CN111514873B - 一种高熵氧化物/TiO2复合光触媒的制备方法 - Google Patents

一种高熵氧化物/TiO2复合光触媒的制备方法 Download PDF

Info

Publication number
CN111514873B
CN111514873B CN201910108402.6A CN201910108402A CN111514873B CN 111514873 B CN111514873 B CN 111514873B CN 201910108402 A CN201910108402 A CN 201910108402A CN 111514873 B CN111514873 B CN 111514873B
Authority
CN
China
Prior art keywords
tio
entropy oxide
photocatalyst
colloid
composite photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910108402.6A
Other languages
English (en)
Other versions
CN111514873A (zh
Inventor
尚国龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910108402.6A priority Critical patent/CN111514873B/zh
Publication of CN111514873A publication Critical patent/CN111514873A/zh
Application granted granted Critical
Publication of CN111514873B publication Critical patent/CN111514873B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • B01J35/23
    • B01J35/39
    • B01J35/393
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

本发明公开一种在可见光下应用的高效高熵氧化物/TiO2复合光触媒及其制备方法,所述TiO2光触媒的粒径尺寸在4~6nm,且具有高分散稳定性。该方法利用高熵氧化物的稳定化作用制备TiO2光触媒,该方法制备的光触媒粒径小、结晶性能和分散稳定性好,可见光光催化性能好;该制备方法不需要添加酸碱和乙醇,工艺简单、成本低、制备周期短。可见光照下,该光触媒可用于高效去除甲醛、苯及TVOC等,也可用于其他空气净化和环境保护等,具有良好的应用前景。

Description

一种高熵氧化物/TiO2复合光触媒的制备方法
技术领域
本发明涉及光触媒的制备方法,具体涉及一种可见光下应用的高熵氧化物/TiO2复合光触媒及其制备方法。
背景技术
近些年,太阳能的利用及环境污染的控制,成为人们特别关注的问题。目前,利用光催化降解有机污染物和光解水制氢已经成为处理环境污染问题和能源危机最有前途的方法之一。光触媒是一种以纳米级TiO2为代表的具有光催化功能的光半导体材料的总称,它涂布于基材表面,在紫外光线的作用下,产生强烈催化降解功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理;同时还具备除甲醛、除臭、抗污、净化空气等功能(大地,科学新闻,2001:13-15)。纳米TiO2作为一种半导体光催化材料,会将空气中的水或氧气催化成氧化能力极强的羟基自由基(OH)和超氧阴离子自由基、活性氧等具有极强氧化能力的光生活性基团,这些光生活性基团的能量相当于3600K的高温,具有很强的氧化性。强氧化性基团可强效分解各种具有不稳定化学键的有机化合物和部分无机物,并可破坏细菌的细胞膜和凝固病毒的蛋白质载体。在光催化研究领域,研究人员开发了TiO2,CdS,WO3和ZnO等半导体光催化剂,2000年以来又发现一些纳米贵金属(铂、铑、钯等)具有更好的光催化性能,但由于其中大多数易发生化学或光化学腐蚀,而贵金属成本则过高,都不适合作为家居净化空气用光触媒。近年来,TiO2光催化技术得到快速发展,但仍存在不少难题,例如光生载流子的量子效率和电子-空穴对的分离效率较低以及复合几率大,对太阳光的响应范围较小,利用率低,光催化剂的回收再利用有待进一步提高等,这些都是光催化技术未能实际应用的根本原因。(韦秋芳等,高等学校化学学报,2011:2483-2489)。目前有越来越多的研究者通过控制TiO2的形貌、晶型、特殊晶面暴露、掺杂、表面改性、制备纳米结构与电子结构控制等手段来提高TiO2光催化效率。
发明内容
本发明提出一种高熵氧化物/TiO2复合光触媒及其制备方法,与其他制备方法的显著区别是该法利用高熵氧化物的添加复合,高熵氧化物的稳定化作用,提高TiO2光触媒的活性。所得超微细TiO2复合光触媒尺寸只有4~6nm,且具有良好的水分散性、稳定性和喷涂便宜性。该复合光触媒可高效去除甲醛、苯、TVOC等(可见光照下),也可用于其他污水处理等,具有良好的应用前景。同时,该制备方法所得光触媒具有催化效率高、无毒无害等特点。
本发明的技术方案包括以下操作步骤:
(1)将一定量的TiO2纳米粉体加入到去离子水溶液中,搅拌获得TiO2胶体,记为A,其中,去离子水与TiO2的质量比为20~50∶1;更优选的情况下,去离子水与TiO2的质量比为35∶1
(2)向上述白色胶体中添加高熵氧化物,记为B,其中,高熵氧化物包含但不限于五种或五种以上等量的金属氧化物,如(Mg,Ni,Co,Cu,Zn)O;高熵氧化物与TiO2的质量比为0.002~0.01∶1;更优选的情况下,高熵氧化物与TiO2的质量比为0.006∶1。
(3)向B中添加三聚磷酸钠溶液,记为C,其中,三聚磷酸钠与TiO2的质量比为0.1~0.2∶1;更优选的情况下,三聚磷酸钠与TiO2的质量比为0.15∶1,三聚磷酸钠溶液浓度为50g/L。
(4)将C胶体再经过搅拌、超声分散、机械球磨后即得到高熵氧化物/TiO2复合光触媒。
对于上述技术方案,优选的情况下,步骤(4)中,搅拌反应时间为10~30h。
对于上述技术方案,优选的情况下,步骤(4)中,超声分散时间为2~4h。
对于上述技术方案,优选的情况下,步骤(4)中,机械球磨转速为500~700r/min,球磨时间为15~30h。
该技术方案优选条件下制备的光触媒,同时满足粉体粒径小且尺寸均一,结晶性能好与光催化活性高的特性,而高熵氧化物含量太低时得不到小尺寸的光触媒,含量升高,复合光触媒结晶性能变差,两者都会造成复合光触媒光催化活性的恶化。
现有技术中制备高催化活性光触媒一直是工艺上的难点,根本原因是高温热处理导致的超微细TiO2晶粒生长以及非高温条件下导致的光触媒结晶性能极差所致。本发明利用高熵氧化物制备复合光触媒的形成温度较低(低于100℃),可获得具有良好结晶状态的小尺寸TiO2,且TiO2粒子尺寸分散性能好。这是因为高熵氧化物具有高稳定性、存在不同金属离子之间的相互作用以及大量可行的元素组合。据报道,高熵氧化物可显著提高蓄电池的储存容量和循环稳定性,这种材料中原子无序分布的特点决定了其具备很高的稳定性。卡尔斯鲁厄技术研究所(KIT)的纳米技术专家霍斯特·哈恩(HorstHahn)团队经研究发现,使用高熵氧化物可以为电极定制独特的电化学性能。
有益效果
(1)制备过程温度适中,整个制备过程均在100℃以下,反应条件温和。
(2)高熵氧化物的添加量低,完全避免形成其它物相结构,使得终产物为TiO2单相结构,纯度高。
(3)可制备典型粒子尺寸在4~6nm的超微细光触媒。
(4)复合光触媒具有良好的结晶性。
(5)反应过程无需添加酸、碱或乙醇,使用的溶剂成本低,且不会造成环境污染。
(6)反应过程无需高压反应釜、真空设备,工艺简单、成本低、反应周期短、反应过程易于控制。
(7)复合光触媒在可见光下具有较高的光催化活性。
附图说明
图1为实施例1中高熵氧化物/TiO2复合光触媒的XRD图谱;分析谱图可知,实施例1TiO2具有锐钛矿相TiO2晶体结构,结晶质量良好,没有其他杂质物相存在,经过谢乐公式计算可知,晶粒尺寸为5.76nm。
图2为实施例1中高熵氧化物/TiO2复合光触媒的HRTEM照片,可以发现,TiO2为分散状态,粒径在~5nm;
图3为实施例1中高熵氧化物/TiO2复合光触媒和TiO2光触媒降解甲基橙的Abs曲线,可以发现,高熵氧化物/TiO2复合光触媒具有更好的光催化效果,Abs值为TiO2光触媒的一半左右,表明甲基橙的降解率提高了一倍左右。
具体实施方式
下述非限定性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
称取TiO2纳米粉体10g,量取去离子水350mL,搅拌获得TiO2胶体,将TiO2胶体置于烧杯中,常温下,边搅拌并加入高熵氧化物0.06g,加入50g/L的三聚磷酸钠1.5g,27℃搅拌20h,超声分散3h,将此胶体置于球磨转速为600转/分钟的球磨机上球磨24小时,制备得到高熵氧化物/TiO2复合光触媒。
称取TiO2纳米粉体10g,量取去离子水350mL,搅拌获得TiO2胶体,将TiO2胶体置于烧杯中,常温下,加入50g/L的三聚磷酸钠1.5g,27℃搅拌20h,超声分散3h,将此胶体置于球磨转速为600转/分钟的球磨机上球磨24小时,制备得到TiO2光触媒。
实施例1所述方法制得的高熵氧化物/TiO2复合光触媒的XRD图谱如图1;分析谱图可知,实施例1TiO2具有锐钛矿相TiO2晶体结构,结晶质量良好,没有其他杂质物相存在,经过谢乐公式计算可知,晶粒尺寸为5.76nm。
实施例1所述方法制得的高熵氧化物/TiO2复合光触媒的HRTEM照片如图2,可以发现,高熵氧化物/TiO2复合光触媒为高分散状态,粒径在5nm左右。
对实施例1所述方法制得的光触媒进行光催化降解甲基橙实验,图3为样品降解甲基橙紫外可见图谱分析图,可以发现,高熵氧化物/TiO2复合光触媒具有更好的光催化效果,Abs 值为TiO2光触媒的一半左右,表明甲基橙的降解率提高了一倍左右。
实施例2
称取TiO2纳米粉体10g,量取去离子水200mL,搅拌获得TiO2胶体。将TiO2胶体置于烧杯中,常温下,边搅拌并加入高熵氧化物0.02g,加入40g/L的三聚磷酸钠1g,20℃搅拌30h,超声分散2h,将此胶体置于球磨转速为500转/分钟的球磨机上球磨15小时,制备得到高熵氧化物/TiO2复合光触媒。经测定,该光触媒晶粒粒径为5.92nm。
实施例3
称取TiO2纳米粉体10g,量取去离子水500mL,搅拌获得TiO2胶体。将TiO2胶体置于烧杯中,常温下,边搅拌并加入高熵氧化物0.1g,加入60g/L的三聚磷酸钠2g,30℃搅拌20h,超声分散4h,将此胶体置于球磨转速为700转/分钟的球磨机上球磨30小时,制备得到高熵氧化物/TiO2复合光触媒。经测定,该光触媒晶粒粒径为4.15nm。
实施例4
称取TiO2纳米粉体10g,量取去离子水350mL,搅拌获得TiO2胶体。将TiO2胶体置于烧杯中,常温下,边搅拌并加入高熵氧化物0.1g,加入40g/L的三聚磷酸钠1.5g,35℃搅拌20h,超声分散3h,将此胶体置于球磨转速为600转/分钟的球磨机上球磨30小时,制备得到高熵氧化物/TiO2复合光触媒。经测定,该光触媒晶粒粒径为5.37nm。
实施例5
称取TiO2纳米粉体10g,量取去离子水400mL,搅拌获得TiO2胶体。将TiO2胶体置于烧杯中,常温下,边搅拌并加入高熵氧化物0.04g,加入50g/L的三聚磷酸钠1.2g,常温下搅拌30h,超声分散2h,将此胶体置于球磨转速为500转/分钟的球磨机上球磨30小时,制备得到高熵氧化物/TiO2复合光触媒。经测定,该光触媒晶粒粒径为5.67nm。
实施例6
称取TiO2纳米粉体10g,量取去离子水200mL,搅拌获得TiO2胶体。将TiO2胶体置于烧杯中,常温下,边搅拌并加入高熵氧化物0.08g,加入40g/L的三聚磷酸钠1.5g,35℃搅拌20h,超声分散3h,将此胶体置于球磨转速为600转/分钟的球磨机上球磨30小时,制备得到高熵氧化物/TiO2复合光触媒。经测定,该光触媒晶粒粒径为5.08nm。

Claims (10)

1.一种高熵氧化物/TiO2复合光触媒的制备方法,其特征在于:包括以下操作步骤,
(1)将一定量的TiO2纳米粉体加入到去离子水溶液中,搅拌获得TiO2胶体,记为A,其中,去离子水与TiO2的质量比为20~50∶1;
(2)向上述白色胶体中添加高熵氧化物,记为B,其中,高熵氧化物与TiO2的质量比为0.002~0.01∶1;
(3)向B中添加三聚磷酸钠溶液,记为C,其中,三聚磷酸钠与TiO2的质量比为0.1~0.2∶1;
(4)将C胶体再经过搅拌、超声分散、机械球磨后即得到高熵氧化物/TiO2复合光触媒。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,去离子水与TiO2的质量比为35∶1。
3.根据权利要求1所述的制备方法,其特征在于:步骤(2)中,高熵氧化物与TiO2的质量比为0.006∶1。
4.根据权利要求1所述的制备方法,其特征在于:步骤(2)中,高熵氧化物为五种或五种以上等量的金属氧化物。
5.根据权利要求4所述的制备方法,其特征在于:所述高熵氧化物为(Mg,Ni,Co,Cu,Zn)O。
6.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,三聚磷酸钠溶液的浓度为40~60g/L。
7.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,三聚磷酸钠溶液浓度为50g/L,三聚磷酸钠与TiO2的质量比为0.15∶1。
8.根据权利要求1所述的制备方法,其特征在于:步骤(4)中,搅拌时间为10~30h。
9.根据权利要求1所述的制备方法,其特征在于:步骤(4)中,超声分散时间为2~4h。
10.根据权利要求1所述的制备方法,其特征在于:步骤(4)中,机械球磨转速为500~700r/min,球磨时间为15~30h。
CN201910108402.6A 2019-02-01 2019-02-01 一种高熵氧化物/TiO2复合光触媒的制备方法 Active CN111514873B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910108402.6A CN111514873B (zh) 2019-02-01 2019-02-01 一种高熵氧化物/TiO2复合光触媒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910108402.6A CN111514873B (zh) 2019-02-01 2019-02-01 一种高熵氧化物/TiO2复合光触媒的制备方法

Publications (2)

Publication Number Publication Date
CN111514873A CN111514873A (zh) 2020-08-11
CN111514873B true CN111514873B (zh) 2022-06-07

Family

ID=71900735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910108402.6A Active CN111514873B (zh) 2019-02-01 2019-02-01 一种高熵氧化物/TiO2复合光触媒的制备方法

Country Status (1)

Country Link
CN (1) CN111514873B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114515584A (zh) * 2020-11-18 2022-05-20 上海云萍环保科技工作室 一种光触媒组合物及其制备方法、应用
CN113181922A (zh) * 2021-05-08 2021-07-30 南昌航空大学 一种Ag量子点修饰的高熵氧化物光催化剂制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042140A1 (en) * 1999-12-13 2001-06-14 Jonathan Sherman Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof
WO2002094720A1 (de) * 2001-05-18 2002-11-28 Christian Hubacek Vorrichtung zur veränderung von molekularen strukturen in flüssigkeiten
CN107043884A (zh) * 2017-04-13 2017-08-15 贵州理工学院 一种TiO颗粒增强CoCrCuFeNi高熵合金及其制备方法
CN107649108A (zh) * 2017-09-26 2018-02-02 大连交通大学 一种可见光高效光触媒及其制备方法
CN111790397A (zh) * 2020-06-30 2020-10-20 江苏大学 一种高熵金属氧化物催化剂的制备方法及其用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042140A1 (en) * 1999-12-13 2001-06-14 Jonathan Sherman Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof
WO2002094720A1 (de) * 2001-05-18 2002-11-28 Christian Hubacek Vorrichtung zur veränderung von molekularen strukturen in flüssigkeiten
CN107043884A (zh) * 2017-04-13 2017-08-15 贵州理工学院 一种TiO颗粒增强CoCrCuFeNi高熵合金及其制备方法
CN107649108A (zh) * 2017-09-26 2018-02-02 大连交通大学 一种可见光高效光触媒及其制备方法
CN111790397A (zh) * 2020-06-30 2020-10-20 江苏大学 一种高熵金属氧化物催化剂的制备方法及其用途

Also Published As

Publication number Publication date
CN111514873A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
Yu et al. Enhanced photocatalytic tetracycline degradation using N-CQDs/OV-BiOBr composites: Unraveling the complementary effects between N-CQDs and oxygen vacancy
Yang et al. Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO nn heterojunction microspheres
Pawar et al. A brief overview of TiO 2 photocatalyst for organic dye remediation: Case study of reaction mechanisms involved in Ce-TiO 2 photocatalysts system
Zhang et al. Photocatalytic degradation of rhodamine B using Bi4O5Br2-doped ZSM-5
Bai et al. High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol–gel and hydrothermal methods
CN107243340B (zh) 一种二氧化铈纳米棒掺杂二氧化钛纳米颗粒光催化剂的制备方法
Zhong et al. Preparation of a novel composite photocatalyst BiOBr/ZIF-67 for enhanced visible-light photocatalytic degradation of RhB
Yao et al. Preparation of core-shell MOF-5/Bi2WO6 composite for the enhanced photocatalytic degradation of pollutants
Rasheed et al. Synthesis and studies of ZnO doped with g-C3N4 nanocomposites for the degradation of tetracycline hydrochloride under the visible light irradiation
CN112142097B (zh) 三水合锡酸镉及其制备方法和应用
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN105368223B (zh) 一种丝光光触媒乳胶漆面漆及其生产工艺
Peng et al. Photocatalytic hydrogen evolution and decomposition of glycerol over C d0. 5 Z n0. 5 S solid solution under visible light irradiation
Gao et al. A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis
Zhang et al. Synthesis of SnO2/ZnO flowerlike composites photocatalyst for enhanced photocatalytic degradation of malachite green
CN111514873B (zh) 一种高熵氧化物/TiO2复合光触媒的制备方法
Zhao et al. Polyoxometalates-doped TiO 2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation
Zhang et al. Photocatalytic hydrogen evolution with simultaneous degradation of organics over (CuIn) 0.2 Zn1. 6S2 solid solution
Tang et al. A novel AgCl-based visible-light photocatalyst through in-situ assembly of carbon dots for efficient dye degradation and hydrogen evolution
Chen et al. Synthesis of halloysite nanotubes supported Bi-modified BaSnO3 photocatalysts for the enhanced degradation of methylene blue under visible light
Belghiti et al. Synthesis and characterization of Y2O3 partially coated ZnO for highly efficient photocatalytic degradation of sulfamethazine
Alwadai et al. Unlocking the synergistic potential of peanut shell derived activated carbon-doped TiO2 for highly efficient photocatalytic removal of organic dye under visible light irradiation
Sankeetha et al. Interaction of BiVO4 anchored 2D hexagonal boron nitride nanocomposite for photocatalytic water pollutants degradation and phytotoxicity assessment
Mondal et al. Nanocomposites of GaBr3 and BiBr3 Nanocrystals on BiOBr for the Photocatalytic Degradation of Dyes and Tetracycline
CN107649108B (zh) 一种可见光光触媒及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant