CN107649108A - 一种可见光高效光触媒及其制备方法 - Google Patents

一种可见光高效光触媒及其制备方法 Download PDF

Info

Publication number
CN107649108A
CN107649108A CN201710881546.6A CN201710881546A CN107649108A CN 107649108 A CN107649108 A CN 107649108A CN 201710881546 A CN201710881546 A CN 201710881546A CN 107649108 A CN107649108 A CN 107649108A
Authority
CN
China
Prior art keywords
tio
preparation
photocatalyst
mass ratio
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710881546.6A
Other languages
English (en)
Other versions
CN107649108B (zh
Inventor
刘世民
梁冬冬
赵东杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liantian nano technology (Dalian) Co.,Ltd.
Original Assignee
Dalian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Jiaotong University filed Critical Dalian Jiaotong University
Priority to CN201710881546.6A priority Critical patent/CN107649108B/zh
Publication of CN107649108A publication Critical patent/CN107649108A/zh
Application granted granted Critical
Publication of CN107649108B publication Critical patent/CN107649108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种在可见光下应用的高效TiO2光触媒,及其采用酸碱双电层剪切中和法制备的方法,所述TiO2光触媒的粒径尺寸在5~7nm,且具有高分散性、高结晶性。该方法利用油酸一次剪切、NaOH或KOH与聚丙烯酸二次剪切形成的双电层作用以及溶液中OH‑H的中和作用制备光触媒,该方法制备的光触媒粒径小、分散性能、结晶性能和可见光光催化性能好;该制备方法不需要高温煅烧,具有工艺简单、成本低、制备周期短等特点。可见光照下,该光触媒可用于高效去除甲醛、降解苯及其衍生物等领域,也可用于其他空气净化和环境保护等,具有良好的应用前景。

Description

一种可见光高效光触媒及其制备方法
技术领域
本发明涉及光触媒的制备方法,具体涉及一种可见光下应用的高效TiO2光触媒及其制备方法。
背景技术
纳米TiO2作为一种半导体光催化材料具有高催化活性、化学性能稳定、无毒、无污染、无刺激性、耐热性好、成本低廉等优点,被广泛应用于污水处理、空气净化、抗菌除臭、防污自清洁玻璃、光触媒等领域。光触媒是一种以纳米级TiO2为代表的具有光催化功能的光半导体材料的总称,它涂布于基材表面,在紫外光线的作用下,产生强烈催化降解功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理;同时还具备除甲醛、除臭、抗污、净化空气等功能(大地,科学新闻,2001:13-15)。将空气中的水或氧气催化成氧化能力极强的羟基自由基(·OH)和超氧阴离子自由基、活性氧等具有极强氧化能力的光生活性基团,这些光生活性基团的能量相当于3600K的高温,具有很强的氧化性。强氧化性基团可强效分解各种具有不稳定化学键的有机化合物和部分无机物,并可破坏细菌的细胞膜和凝固病毒的蛋白质载体。用紫外光照射TiO2电极也可进行水的电解反应,这就是著名的“本多作用”的光催化反应。光触媒材料主要有纳米TiO2、ZnO、CdS、WO3、Fe2O3、PbS、SnO2、ZnS、SrTiO3、SiO2等,2000年以来又发现一些纳米贵金属(铂、铑、钯等)具有更好的光催化性能,但由于其中大多数易发生化学或光化学腐蚀,而贵金属成本则过高,都不适合作为家居净化空气用光触媒。
TiO2的晶体结构一般分为锐钛矿(Anatase)、金红石(Rutile)和板钛矿三种结构。不同晶体结构的TiO2光触媒对光吸收和光催化也有一定的不同,而同一种晶体结构的不同粒径的TiO2光触媒也有一定的差异和影响。尽管TiO2的实际应用有很多,但是由于结构问题而受到限制,一方面受带隙宽度的限制,使TiO2对太阳光的利用率不到5%,不能充分利用太阳光中的可见光;另一方面由于光生电子/空穴对容易结合,催化的效率低。因此就要采取合适的措施使两方面得到优化,一方面要增强TiO2对可见光的吸收,提高TiO2对太阳光的利用率;另一方面要抑制光生电子/空穴对的结合,提高TiO2光催化的效率。目前有越来越多的研究者通过控制TiO2的形貌、晶型、特殊晶面暴露等手段来提高TiO2光催化效率和光电转换效率。
发明内容
本发明提出一种具有可见光高效光催化性能的光触媒及其新型制备方法-酸碱双电层剪切中和法,与其他制备方法的显著区别是该法利用双电层作用及中和作用制备光触媒,即利用油酸根与水合氢离子、Na正离子与聚丙烯酸根负离子形成的双电层作用以及溶液中OH根与H离子的中和作用,抑制TiO2的长大和聚集,所得超微细TiO2尺寸只有5~7nm,且具有良好的分散性和锐钛矿型TiO2晶体结构。该光触媒可用于高效去除甲醛、降解苯及其衍生物等领域(可见光照下),也可用于其他空气净化和环境保护等,具有良好的应用前景。同时,该制备方法所得光触媒具有催化效率高、无毒无害等特点。
本发明的技术方案包括以下操作步骤:
(1)制备TiO2胶体:常温下利用去离子水溶液稀释TiO2纳米粉体至白色胶体状,获得A胶体,其中,去离子水与TiO2的质量比为10~20:1;更优选的情况下,去离子水与TiO2的质量比为15:1;
(2)添加油酸:常温下向上述白色胶体中添加油酸,形成B胶体,其中,油酸与TiO2的质量比为0.05~0.15:1;更优选的情况下,油酸与TiO2的质量比为0.1:1;
(3)添加NaOH或KOH溶液:向B胶体中添加25~50g/L的NaOH或KOH溶液,搅拌后静置老化获得C胶体,其中,NaOH或KOH与TiO2的质量比为0.04~0.08:1;更优选的情况下,NaOH或KOH溶液浓度为40g/L,NaOH或KOH与TiO2的质量比为0.06:1。
(4)添加聚丙烯酸溶液:向C胶体中加入聚丙烯酸溶液,再经过搅拌、热处理、机械球磨后即得到可见光高效光触媒;其中,聚丙烯酸与TiO2的质量比为0.08~0.12:1。更优选的情况下聚丙烯酸与TiO2的质量比为0.1:1,该优选条件下制备的光触媒,同时满足粉体粒径小且尺寸均一,分散性能、稳定性能与结晶性能好的特性,而聚丙烯酸、NaOH或KOH浓度与含量太低时得不到稳定的浆料,浓度与含量升高,晶粒尺寸难以控制,甚至造成浆料中形成大颗粒(尺寸达到几十纳米)。
油酸可吸附于TiO2表面生成油酸根负离子与水合氢离子正离子(H3O+)双电层,TiO2纳米粒子因双电层静电剪切作用分散形成小颗粒,但此时胶体显示酸性。NaOH或KOH可溶于水形成Na、K正离子和OH根负离子,同时聚丙烯酸溶于水形成聚丙烯酸根负离子和H正离子,Na、K正离子与聚丙烯酸根极易络合于颗粒表面形成双电层,该双电层抑制TiO2相互靠近和聚结,降低了电子-空穴的复合,OH根离子和H离子生成水,使得粉体显示中性,最终实现可见光高效光触媒的制备。
现有技术中制备粒径尺寸在5~7nm的高分散光触媒一直是工艺上的难点,根本原因是高温热处理导致的超微细TiO2晶粒生长以及颗粒尺寸过小和高比表面能引起的粒子团聚,团聚体尺寸达到几百纳米。本发明的酸碱双电层剪切中和法使得光触媒的形成温度较低(低于50℃),可获得具有良好结晶状态的TiO2,且TiO2粒子尺寸极小,分散性能好。
对于上述技术方案,优选的情况下,步骤(4)中,热处理反应温度为25~40℃。
对于上述技术方案,优选的情况下,步骤(4)中,搅拌反应时间为1~3h。
对于上述技术方案,优选的情况下,步骤(4)中,静置老化时间为1~3h,老化温度为30~50℃,最优老化时间为3h,老化温度为40℃。
对于上述技术方案,优选的情况下,步骤(4)中,机械球磨转速为300~600r/min,球磨时间为24~48h。
有益效果
(1)不需要较高温度的热处理过程,整个制备过程均在50℃以下,反应条件温和,可直接获得光触媒。
(2)酸碱剪切过程完全避免形成酸性溶液或氢氧化物等其它物相结构,使得终产物显中性,纯度高。
(3)可制备超微细TiO2,典型的粒子尺寸在5~7nm。
(4)TiO2具有高分散性和良好的结晶性。
(5)反应过程无需乙醇洗涤,使用的溶剂成本低,且不会造成环境污染。
(6)无需高压反应釜等设备,工艺简单、成本低、反应周期短、反应过程易于控制且能耗低。
(7)所制备得到的光触媒在可见光下具有较高的光催化降解有机物的效果。
附图说明
图1为实施例1中TiO2的XRD图谱;分析谱图可知,实施例1TiO2具有锐钛矿相TiO2晶体结构,结晶质量良好,没有其他杂质物相存在,经过谢乐公式计算可知,晶粒尺寸为6.08nm。
图2为实施例1中加入油酸前TiO2的HRTEM照片,可以发现,TiO2为团聚状态,粒径在300~400nm;
图3为实施例1中球磨后TiO2的HRTEM照片,可以发现,TiO2为高分散状态,粒径在6nm左右;
图4为实施例1中样品降解甲基橙前后的紫外可见图谱分析图,光催化前,甲基橙浓度很高,对应吸光度有明显的吸收峰,可见光催化2小时后,甲基橙被分解为二氧化碳和水,浓度降低,吸收峰转变为一条直线,结果表明:所制得的光触媒在可见光下可以高效降解有机物甲基橙。
具体实施方式
下述非限定性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
原料TiO2纳米粉体的平均粒径约为350nm,如图2所示。
实施例1
量取去离子水100mL,TiO2纳米粉体10g,搅拌获得TiO2胶体,图2为其HRTEM照片,可以发现,TiO2为团聚状态,粒径约350nm;
将上述原料置于单口烧瓶中,常温下,边搅拌并加入油酸0.5g,25g/L的NaOH0.48g,加入聚丙烯酸1g,25℃搅拌1h,老化温度为30℃,老化时间为3h,将此胶体置于球磨罐中放置在双辊球磨机上球磨24小时,球磨转速为300转/分钟,制备得到可见光高效光触媒。
实施例1所述方法制得的光触媒的XRD图谱如图1;分析谱图可知,实施例1TiO2具有锐钛矿相TiO2晶体结构,结晶质量良好,没有其他杂质物相存在,经过谢乐公式计算可知,晶粒尺寸为6.08nm。
实施例1所述方法制得的光触媒的HRTEM照片如图3,可以发现,TiO2为高分散状态,粒径在6nm左右。
对实施例1所述方法制得的光触媒进行光催化降解甲基橙实验,图4为样品降解甲基橙前后的紫外可见图谱分析图,光催化前,甲基橙浓度很高,对应吸光度有明显的吸收峰,可见光催化2小时后,甲基橙被分解为二氧化碳和水,浓度降低,吸收峰转变为一条直线,结果表明:所制得的光触媒在可见光下可以高效降解有机物甲基橙。
实施例2
量取去离子水60mL,TiO2纳米粉体3g,搅拌获得TiO2胶体,将上述原料置于单口烧瓶中,常温下边搅拌并加入油酸0.45g,50g/L的KOH 0.12g,加入聚丙烯酸0.24g,35℃搅拌3h,老化温度为50℃,老化时间为1h,将此胶体置于球磨罐中放置在双辊球磨机上球磨48小时,球磨转速为600转/分钟,制备得到可见光高效光触媒。经测定,粉体晶粒粒径为5.95nm。
实施例3
量取去离子水90mL,TiO2纳米粉体5g,搅拌获得TiO2胶体,将上述原料置于单口烧瓶中,常温下边搅拌并加入油酸0.5g,50g/L的NaOH 0.4g,加入聚丙烯酸0.6g,40℃搅拌1h,老化温度为40℃,老化时间为2h,将此胶体置于球磨罐中放置在双辊球磨机上球磨24小时,球磨转速为500转/分钟,制备得到可见光高效光触媒。经测定,粉体晶粒粒径为6.03nm。
实施例4
量取去离子水120mL,TiO2纳米粉体8g,搅拌获得TiO2胶体,将上述原料置于单口烧瓶中,常温下边搅拌并加入油酸0.8g,40g/L的KOH 0.48g,加入聚丙烯酸0.8g,35℃搅拌2h,老化温度为40℃,老化时间为1h,将此胶体置于球磨罐中放置在双辊球磨机上球磨24小时,球磨转速为500转/分钟,制备得到可见光高效光触媒。经测定,粉体晶粒粒径为5.35nm。
实施例5
量取去离子水75mL,TiO2纳米粉体5g,搅拌获得TiO2胶体,将上述原料置于单口烧瓶中,常温下边搅拌并加入油酸0.5g,30g/L的NaOH 0.4g,加入聚丙烯酸0.6g,25℃搅拌3h,老化温度为30℃,老化时间为3h,将此胶体置于球磨罐中放置在双辊球磨机上球磨36小时,球磨转速为300转/分钟,制备得到可见光高效光触媒。经测定,粉体晶粒粒径为5.62nm。
实施例6
量取去离子水90mL,TiO2纳米粉体9g,搅拌获得TiO2胶体,将上述原料置于单口烧瓶中,常温下边搅拌并加入油酸0.45g,25g/L的KOH 0.72g,加入聚丙烯酸1g,40℃搅拌2h,老化温度为50℃,老化时间为1h,将此胶体置于球磨罐中放置在双辊球磨机上球磨48小时,球磨转速为600转/分钟,制备得到可见光高效光触媒。经测定,粉体晶粒粒径为6.88nm。
实施例7
量取去离子水60mL,TiO2纳米粉体4g,搅拌获得TiO2胶体,将上述原料置于单口烧瓶中,常温下边搅拌并加入油酸0.6g,50g/L的NaOH 0.24g,加入聚丙烯酸0.4g,35℃搅拌2h,老化温度为50℃,老化时间为1h,将此胶体置于球磨罐中放置在双辊球磨机上球磨48小时,球磨转速为500转/分钟,制备得到可见光高效光触媒。经测定,粉体晶粒粒径为6.38nm。
实施例8
量取去离子水60mL,TiO2纳米粉体3g,搅拌获得TiO2胶体,将上述原料置于单口烧瓶中,常温下边搅拌并加入油酸0.3g,40g/L的KOH 0.18g,加入聚丙烯酸0.36g,40℃搅拌1h,老化温度为30℃,老化时间为3h,将此胶体置于球磨罐中放置在双辊球磨机上球磨36小时,球磨转速为600转/分钟,制备得到可见光高效光触媒。经测定,粉体晶粒粒径为6.05nm。

Claims (10)

1.一种可见光高效光触媒的制备方法,其特征在于:包括以下操作步骤,
(1)利用去离子水稀释TiO2纳米粉体至白色胶体状,获得A胶体,其中,去离子水与TiO2的质量比为10~20:1;
(2)向上述白色胶体中添加油酸,形成B胶体,其中,油酸与TiO2的质量比为0.05~0.15:1;
(3)向B胶体中添加NaOH或KOH溶液,搅拌后获得C胶体,其中,NaOH或KOH与TiO2的质量比为0.04~0.08:1;
(4)向C胶体中加入聚丙烯酸溶液,再经过搅拌、热处理、静置老化、机械球磨后即得到可见光高效光触媒;其中,聚丙烯酸与TiO2的质量比为0.08~0.12:1。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,去离子水与TiO2的质量比为15:1。
3.根据权利要求1所述的制备方法,其特征在于:步骤(2)中,油酸与TiO2的质量比为0.1:1。
4.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,NaOH或KOH溶液的浓度为25~50g/L。
5.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,NaOH或KOH溶液浓度为40g/L,NaOH或KOH与TiO2的质量比为0.06:1。
6.根据权利要求1所述的制备方法,其特征在于:步骤(4)中,聚丙烯酸与TiO2的质量比为0.1:1。
7.根据权利要求1所述的制备方法,其特征在于:步骤(4)中,热处理反应温度为25~40℃。
8.根据权利要求1所述的制备方法,其特征在于:步骤(4)中,搅拌反应时间为1~3h。
9.根据权利要求1所述的制备方法,其特征在于:步骤(4)中,静置老化时间为2~4h,老化温度为30~50℃。
10.根据权利要求1所述的制备方法,其特征在于:步骤(4)中,机械球磨转速为300~600r/min,球磨时间为24~48h。
CN201710881546.6A 2017-09-26 2017-09-26 一种可见光光触媒及其制备方法 Active CN107649108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710881546.6A CN107649108B (zh) 2017-09-26 2017-09-26 一种可见光光触媒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710881546.6A CN107649108B (zh) 2017-09-26 2017-09-26 一种可见光光触媒及其制备方法

Publications (2)

Publication Number Publication Date
CN107649108A true CN107649108A (zh) 2018-02-02
CN107649108B CN107649108B (zh) 2020-02-14

Family

ID=61131135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710881546.6A Active CN107649108B (zh) 2017-09-26 2017-09-26 一种可见光光触媒及其制备方法

Country Status (1)

Country Link
CN (1) CN107649108B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111514873A (zh) * 2019-02-01 2020-08-11 尚国龙 一种高熵氧化物/TiO2复合光触媒的制备方法
CN111530505A (zh) * 2020-05-26 2020-08-14 霸州市纽莱客家具有限公司 一种用于室内家具净化的光触媒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079798A (zh) * 2010-12-11 2011-06-01 上海纳米技术及应用国家工程研究中心有限公司 改性纳米二氧化钛粉体制备高浓乳液的方法
CN102492317A (zh) * 2011-10-17 2012-06-13 大连交通大学 锑掺杂氧化锡浆料及其制备方法
CN105060339A (zh) * 2015-07-23 2015-11-18 大连交通大学 一种二氧化锡量子点的低温制备方法
US20160001266A1 (en) * 2013-03-15 2016-01-07 Daicel Corporation Titanium oxide dispersion liquid, titanium oxide coating liquid, and photocatalyst coating film
CN107118593A (zh) * 2017-05-15 2017-09-01 柳州博泽科技有限公司 纳米二氧化钛的表面处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079798A (zh) * 2010-12-11 2011-06-01 上海纳米技术及应用国家工程研究中心有限公司 改性纳米二氧化钛粉体制备高浓乳液的方法
CN102492317A (zh) * 2011-10-17 2012-06-13 大连交通大学 锑掺杂氧化锡浆料及其制备方法
US20160001266A1 (en) * 2013-03-15 2016-01-07 Daicel Corporation Titanium oxide dispersion liquid, titanium oxide coating liquid, and photocatalyst coating film
CN105060339A (zh) * 2015-07-23 2015-11-18 大连交通大学 一种二氧化锡量子点的低温制备方法
CN107118593A (zh) * 2017-05-15 2017-09-01 柳州博泽科技有限公司 纳米二氧化钛的表面处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
郭晓玲: ""纳米TiO_2在水性介质中的分散研究"", 《纺织高校基础科学学报》 *
鄢程: ""纳米TiO_2颗粒的表面改性研究进展"", 《陶瓷学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111514873A (zh) * 2019-02-01 2020-08-11 尚国龙 一种高熵氧化物/TiO2复合光触媒的制备方法
CN111514873B (zh) * 2019-02-01 2022-06-07 尚国龙 一种高熵氧化物/TiO2复合光触媒的制备方法
CN111530505A (zh) * 2020-05-26 2020-08-14 霸州市纽莱客家具有限公司 一种用于室内家具净化的光触媒

Also Published As

Publication number Publication date
CN107649108B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
Kallawar et al. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges
Sun et al. A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue
Zaleska Doped-TiO2: a review
Li et al. Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties
Abdel-Messih et al. Photocatalytic decolorization of Rhodamine B dye using novel mesoporous SnO2–TiO2 nano mixed oxides prepared by sol–gel method
CA2923123C (en) Titania particles and a process for their production
Shirsath et al. Ultrasound assisted synthesis of doped TiO2 nano-particles: characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent
Zhu et al. Hydrothermal synthesis of nanostructures Bi12TiO20 and their photocatalytic activity on acid orange 7 under visible light
Smith et al. Sulfated Fe2O3–TiO2 synthesized from ilmenite ore: a visible light active photocatalyst
An et al. Nanoporous hydrogenated TiO2 photocatalysts generated by underwater discharge plasma treatment for solar photocatalytic applications
Ghaderi et al. Synthesis of SnO2 and ZnO nanoparticles and SnO2-ZnO hybrid for the photocatalytic oxidation of methyl orange
CN107098381B (zh) 特殊形貌的钛酸锌光催化材料的制备方法
CN101972653B (zh) 一种锐钛矿型纳米Ag/TiO2复合材料的制备方法
Salari Efficient photocatalytic degradation of environmental pollutant with enhanced photocarrier separation in novel Z-scheme a-MnO2 nanorod/a-MoO3 nanocomposites
CN101306838A (zh) 高稳定中性混晶纳米TiO2水溶胶的制备方法
Abdelsamad et al. Enhanced photocatalytic degradation of textile wastewater using Ag/ZnO thin films
CN102380366B (zh) 铋、硅共掺杂的纳米二氧化钛光催化剂及其制备、应用
He Facile synthesis of ultrafine CuS nanocrystalline/TiO2: Fe nanotubes hybrids and their photocatalytic and Fenton-like photocatalytic activities in the dye degradation
CN102600822A (zh) 碳掺杂的二氧化硅-二氧化钛复合光催化剂及其制备方法
Lee et al. Influence of visible-light irradiation on physicochemical and photocatalytic properties of nitrogen-doped three-dimensional (3D) titanium dioxide
Heshmatpour et al. A probe into the effect of fixing the titanium dioxide by a conductive polymer and ceramic on the photocatalytic activity for degradation of organic pollutants
Li et al. Nanocrystalline Co2+/F− codoped TiO2–SiO2 composite films for environmental applications
Cheng et al. Enhanced Visible Light Photocatalytic Activity of Mesoporous Anatase Codoped with Nitrogen and Chlorine
Jiang et al. Pr, N, and P tri-doped anatase TiO2 nanosheets with enhanced photocatalytic activity under sunlight
Suhan et al. Sustainable pollutant removal and wastewater remediation using TiO2-based nanocomposites: A critical review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211209

Address after: 116000 Room 608, Kunlun office, No. 9, Worker Street, Zhongshan District, Dalian City, Liaoning Province

Patentee after: Liantian nano technology (Dalian) Co.,Ltd.

Address before: 116028 No. 794, the Yellow River Road, Shahekou District, Liaoning, Dalian

Patentee before: Dalian Jiaotong University

TR01 Transfer of patent right