CN111514118B - 一种葡萄糖改性的聚乳酸立构复合物载药微球制备方法及产品 - Google Patents

一种葡萄糖改性的聚乳酸立构复合物载药微球制备方法及产品 Download PDF

Info

Publication number
CN111514118B
CN111514118B CN202010375071.5A CN202010375071A CN111514118B CN 111514118 B CN111514118 B CN 111514118B CN 202010375071 A CN202010375071 A CN 202010375071A CN 111514118 B CN111514118 B CN 111514118B
Authority
CN
China
Prior art keywords
glucose
drug
polylactic acid
pllag
pdla
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010375071.5A
Other languages
English (en)
Other versions
CN111514118A (zh
Inventor
高勤卫
刘婷婷
祁俐燕
朱前进
常开新
曹丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202010375071.5A priority Critical patent/CN111514118B/zh
Publication of CN111514118A publication Critical patent/CN111514118A/zh
Application granted granted Critical
Publication of CN111514118B publication Critical patent/CN111514118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Engineering & Computer Science (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)

Abstract

本发明公开了一种葡萄糖改性的聚乳酸立构复合物载药微球的制备方法及产品,本发明采用聚L‑乳酸‑葡萄糖共聚物改性聚D‑乳酸制备聚乳酸立构复合物,以聚L‑乳酸‑葡萄糖共聚物、聚D‑乳酸和布洛芬的共混溶液为有机相、聚乙烯醇水溶液为水相制备水包油乳液,采用乳液‑溶剂挥发法制备葡萄糖改性聚乳酸立构复合物载药微球,利用聚乳酸对映体的立构复合作用与两亲性聚L‑乳酸‑葡萄糖共聚物的自组装作用提高载药微球的生物相容性、载药率和包封率。

Description

一种葡萄糖改性的聚乳酸立构复合物载药微球制备方法及 产品
技术领域:
本发明涉及一种可降解药物载体材料,特别是一种葡萄糖改性的聚乳酸立构复合物载药微球的制备方法。
本发明还涉及上述方法得到的复合载药微球。
背景技术:
布洛芬(IBF)是世界卫生组织和美国FDA唯一共同推荐的儿童退烧药,因其抗炎、解痛和退热作用均优于阿司匹林、保泰松和扑热息等药物而倍受青睐。布洛芬的副作用较小,但其胃毒性作用较强,各种胃肠道刺激症状的发生率极高(约30~40%),超量或长期过量使用布洛芬也可能发生肾功衰竭。布洛芬因其水溶性差、生物利用度低,因此需要多次、大剂量或长时间给药,导致毒副作用,严重影响了临床效果。载药微球是避免耐药性和提高药物组合有效性的有效途径,可生物降解聚合物载药微球已获得广泛关注。
聚乳酸(PLA)在人体内可安全降解,是美国FDA批准的药用辅料,在新型药物载体市场潜力巨大。但PLA药物载体材料也存在性能缺陷:(1)PLA的分子量较低时,其耐热性和力学强度较差,微粒易破破损。而PLA分子量高时,其分散性差,微粒尺寸和控释速率难控制。这些都可能使载药微球无法长期释放而造成药物浪费,增加了药物的副作用;(2)PLA微球亲水性低,与机体细胞缺少特异性的结合,细胞摄取能力不强,药物吸收效果不佳。
聚乳酸与亲水性单体或聚合物等共混或共聚则可以改善性能,通过调节聚合物分子量、体系组成和分子链结构等因素来控制聚乳酸材料的结晶性能、降解速度、亲水性和细胞相容性等。中国专利CN104739783B公开了一种改良物理法制备包载亲水性蛋白类药物的聚乳酸-羟基乙酸共聚物/壳聚糖(CS)载药微球的方法,该发明首先对聚乳酸-羟基乙酸共聚物(PLGA)进行表面水解改性增加其羧基含量,提高其电荷量,为了进一步提高载药率、延长缓释时间,采用层层自组装技术制备多层复合PLGA-CS载药复合微球,但是该复合载体的制备过程复杂,药物包载率没有显著提高。刘耀文等采用水包油(O/W)乳液和离子凝胶法,将肉桂精油(CEO)包裹在壳聚糖(CS)纳米粒子中,以静电纺丝方法制备了聚乳酸与CS-CEO复合纤维。该纤维抗菌性能良好,在食品包装中具有广阔的应用前景(Nanomaterials,2017,7(7):194-207.)。PLA包括聚L-乳酸(PLLA)和聚D-乳酸(PDLA)两种光学异构体,且其光学活性对PLA性能具有显著影响。聚乳酸及其共聚物的降解速率随着分子量、组成的不同而变化,对映体立构复合共混形成立构复合结晶成为了最有效简单的改性方法之一,可以改善PLA材料的结晶性能和热性能。亲水性的葡萄糖结构简单、来源广泛、价格低廉且绿色无污染。葡萄糖可与L-乳酸或D-乳酸直接熔融缩聚制备两亲性的聚乳酸-葡萄糖共聚物,可以改善PLA材料的亲水性和细胞相容性。直接熔融缩聚制备的PLA及其共聚物分子量较低,但这更有利于sc-PLA中立构复合结晶结构的形成,从而综合改善PLA的各项性能。曹丹、高勤卫等以乳酸和葡萄糖为原料,熔融聚合制备了聚L-乳酸-葡萄糖共聚物和聚D-乳酸-葡萄糖共聚物,并采用溶液共混法制备了含葡萄糖基的聚乳酸立构复合物,改善了PLA材料的结晶性能、亲水性和热性能(林产化学与工业,2018,38(5):17-22)。
本发明利用聚L-乳酸-葡萄糖共聚物改性聚D-乳酸制备聚乳酸立构复合物,以聚乳酸立构复合物和布洛芬的共混溶液为有机相、聚乙烯醇水溶液为水相制备水包油乳液,采用乳液-溶剂挥发法制备布洛芬葡萄糖改性聚乳酸立构复合物载药微球,利用聚乳酸对映体的立构复合作用与两亲性聚L-乳酸-葡萄糖共聚物的自组装作用提高载药微球的生物相容性、载药率和包封率,延长缓释时间。
发明内容:
本发明是为了解决现有技术中的上述不足而完成的,本发明的目的是提供葡萄糖改性的聚乳酸立构复合物载药微球制备方法及产品。
实现本发明目的所采用的技术方案如下:
本发明利用聚L-乳酸-葡萄糖共聚物(PLLAG)改性聚D-乳酸(PDLA)制备聚乳酸立构复合物,采用乳液-溶剂挥发法制备葡萄糖改性聚乳酸立构复合物载药微球。
所述的葡萄糖改性的聚乳酸立构复合物载药微球的制备步骤包括:(1)聚乳酸立构复合物和布洛芬的共混溶液制备:称取一定量的布洛芬(IBF)、等量的PDLA和PLLAG,常温下溶于三氯甲烷中,配制聚合物总质量分数为10%的PDLA-PLLAG-IBF共混溶液,即为聚乳酸立构复合物与布洛芬的共混溶液;(2)葡萄糖改性聚乳酸立构复合物载药微球的制备:称取一定量的聚乙烯醇(PVA)和乳化剂溶于去离子水中,配成浓度为1%的PVA水溶液作为水相,在冰盐浴冷却下,使用均质机高速搅拌PVA水溶液一段时间,使水相稳定。将PDLA-PLLAG-IBF共混溶液逐滴加入PVA水溶液中(控制水油体积比≤100∶1),高速搅拌一段时间,得到白色水包油乳液,室温下真空静置10h后,在-70℃真空冷冻干燥24h,得到干燥的葡萄糖改性聚乳酸立构复合物载药微球粉末。
进一步的,所述的聚L-乳酸-葡萄糖共聚物,其分子链中葡萄糖基团的质量含量为0~5%。
进一步的,所述的聚D-乳酸、聚L-乳酸-葡萄糖共聚物、布洛芬共混溶液中,布洛芬的质量为PDLA与PLLAG的总质量的10-100%。
进一步的,所述的聚乙烯醇水溶液中,乳化剂的含量为0~1%。
本发明还进一步要求保护上述方法制备的葡萄糖改性聚乳酸立构复合物载药微球。
附图说明:
图1是本发明的葡萄糖改性聚乳酸立构复合物载药微球的粒径分布图。
图2是本发明的葡萄糖改性聚乳酸立构复合物载药微球的透射电镜图。
具体实施方式:
下面结合附图和具体的实施例和对比例对本发明进行详细说明。实施例所述的具体的物料配比、工艺条件及其结果仅用于说明本发明,并不作为对本发明的限定。
实施例1:
称取1g的PDLA、1g的PLLAG(其葡萄糖含量为5%)、2g的布洛芬,常温下溶于20mL三氯甲烷中,搅拌均匀,配制成聚合物总质量分数为10%的PDLA-PLLAG-IBF共混溶液;称取1g的聚乙烯醇(PVA)和1g乳化剂溶于去离子水中,配成浓度为1%PVA水溶液,将反应器置于冰盐浴冷却下,使用均质机以搅拌速度为25000rpm搅拌30s,使水相稳定;向PVA水溶液中逐滴加入PDLA-PLLAG-IBF共混溶液,控制水油体积比为100∶1,在25000rpm下搅拌300s,得到白色乳液。所得的乳液室温下真空静置10h后测定粒度分布,然后-70℃下真空冷冻干燥24h,得到干燥的葡萄糖改性聚乳酸立构复合物载药微球粉末。所得产品的水接触角、载药率、包封率、平均粒径见表1。
实施例2:
称取1g PDLA、1g PLLAG(其葡萄糖含量为0.5%)、2g的布洛芬,溶于20mL三氯甲烷中,配成聚合物总质量分数为10%的PDLA-PLLAG-IBF共混溶液;称取1g聚乙烯醇和1g乳化剂溶于去离子水中,配成浓度为1%PVA水溶液作为水相,在冰盐浴冷却下,使用均质机以25000rpm的速度搅拌30s使其稳定;向PVA水溶液中逐滴加入PDLA-PLLAG-IBF溶液,控制水油比为30∶1,在25000rpm下持续搅拌300s,制备得到白色乳液。所得的乳液室温下真空静置10h后测定粒度分布,最后在-70℃下真空冷冻干燥24h,得到葡萄糖改性聚乳酸立构复合物载药微球粉末,该产品的性能参数见表1。
实施例3:
称取1g PDLA、1g PLLAG(其葡萄糖含量为2%)、2g布洛芬,常温下溶于20mL三氯甲烷中,配成聚合物总质量分数为10%的PDLA-PLLAG-IBF共混溶液;称取1g聚乙烯醇(PVA)和0.5g乳化剂,溶于去离子水中,配成1%的PVA水溶液,将反应器置于冰盐浴冷却下,使用均质机以25000rpm的速度搅拌30s使其稳定;向PVA水溶液中逐滴加入PDLA-PLLAG-IBF共混溶液,控制水油比为60∶1,在25000rpm下持续搅拌300s,得到白色乳液,室温下真空静置10h后,测定粒度分布,最后在-70℃下真空冷冻干燥24h,得到干燥的葡萄糖改性聚乳酸立构复合物载药微球粉末,该产品的性能参数见表1。
实施例4:
称取1g PDLA、1g PLLAG(其葡萄糖含量为2%)、1g布洛芬,常温下溶于20mL三氯甲烷中,搅拌均匀,配制聚合物总质量分数为10%的PDLA-PLLAG-IBF共混溶液;不使用乳化剂,称取1g聚乙烯醇溶于去离子水中配成浓度为1%PVA水溶液,将反应器置于冰盐浴冷却下,使用均质机以25000rpm的速度搅拌30s,使水相稳定;向PVA水溶液中逐滴加入PDLA-PLLAG-IBF共混溶液,控制水油比为90∶1,在25000rpm下持续搅拌300s,得到白色乳液,室温下真空静置10h后,最后在-70℃下真空冷冻干燥24h,得到干燥的葡萄糖改性聚乳酸立构复合物载药微球粉末。所得产品的水接触角、载药率、包封率、平均粒径见表1。
对比实施例1:
称取1g PDLA和1g的布洛芬,常温下溶于10mL三氯甲烷中,搅拌均匀,配制成聚合物总质量分数为10%的PDLA-IBF共混溶液;称取1g聚乙烯醇和1g乳化剂溶于去离子水中,配成浓度为1%PVA水溶液,将反应器置于冰盐浴冷却下,使用均质机以搅拌速度为25000rpm搅拌30s,使水相稳定;向PVA水溶液中逐滴加入PDLA-IBF共混溶液,控制水油体积比为100∶1,在25000rpm下持续搅拌300s,得到白色乳液,室温下真空静置10h后,测定粒度分布,最后在-70℃下真空冷冻干燥24h,得到干燥的聚D-乳酸载药微球粉末。所得产品的水接触角、载药率、包封率、平均粒径见表1。
对比实施例2:
称取1g聚L-乳酸-葡萄糖共聚物(其葡萄糖的含量为5%)和1g布洛芬,常温下溶于10mL三氯甲烷中,搅拌均匀,配制成聚合物总质量分数为10%的PLLAG-IBF共混溶液;称取1g聚乙烯醇(PVA)和1g乳化剂溶于去离子水中,配成浓度为1%PVA水溶液,将反应器置于冰盐浴冷却下,使用均质机以搅拌速度为25000rpm搅拌30s,使水相稳定;向PVA水溶液中逐滴加入PLLAG-IBF共混溶液,控制水油体积比为100∶1,在25000rpm下持续搅拌300s,得到白色乳液,室温下真空静置10h后,测定粒度分布,最后在-70℃下真空冷冻干燥24h,得到干燥的聚L-乳酸-葡萄糖共聚物载药微球粉末。所得产品的水接触角、载药率、包封率、平均粒径见表1。
有益效果
由对比实施例1、2可知,等量的PDLA与PLLAG共混,所得的聚乳酸立构复合物纳米微球的亲水性、载药率和包封率均高于相应光学活性的聚D-乳酸、聚L-乳酸-葡萄糖共聚物,表明聚D-乳酸与两亲性的聚L-乳酸-葡萄糖共聚物所形成的聚乳酸立构复合物,其纳米微球更适合用作布洛芬的药物载体。
上述仅对本发明中的几种具体实施例加以说明,但并不能作为本发明的保护范围,凡是依据本发明中的设计精神所做出的等效变化或修饰或等比例放大或缩小等,均应认为落入本发明的保护范围。
表1.PDLA、PLLAG及葡萄糖改性聚乳酸立构复合物载药微球的性能参数
Figure BSA0000208015090000051

Claims (4)

1.一种葡萄糖改性的聚乳酸立构复合物载药微球的制备方法,其特征在于所述方法包括以下步骤:
(1)葡萄糖改性的聚乳酸立构复合物与布洛芬(IBF)共混溶液的制备:称取一定量的布洛芬(IBF)、等量的聚D-乳酸(PDLA)和聚L-乳酸-葡萄糖共聚物(PLLAG),常温下溶于三氯甲烷中,得到聚合物总质量分数为10%的PDLA-PLLAG-IBF共混溶液;
(2)葡萄糖改性的聚乳酸立构复合物载药微球的制备:称取一定量的聚乙烯醇(PVA)和乳化剂溶于去离子水中,配成浓度为1%的PVA水溶液,在冰盐浴冷却下,使用均质机高速搅拌PVA水溶液,使作为水相的PVA水溶液稳定, 将PDLA-PLLAG-IBF共混溶液逐滴加入PVA水溶液中,且PVA水溶液与PDLA-PLLAG-IBF三氯甲烷溶液的体积比≤100∶1,高速搅拌一段时间得到水包油乳液,所得的乳液室温下真空静置10h后,真空冷冻干燥24h后即得PLLA-PDLAG载药微球粉末产品。
2.权利要求1所述的葡萄糖改性的聚乳酸立构复合物载药微球的制备方法,其特征在于:所述的聚L-乳酸-葡萄糖共聚物,其分子链中葡萄糖基团的质量含量为0.05%~5%。
3.权利要求1所述的葡萄糖改性的聚乳酸立构复合物载药微球的制备方法,其特征在于:所述的PDLA-PLLAG-IBF共混溶液中,布洛芬的质量为PLLA与PDLAG总质量的10-100%。
4.一种葡萄糖改性的聚乳酸立构复合物载药微球,其特征在于是根据权利要求1的方法制备得到的布洛芬聚乳酸立构复合物载药微球。
CN202010375071.5A 2020-05-06 2020-05-06 一种葡萄糖改性的聚乳酸立构复合物载药微球制备方法及产品 Active CN111514118B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010375071.5A CN111514118B (zh) 2020-05-06 2020-05-06 一种葡萄糖改性的聚乳酸立构复合物载药微球制备方法及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010375071.5A CN111514118B (zh) 2020-05-06 2020-05-06 一种葡萄糖改性的聚乳酸立构复合物载药微球制备方法及产品

Publications (2)

Publication Number Publication Date
CN111514118A CN111514118A (zh) 2020-08-11
CN111514118B true CN111514118B (zh) 2022-04-19

Family

ID=71912731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010375071.5A Active CN111514118B (zh) 2020-05-06 2020-05-06 一种葡萄糖改性的聚乳酸立构复合物载药微球制备方法及产品

Country Status (1)

Country Link
CN (1) CN111514118B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308093A (zh) * 2000-12-28 2001-08-15 武汉大学 分散度均匀的聚乳酸微球制备新方法
CN1693333A (zh) * 2005-05-26 2005-11-09 中国科学院长春应用化学研究所 生物可降解聚酯微粒及其制备方法和用途
CN100998566A (zh) * 2006-12-30 2007-07-18 南京工业大学 替莫唑胺聚乳酸纳米微球与制剂及其制备方法
WO2010039865A2 (en) * 2008-10-01 2010-04-08 Cornell University Biodegradable chemical delivery system
CN105175758A (zh) * 2015-07-14 2015-12-23 同济大学 一种聚乳酸立构复合物磁性纳米囊泡的制备方法
CN108102079A (zh) * 2017-12-21 2018-06-01 南京林业大学 一种聚l-乳酸葡萄糖共聚物材料及其制备方法
CN110624484A (zh) * 2019-07-26 2019-12-31 东华大学 一种全立构聚乳酸多孔微球及其制备方法
CN111040145A (zh) * 2019-12-26 2020-04-21 南京林业大学 一种葡萄糖基团封端的聚l-乳酸双嵌段共聚物材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2316052C (en) * 1989-07-07 2008-09-02 David Bodmer Sustained release formulations of water soluble peptides
CN109438947B (zh) * 2018-12-27 2023-07-04 南京林业大学 一种具有亲水性表面的聚乳酸立构复合物薄膜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308093A (zh) * 2000-12-28 2001-08-15 武汉大学 分散度均匀的聚乳酸微球制备新方法
CN1693333A (zh) * 2005-05-26 2005-11-09 中国科学院长春应用化学研究所 生物可降解聚酯微粒及其制备方法和用途
CN100998566A (zh) * 2006-12-30 2007-07-18 南京工业大学 替莫唑胺聚乳酸纳米微球与制剂及其制备方法
WO2010039865A2 (en) * 2008-10-01 2010-04-08 Cornell University Biodegradable chemical delivery system
CN105175758A (zh) * 2015-07-14 2015-12-23 同济大学 一种聚乳酸立构复合物磁性纳米囊泡的制备方法
CN108102079A (zh) * 2017-12-21 2018-06-01 南京林业大学 一种聚l-乳酸葡萄糖共聚物材料及其制备方法
CN110624484A (zh) * 2019-07-26 2019-12-31 东华大学 一种全立构聚乳酸多孔微球及其制备方法
CN111040145A (zh) * 2019-12-26 2020-04-21 南京林业大学 一种葡萄糖基团封端的聚l-乳酸双嵌段共聚物材料及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Bowen Yu,等.Morphology and internal structure control over PLA microspheres by compounding PLLA and PDLA and effects on drug release behavior.《Colloids and Surfaces B: Biointerfaces》.2018,第172卷摘要,第106页第2.2小节. *
Micro- and nanostructures of polylactide stereocomplexes and their biomedical applications;Brzezinski M,等;《POLYMER INTERNATIONAL》;20151231;第64卷(第12期);第1667-1675页 *
Morphology and internal structure control over PLA microspheres by compounding PLLA and PDLA and effects on drug release behavior;Bowen Yu,等;《Colloids and Surfaces B: Biointerfaces》;20180818;第172卷;摘要,第106页第2.2小节 *
Nano-Stereocomplexation of Polylactide (PLA) Spheres by Spray Droplet Atomization;Arias V,等;《MACROMOLECULAR RAPID COMMUNICATIONS》;20141130;第35卷(第22期);第1949-1953页 *
Polylactide-based chiral particles with enantio-differentiating release ability;Liang JY,等;《CHEMICAL ENGINEERING JOURNAL》;20180715;第344卷;第262-269页 *
Preparation and properties of poly (lactic acid) stereocomplex containing glucose groups;Cao Dan,等;《Chemistry and Industry of Forest Products》;20181231;第38卷(第5期);第17-22页 *

Also Published As

Publication number Publication date
CN111514118A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
Mai et al. Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity
Mitra et al. Chitosan microspheres in novel drug delivery systems
Zolnik et al. Effect of acidic pH on PLGA microsphere degradation and release
Jain et al. Mechanistic study of hydrolytic erosion and drug release behaviour of PLGA nanoparticles: Influence of chitosan
Algharib et al. Preparation of chitosan nanoparticles by ionotropic gelation technique: Effects of formulation parameters and in vitro characterization
Brzeziński et al. Micro‐and nanostructures of polylactide stereocomplexes and their biomedical applications
CN110623918B (zh) 羧甲基壳聚糖/海藻酸钠纳米水凝胶及其制备方法和应用
Diep et al. Encapsulating bacteria in alginate-based electrospun nanofibers
CN103041377B (zh) 负载溶菌酶的壳聚糖/γ-聚谷氨酸复合纳米粒子的制备方法
Liu et al. Preparation and characterization of glutaraldehyde cross-linked O-carboxymethylchitosan microspheres for controlled delivery of pazufloxacin mesilate
CN102688195A (zh) 一种具有pH敏感性的包载盐酸阿霉素的壳聚糖羧甲基壳聚糖纳米缓释微粒的制备方法
Ma et al. Preparation of chitosan microspheres by ionotropic gelation under a high voltage electrostatic field for protein delivery
CN101024086A (zh) 壳聚糖及其衍生物与低分子肝素形成的复合物及制剂与制备方法
Devrim et al. Preparation and evaluation of PLGA microparticles as carrier for the pulmonary delivery of rhIL-2: I. Effects of some formulation parameters on microparticle characteristics
Zhu et al. Preparation, characterization and in vitro release properties of ibuprofen-loaded microspheres based on polylactide, poly (϶-caprolactone) and their copolymers
CN102286155B (zh) 一种海藻酸钠-碳酸钙杂化微米粒子的制备方法
Bidone et al. Preparation and characterization of ibuprofen-loaded microspheres consisting of poly (3-hydroxybutyrate) and methoxy poly (ethylene glycol)-b-poly (D, L-lactide) blends or poly (3-hydroxybutyrate) and gelatin composites for controlled drug release
Singh et al. Water soluble chitosan nanoparticle for the effective delivery of lipophilic drugs: a review
CN102961362A (zh) 一种β-聚苹果酸/壳聚糖纳米药物缓释微胶囊及其制备方法
CN111514109B (zh) 一种聚l-乳酸/聚d-乳酸-葡萄糖共聚物载药微球制备方法及产品
Wojtczak et al. Encapsulation of hydrophobic vitamins by polylactide stereocomplexation and their release study
CN111514118B (zh) 一种葡萄糖改性的聚乳酸立构复合物载药微球制备方法及产品
CN1318028C (zh) 去甲斑蝥素缓释微球的制备方法
da Silva et al. Metformin hydrochloride sustained release biopolymeric system composed by PLLA‐CMC microparticles
Calgaroto et al. Chemical stability, mass loss and hydrolysis mechanism of sterile and non-sterile lipid-core nanocapsules: The influence of the molar mass of the polymer wall

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant