所述陶瓷浆料的固含量为5%~30%。
6.根据权利要求1所述的制备方法,其特征在于:步骤3)所述冷冻成型的温度为-196~-45℃。
7.根据权利要求1或2或4或6所述的制备方法,其特征在于:步骤3)所述冷冻干燥是在抽真空条件下进行。
8.根据权利要求1或2或4或6所述的制备方法,其特征在于:步骤4)所述升温的速率为3~7℃/min。
9.根据权利要求1或2或4或6所述的制备方法,其特征在于:步骤4)所述烧结的温度1200~1300℃,时间为60~120min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010286662.5A CN111533531B (zh) | 2020-04-13 | 2020-04-13 | 一种多孔莫来石及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010286662.5A CN111533531B (zh) | 2020-04-13 | 2020-04-13 | 一种多孔莫来石及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111533531A CN111533531A (zh) | 2020-08-14 |
CN111533531B true CN111533531B (zh) | 2021-03-30 |
Family
ID=71952174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010286662.5A Expired - Fee Related CN111533531B (zh) | 2020-04-13 | 2020-04-13 | 一种多孔莫来石及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111533531B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112461635A (zh) * | 2020-12-08 | 2021-03-09 | 首钢集团有限公司 | 一种炮泥试样及其制备方法 |
CN113173778A (zh) * | 2021-04-08 | 2021-07-27 | 华南理工大学 | 一种有序孔仿生材料及其制备方法和应用 |
CN117567144B (zh) * | 2024-01-15 | 2024-03-19 | 山东新广恒节能科技有限公司 | 一种轻质高铝聚轻砖的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5228900A (en) * | 1990-04-20 | 1993-07-20 | Weyerhaeuser Company | Agglomeration of particulate materials with reticulated cellulose |
CN105669174A (zh) * | 2016-01-14 | 2016-06-15 | 中国矿业大学 | 一种高孔隙率定向孔结构多孔莫来石材料及其制备方法 |
-
2020
- 2020-04-13 CN CN202010286662.5A patent/CN111533531B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5228900A (en) * | 1990-04-20 | 1993-07-20 | Weyerhaeuser Company | Agglomeration of particulate materials with reticulated cellulose |
CN105669174A (zh) * | 2016-01-14 | 2016-06-15 | 中国矿业大学 | 一种高孔隙率定向孔结构多孔莫来石材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Hierarchically Porous Zirconia Monolith Fabricated from Bacterial Cellulose and Preceramic Polymer;Boxing Zhang;《ACS OMEGA》;20180430;第3卷(第4期);第4688-4694页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111533531A (zh) | 2020-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111533531B (zh) | 一种多孔莫来石及其制备方法 | |
Herzog et al. | Wood‐derived porous SiC ceramics by sol infiltration and carbothermal reduction | |
WO2017004776A1 (zh) | 多孔氧化铝陶瓷及其制备方法 | |
CN101429050B (zh) | 一种采用冷冻干燥法制备具有定向结构多孔陶瓷的方法 | |
CN104130004B (zh) | 高强度块状多孔氧化铝纳米陶瓷的制备方法 | |
CN110937920A (zh) | 一种超轻高强钙长石多孔陶瓷及其制备方法 | |
Wang et al. | Porous α-Al2O3 ceramics prepared by gelcasting | |
CN112011151B (zh) | 一种蜂窝状树脂材料的制备方法 | |
EP2548856B1 (en) | Method for manufacturing a porous material using an antifreeze protein | |
CN111995422A (zh) | 一种蜂窝状陶瓷材料的制备方法 | |
CN104129983B (zh) | 高强度块状多孔镁铝尖晶石纳米陶瓷的制备方法 | |
CN114394612B (zh) | 一种耐高温、低密度氧化铝纳米棒气凝胶及其制备方法 | |
CN111807817A (zh) | 一种高比表面积莫来石晶须-凹凸棒多孔陶瓷及其制备方法 | |
CN108840718B (zh) | 一种氧化铝泡沫陶瓷的制备方法 | |
CN108793911B (zh) | 一种利用发泡法制备镁质轻质骨料的方法 | |
JP5494024B2 (ja) | 多孔体とその製造方法 | |
CN104072142A (zh) | 一种氧化物结合SiC多孔陶瓷的制备方法 | |
CN116082030B (zh) | 一种利用未净化湿法磷酸生产的磷酸铝陶瓷及其方法与应用 | |
CN105272350A (zh) | 一种高孔隙率氧化铝多孔陶瓷的制备方法 | |
CN115894066B (zh) | 一种高孔隙率多孔陶瓷材料及其制备方法和应用 | |
CN107759240B (zh) | 一种Si3N4/BAS复相陶瓷材料的制备方法 | |
CN110981529A (zh) | 一种多孔陶瓷膜材料及其制备方法和应用 | |
CN115403365A (zh) | 一种宏观孔道结合微观孔隙的有序堇青石陶瓷的制备方法 | |
CN112759376B (zh) | 一种开口多孔类球状外形的莫来石纤维支撑体材料及其制备方法和应用 | |
CN114477979B (zh) | 一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210330 |