CN111511915A - 糖原病Ia型治疗药 - Google Patents

糖原病Ia型治疗药 Download PDF

Info

Publication number
CN111511915A
CN111511915A CN201980006746.4A CN201980006746A CN111511915A CN 111511915 A CN111511915 A CN 111511915A CN 201980006746 A CN201980006746 A CN 201980006746A CN 111511915 A CN111511915 A CN 111511915A
Authority
CN
China
Prior art keywords
oligonucleotide
solution
compound
solvate
acceptable salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980006746.4A
Other languages
English (en)
Inventor
小泉诚
大西朗之
益田刚
岩本充广
关口幸子
伊藤健太郎
辻真之介
松尾雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Sankyo Co Ltd
Kobe Gakuin Educational Foundation
Original Assignee
Daiichi Sankyo Co Ltd
Kobe Gakuin Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Sankyo Co Ltd, Kobe Gakuin Educational Foundation filed Critical Daiichi Sankyo Co Ltd
Priority to CN202310034281.1A priority Critical patent/CN115976028A/zh
Publication of CN111511915A publication Critical patent/CN111511915A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • C12N2310/33415-Methylcytosine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/33Alteration of splicing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/34Allele or polymorphism specific uses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03009Glucose-6-phosphatase (3.1.3.9)

Abstract

本发明确立一种糖原病Ia型的分子治疗法。本发明为一种寡核苷酸、其药理上容许的盐或溶剂合物,所述寡核苷酸是含有与具有c.648G>T变异的G6PC基因的cDNA互补的核苷酸序列的碱基数为15~30的寡核苷酸,且含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第82号至第92号的任一部位的区域互补的序列。本发明的医药(例如,糖原病Ia型治疗药)包含所述寡核苷酸、其医药上可容许的盐或溶剂合物。

Description

糖原病Ia型治疗药
技术领域
本发明涉及一种糖原病Ia型治疗药,更详细而言,本发明涉及一种将糖原病Ia型患者中具有c.648G>T变异的G6PC基因在mRNA水平修复而可使正常的G6PC蛋白质表达的寡核苷酸及含有其的医药。
背景技术
糖原病Ia型是以葡萄糖6磷酸脱磷酸化酶(G6PC)为原因基因的常染色体隐性遗传的代谢异常症,主要症状为低血糖、肝肿大、肾肿大。通过利用膳食疗法的血糖控制,生存预后大幅改善,但即便控制良好,其中超过一半也呈现肝腺瘤、白蛋白尿(非专利文献1)。报告了若干糖原病Ia型患者的好发变异,东亚地区引起剪接异常的G6PC c.648G>T变异作为好发变异而为人所知(非专利文献2)。
作为将寡核苷酸送达至肝脏的肝实质细胞的方法,业界报告了一种与作为可键结在去唾液酸醣蛋白受体(ASGPR)的配体而通过共价键上键结了N-乙酰基-D-半乳糖胺(GalNAc)等的核酸医药(反义或siRNA等)的复合体(非专利文献3及专利文献1~9)。在1个寡核苷酸键结了1至3个GalNAc。另外,作为键结了2个GalNAc的例,非专利文献4中有所记载。
现有技术文献
非专利文献
非专利文献1:Eur J Pediatr.2002年161卷Suppl 1:S20-34
非专利文献2:Hum Mutat.2008年,29卷,p.921-930.
非专利文献3:Methods in Enzymology,1999年,313卷,297~321页
非专利文献4:Bioorganic&Medicinal Chemistry Letters 26(2016)3690-3693
专利文献
专利文献1:国际公开第2009/073809
专利文献2:国际公开第2014/076196
专利文献3:国际公开第2014/179620
专利文献4:国际公开第2015/006740
专利文献5:国际公开第2015/105083
专利文献6:国际公开第2016/055601
专利文献7:国际公开第2017/023817
专利文献8:国际公开第2017/084987
专利文献9:国际公开第2017/131236
发明内容
[发明要解决的问题]
本发明的目的在于确立一种糖原病Ia型的分子治疗法。
[解决问题的技术手段]
本发明人等确立了如下治疗法(图1),其通过对具有G6PC c.648G>T变异的糖原病Ia型患者投予反义寡核苷酸(ASO),而修复mRNA的异常剪接,诱导正常的G6PC蛋白质的产生。G6PC c.648G>T变异中产生mRNA的异常剪接,自内含子(intron)4与外显子(exon)5的接合处(junction)缺损外显子(exon)5部分的91个碱基,引起移码(frame shift)导致的酶的失活。当mRNA的异常剪接被修正时,可期待该翻译的氨基酸序列与正常型相同(CUG(Leu)→CUU(Leu)),因此在具有G6PC c.648G>T变异的患者中,通过该修复mRNA的异常剪接的治疗法,产生具有活性的正常的G6PC蛋白质,而可实现糖原病Ia型患者的低血糖发作的风险降低、器官肿大的改善、肝腺瘤风险的降低。本研究成为针对糖原病Ia型的世界首次的分子治疗的开发研究。
本发明的主旨如以下所述。
(1)一种寡核苷酸、其药理上容许的盐或溶剂合物,所述寡核苷酸含有与具有c.648G>T变异的G6PC基因的cDNA互补的核苷酸序列且碱基数为15~30,其含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第82号至第92号的任一部位的区域互补的序列。
(2)如(1)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为15~21的寡核苷酸,其含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第86号至第92号的任一部位的区域互补的序列。
(3)如(1)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为15~21的寡核苷酸,其含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
(4)如(1)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为15~18的寡核苷酸,其含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
(5)如(1)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为18的寡核苷酸,其含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
(6)如(1)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为17的寡核苷酸,其含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
(7)如(1)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为16的寡核苷酸,其含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
(8)如(1)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为15的寡核苷酸,其含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
(9)如(1)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸含有序列编号1~32、40~42、44~48的任一序列(其中,序列中的t也可为u,u也可为t)中连续的至少15个核苷酸的序列。
(10)如(1)至(9)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸进而在5'末端及/或3'末端附加了可在生物体内切断的寡核苷酸。
(11)如(1)至(10)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中构成寡核苷酸的糖及/或磷酸二酯键的至少1个被修饰。
(12)如(1)至(10)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中构成寡核苷酸的糖是D-呋喃核糖,糖的修饰是D-呋喃核糖的2'位的羟基的修饰。
(13)如(1)至(10)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中构成寡核苷酸的糖是D-呋喃核糖,糖的修饰是D-呋喃核糖的2'-O-烷基化及/或2'-,4'-交联化。
(14)如(1)至(10)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中构成寡核苷酸的糖是D-呋喃核糖,糖的修饰是D-呋喃核糖的2'-O-烷基化及/或2'-O,4'-C-烷撑化。
(15)如(1)至(14)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中磷酸二酯键的修饰是硫代磷酸酯。
(16)如(1)至(15)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸在5'末端及/或3'末端结合了GalNAc单元。
(17)如(1)至(15)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸在5'末端结合了GalNAc单元。
(18)如(16)或(17)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是式
[化1]
Figure BDA0002550837380000041
[式中,Ra表示式
[化2]
Figure BDA0002550837380000042
所表示的基团,Rb表示式
[化3]
Figure BDA0002550837380000043
所表示的基团或氢原子,XX表示式
[化4]
Figure BDA0002550837380000044
所表示的基团,G表示5-乙酰胺-2-羟基甲基-3,4-二羟基四氢吡喃-6-基(GalNAc),Z表示氧原子或硫原子,L1及L2中一个表示亚甲基(CH2),另一个表示不隔着原子,p、q、r、s、t及u互相独立地表示0或1,n及n'互相独立地表示1~15的整数,m及m'互相独立地表示0~5的整数,当Rb不为氢原子时,v表示1,当Rb为氢原子时,v表示1~7;其中,当n为1时,m为0~5的整数,当n为2~15的整数时,m为0,当n'为1时,m'为1~5的整数,当n'为2~15的整数时,m'为0;可在距磷原子较远的键结键上键结羟基、XX基、或OG基]所表示的基团。
(19)如(16)或(17)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是式
[化5]
Figure BDA0002550837380000051
[式中,G、Z、L1、L2、n及m表示与所述相同的含义]所表示的基团。
(20)如(16)或(17)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是式
[化6]
Figure BDA0002550837380000052
[式中,G、Z、L1、L2、q、n及m表示与所述相同的含义,Ra'表示式
[化7]
Figure BDA0002550837380000061
所表示的基团]所表示的基团。
(21)如(16)或(17)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是式
[化8]
Figure BDA0002550837380000062
[式中,G、Z、L1、L2、s、n、m及v表示与所述相同的含义,Rb'表示式
[化9]
Figure BDA0002550837380000063
(式中,n'及m'表示与所述相同的含义)所表示的基团或氢原子]所表示的基团。
(22)如(16)或(17)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是或式
[化10]
Figure BDA0002550837380000064
[式中,G、Z、L1、L2、n及m表示与所述相同的含义]所表示的基团。
(23)如(16)或(17)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是式
[化11]
Figure BDA0002550837380000071
[式中,G、Z、L1、L2、n、m及Ra'表示与所述相同的含义]所表示的基团。
(24)如(1)所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是以式
[化12]
RO-Xg-Xf-Xe-Xd-Xc-Xb-Xa-T
[式中,R表示氢原子、XX基、或G基,T表示5'末端不具有羟基的寡核苷酸,Xg表示选自由X1~X6及X9~X17所组成的群中的GalNAc单元,或RO-Xg表示选自由X7、X8、X18、X19、X20、X21及X22所组成的群中的GalNAc单元,Xa、Xb、Xc、Xd、Xe及Xf互相独立地表示选自由X1~X6及X9~X17或它们的光学异构体所组成的群中的GalNAc单元或单键]表示,
[化13]
Figure BDA0002550837380000072
[化14]
Figure BDA0002550837380000081
[化15]
Figure BDA0002550837380000082
[化16]
Figure BDA0002550837380000083
[化17]
Figure BDA0002550837380000084
[化18]
Figure BDA0002550837380000091
[化19]
Figure BDA0002550837380000092
[化20]
Figure BDA0002550837380000093
[化21]
Figure BDA0002550837380000094
[化22]
Figure BDA0002550837380000101
[化23]
Figure BDA0002550837380000102
[化24]
Figure BDA0002550837380000103
[化25]
Figure BDA0002550837380000104
[化26]
Figure BDA0002550837380000111
[化27]
Figure BDA0002550837380000112
[化28]
Figure BDA0002550837380000113
[化29]
Figure BDA0002550837380000121
[化30]
Figure BDA0002550837380000122
[化31]
Figure BDA0002550837380000123
[化32]
Figure BDA0002550837380000131
[化33]
Figure BDA0002550837380000132
[化34]
Figure BDA0002550837380000133
(25)一种医药,其包含如(1)至(24)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物。
(26)一种糖原病Ia型治疗药,其包含如(1)至(24)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物。
(27)一种糖原病Ia型的治疗方法,其包括以医药上有效的量对受验者投予如(1)至(24)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物。
(28)如(1)至(24)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其用于糖原病Ia型的治疗方法。
(29)一种用于经口或非经口投予的调配物,其包含如(1)至(24)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物。
(30)如(1)至(24)的任一项所记载的寡核苷酸、其药理上容许的盐或溶剂合物,其用于作为医药使用。
[发明的效果]
根据本发明,在糖原病Ia型患者中,可将糖原病Ia型患者中具有c.648G>T变异的G6PC基因在mRNA水平修复,结果可表达G6PC蛋白质,实现糖原病Ia型患者的低血糖的正常化、肝肥大的正常化,抑制向肝癌的发展。
本说明书包含作为本案的优先权的基础的日本专利申请案、日本专利特愿2018-43524及日本专利特愿2018-128015的说明书及/或图式所记载的内容。
附图说明
图1(A)是对由G6PC基因生成G6PC蛋白质的过程进行说明的图。(B)是表示糖原病Ia型患者中具有c.648G>T变异的G6PC基因的mRNA的剪接模式的图。
图2表示对利用本发明的糖原病Ia型治疗药ASO进行治疗的原理进行说明的示意图。
图3是表示ASO(21e_001~21e_012)可键结在具有c.648G>T变异的G6PC基因的mRNA的外显子5的序列的图。
图4是表示ASO(21m_001~21m_012)可键结在具有c.648G>T变异的G6PC基因的mRNA的外显子5的序列的图。
图5是使用ASO,表现出利用qRT-PCR(quantitative real time polymerasechain reaction,定量实时聚合酶链反应)测得的修正G6PC mRNA的异常剪接的效果的图。(A)是使用ASO(21e_001~21e_012)的情形。(B)是使用ASO(21m_001~21m_012)的情形。RQ:相对定量(Relative Quantification)
图6是使用ASO修复G6PC mRNA的异常剪接,表现出利用LC-MS/MS(Liquidchromatography-mass spectrometry/Mass Spectrometry,液相色谱-质谱法/质谱法)测得的产生正常人G6PC特异性肽的效果的图。(A)是使用ASO(21e_001~21e_012)的情形。(B)是使用ASO(21m_001~21m_012)的情形。
图7是使用ASO修复G6PC mRNA的异常剪接而表现出G6PC酶活性的图。(A)是使用ASO(21e_001~21e_012)的情形。(B)是使用ASO(21m_001~21m_012)的情形。
图8是表示ASO(21e_001~21e_006及21e_013~21e_022)可键结在具有c.648G>T变异的G6PC基因的mRNA的外显子5上的序列的图。
图9是使用ASO(21e_001~21e_006及21e_013~21e_022),表现出利用qRT-PCR测得的修正G6PC mRNA的异常剪接的效果的图。RQ:相对定量(Relative Quantification)
图10是使用ASO(21e_001~21e_006及21e_013~21e_022)修复G6PC mRNA的异常剪接,表现出利用LC-MS/MS测得的产生正常人G6PC特异性肽的效果的图。
图11是表示ASO(18e_001~18e_017)可键结在具有c.648G>T变异的G6PC基因的mRNA的外显子5的序列的图。
图12是表示ASO(18m_001~18m_017)可键结在具有c.648G>T变异的G6PC基因的mRNA的外显子5的序列的图。
图13(A)是使用ASO(18e_001~18e_017),表现出利用qRT-PCR测得的修正G6PCmRNA的异常剪接的效果的图。(B)是使用ASO(18m_001~18m_017),表现出利用qRT-PCR测得的修正G6PC mRNA的异常剪接的效果的图。RQ:相对定量(Relative Quantification)
图14(A)是使用ASO(18e_001~18e_017)修复G6PC mRNA的异常剪接,表现出利用LC-MS/MS测得的产生正常人G6PC特异性肽的效果的图。(B)是使用ASO(18m_001~18m_017)修复G6PC mRNA的异常剪接,表现出利用LC-MS/MS测得的产生正常人G6PC特异性肽的效果的图。
图15是表示ASO(18e_018~18e_031)可键结在具有c.648G>T变异的G6PC基因的mRNA的外显子5的序列的图。
图16(A)是使用ASO(18e_018~18e_031),表现出利用qRT-PCR测得的修正G6PCmRNA的异常剪接的效果的图。(B)是使用ASO(18e_018~18e_031)修复G6PC mRNA的异常剪接,表现出利用LC-MS/MS测得的产生正常人G6PC特异性肽的效果的图。RQ:相对定量(Relative Quantification)
图17是表示ASO(21e_002、18e_005、21m_002、18e_022、18m_005、15e_001、15ed_001、18e_008、18e_025、18m_008、15e_002及15ed_002)可键结在具有c.648G>T变异的G6PC基因的mRNA的外显子5的序列的图。
图18是使用ASO(21e_002、18e_005、21m_002、18m_005、18e_022、15e_001、15ed_001、18e_008、18e_025、18m_008、15e_002、及15ed_002),表现出利用qRT-PCR测得的修正G6PC mRNA的异常剪接的效果的图。RQ:相对定量(Relative Quantification);Actn:β-肌动蛋白
图19是表示将实施例91至95的化合物向异型敲入小鼠投予时利用qRT-PCR测得的修正肝脏中的G6PC mRNA的异常剪接的效果的图。RQ:相对定量(RelativeQuantification);Actn:β-肌动蛋白;mpk:mg/kg
图20是表示将实施例91、及实施例96至103的化合物向异型敲入小鼠投予时利用qRT-PCR测得的修正肝脏中的G6PC mRNA的异常剪接的效果的图。RQ:相对定量(RelativeQuantification);Actn:β-肌动蛋白;mpk:mg/kg
图21是表示将实施例83、实施例87至91、及实施例104至107的化合物向异型敲入小鼠投予时利用qRT-PCR测得的修正肝脏中的G6PC mRNA的异常剪接的效果的图。RQ:相对定量(Relative Quantification);Actn:β-肌动蛋白;mpk:mg/kg
图22是表示将实施例104、及实施108至115的化合物向异型敲入小鼠投予时利用qRT-PCR测得的修正肝脏中的G6PC mRNA的异常剪接的效果的图。RQ:相对定量(RelativeQuantification);Actn:β-肌动蛋白;mpk:mg/kg
图23是表示将实施例105、113、及131至137的化合物向异型敲入小鼠投予时利用qRT-PCR测得的修正肝脏中的G6PC mRNA的异常剪接的效果的图。RQ:相对定量(RelativeQuantification);Actn:β-肌动蛋白;mpk:mg/kg
图24是表示利用实施例1的化合物所得的培养细胞中的异常剪接修复序列的片段解析的图。
图25是表示将实施例133、及143至149的化合物向异型敲入小鼠投予时利用qRT-PCR测得的修正肝脏中的G6PC mRNA的异常剪接的效果的图。RQ:相对定量(RelativeQuantification);mpk:mg/kg
图26是表示将实施例149、及152至160的化合物向异型敲入小鼠投予时利用qRT-PCR测得的修正肝脏中的G6PC mRNA的异常剪接的效果的图。RQ:相对定量(RelativeQuantification);mpk:mg/kg
具体实施方式
以下,对本发明的实施形态进一步详细说明。
本发明提供一种将糖原病Ia型患者中具有c.648G>T变异的G6PC基因在mRNA水平修复而可使正常的G6PC蛋白质表达的寡核苷酸、其药理上容许的盐或溶剂合物。本发明的寡核苷酸是含有与具有c.648G>T变异的G6PC基因的cDNA互补的核苷酸序列的碱基数为15~30的寡核苷酸,含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第82号至第92号的任一部位的区域互补的序列。
在本发明中,可以糖原病Ia型患者中进行c.648G>T变异的患者作为对象。不仅c.648G>T变异的同型接合的患者,而且也可以c.648G>T变异与其他变异的复合异型接合的患者作为对象。
G6PC基因的c.648G>T变异是智人葡萄糖-6-磷酸酶催化亚基(Homo sapiensglucose-6-phosphatase catalytic subunit)(G6PC),转录变体(transcript variant)1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G向T的变异。位于自外显子5的5'末端起第86号。本发明的寡核苷酸含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第86号至第92号的任一部位的区域互补的序列即可,优选含有与包含第92号的部位的区域互补的序列。
作为含有与具有c.648G>T变异的G6PC基因的cDNA互补的核苷酸序列且碱基数为15~30、并且含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第82号至第92号的任一部位的区域互补的序列的寡核苷酸,可例示包含序列编号1~32、40~42、44~48的任一序列(其中,序列中的t或T也可为u或U,u或U也可为t或T)的全部或一部分的寡核苷酸。在本发明中,所谓“序列的一部分”通常为该序列整体的80%以上,适宜为85%,进而适宜为90%,最适宜为94%。本发明的寡核苷酸的碱基数为15~30较为适当,优选15~21,更优选15~18。
构成本发明的寡核苷酸(反义寡核苷酸)的核苷酸可为天然型DNA、天然型RNA、DNA/RNA的嵌合体、它们的修饰体的任一者,优选至少1个为修饰核苷酸。
作为本发明中的修饰核苷酸,可例示糖被修饰的核苷酸(例如,D-呋喃核糖被2'-O-烷基化的核苷酸、D-呋喃核糖被2'-O,4'-C-烷撑化的核苷酸、D-呋喃核糖被2'-,4'-交联的核苷酸)、磷酸二酯键被修饰(例如,硫代酯化)的核苷酸、碱基被修饰的核苷酸、将这些组合而成的核苷酸等。构成反义寡核苷酸的至少1个D-呋喃核糖被2'-O-烷基化而成的核苷酸或被2'-O,4'-C-烷撑化而成的核苷酸对RNA的结合力较高,对核酸酶的耐性较高,因此可期待高于天然型的核苷酸(即,寡DNA、寡RNA)的治疗效果。另外,构成寡核苷酸的至少1个磷酸二酯键被硫代酯化而成的核苷酸对核酸酶的耐性也较高,因此可期待高于天然型的核苷酸(即,寡DNA、寡RNA)的治疗效果。包含如上所述的被修饰的糖与被修饰的磷酸这两者的寡核苷酸对核酸酶的耐性更高,因此可期待更高的治疗效果。
关于本发明的寡核苷酸(反义寡核苷酸),作为糖的修饰的例,可列举:D-呋喃核糖的2'-O-烷基化(例如,2'-O-甲基化、2'-O-氨基乙基化、2'-O-丙基化、2'-O-烯丙基化、2'-O-甲氧基乙基化、2'-O-丁基化、2'-O-戊基化、2'-O-炔丙基化等)、D-呋喃核糖的2'-O,4'-C-烷撑化(例如,2'-O,4'-C-亚乙基化、2'-O,4'-C-亚甲基化、2'-O,4'-C-亚丙基化、2'-O,4'-C-四亚甲基化、2'-O,4'-C-五亚甲基化等)、D-呋喃核糖的2'-脱氧-2'-C,4'-C-亚甲氧基亚甲基化、S-cEt(2',4'-constrained ethyl,2',4'-限制性乙基)、AmNA(Amide-bridgednucleic acid,酰胺交联核酸)、3'-脱氧-3'-氨基-2'-脱氧-D-呋喃核糖、3'-脱氧-3'-氨基-2'-脱氧-2'-氟-D-呋喃核糖等。
关于本发明的寡核苷酸(反义寡核苷酸),作为糖的2'-,4'-交联修饰的例,可列举:D-呋喃核糖的2'-O,4'-C-烷撑化(例如,2'-O,4'-C-亚乙基化、2'-O,4'-C-亚甲基化、2'-O,4'-C-亚丙基化、2'-O,4'-C-四亚甲基化、2'-O,4'-C-五亚甲基化等)、D-呋喃核糖的2'-脱氧-2'-C,4'-C-亚甲氧基亚甲基化、S-cEt(2',4'-限制性乙基)、AmNA等。
关于本发明的寡核苷酸(反义寡核苷酸),作为磷酸二酯键的修饰的例,可列举:硫代磷酸酯键、甲基膦酸酯键、甲基硫代膦酸酯键、二硫代磷酸酯键、氨基磷酸酯(Phosphoroamidate)键等。
在本发明中,作为碱基的修饰的例,可列举:胞嘧啶的5-甲基化、5-氟化、5-溴化、5-碘化、N4-甲基化,胸腺嘧啶的5-去甲基化(尿嘧啶)、5-氟化、5-溴化、5-碘化,腺嘌呤的N6-甲基化、8-溴化,鸟嘌呤的N2-甲基化、8-溴化等。
本发明的寡核苷酸(反义寡核苷酸)可使用市售的合成仪(例如,PerkinElmer公司的利用亚磷酰胺(phosphoramidite)法获得的模型392)等,依照文献(Nucleic AcidsResearch,12,4539(1984))所记载的方法而合成。关于此时可使用的亚磷酰胺试剂,天然型的核苷及2'-O-甲基核苷(即,2'-O-甲基鸟苷、2'-O-甲基腺苷、2'-O-甲基胞苷、2'-O-甲基尿苷)可使用市售的试剂。关于烷基的碳数为2~6个的2'-O-烷基鸟苷、腺苷、胞苷及尿苷,如以下所述。
2'-O-氨基乙基鸟苷、腺苷、胞苷、尿苷可依照文献(Blommers etal.Biochemistry(1998),37,17714-17725.)而合成。
2'-O-丙基鸟苷、腺苷、胞苷、尿苷可依照文献(Lesnik,E.A.et al.Biochemistry(1993),32,7832-7838.)而合成。
2'-O-烯丙基鸟苷、腺苷、胞苷、尿苷可使用市售的试剂。
2'-O-甲氧基乙基鸟苷、腺苷、胞苷、尿苷可依照专利(US6261840)或文献(Martin,P.Helv.Chim.Acta.(1995)78,486-504.)而合成。
2'-O-丁基鸟苷、腺苷、胞苷、尿苷可依照文献(Lesnik,E.A.et al.Biochemistry(1993),32,7832-7838.)而合成。
2'-O-戊基鸟苷、腺苷、胞苷、尿苷可依照文献(Lesnik,E.A.et al.Biochemistry(1993),32,7832-7838.)而合成。
2'-O-炔丙基鸟苷、腺苷、胞苷、尿苷可使用市售的试剂。
关于2'-O,4'-C-亚甲基鸟苷、腺苷、胞苷、5-甲基胞苷及胸苷,可依照WO99/14226所记载的方法而制造,关于烷撑的碳数为2~5个的2'-O,4'-C-烷撑鸟苷、腺苷、胞苷、5-甲基胞苷及胸苷,可依照WO00/47599所记载的方法而制造。
D-呋喃核糖的被2'-脱氧-2'-C,4'-C-亚甲氧基亚甲基化的核苷可依照文献(Wang,G.et al.Tetrahedron(1999),55,7707-7724)而合成。
S-cEt(constrained ethyl,限制性乙基)可依照文献(Seth,P.P.etal.J.Org.Chem(2010),75,1569-1581.)而合成。
AmNA可依照文献(Yahara,A.et al.ChemBioChem(2012),13,2513-2516.)或WO2014/109384而合成。
在本发明中,核酸碱基序列可将腺嘌呤记载为(A)或(a),将鸟嘌呤记载为(G)或(g),将胞嘧啶记载为(C)或(c),将胸腺嘧啶记载为(T)或(t),及将尿嘧啶记载为(U)或(u)。可使用5-甲基胞嘧啶代替胞嘧啶。核酸碱基中尿嘧啶(U)或(u)与胸腺嘧啶(T)或(t)具有兼容性。尿嘧啶(U)或(u)与胸腺嘧啶(T)或(t)的任一者均可用于与互补链的腺嘌呤(A)或(a)形成碱基对。
使亚磷酰胺试剂偶合后,使硫、二硫化四乙基秋兰姆(TETD,Applied Biosystems公司)、Beaucage试剂(Glen Research公司)、或氢化黄原素(Xanthane Hydride)等试剂进行反应,由此可合成具有硫代磷酸酯键的反义寡核苷酸(Tetrahedron Letters,32,3005(1991),J.Am.Chem.Soc.112,1253(1990),PCT/WO98/54198)。
作为合成仪所使用的可控孔度玻璃(CPG),键结了2'-O-甲基核苷的可控孔度玻璃可利用市售者。另外,可依照文献(Oligonucleotide Synthesis,Edited by M.J.Gait,Oxford University Press,1984),将关于2'-O,4'-C-亚甲基鸟苷、腺苷、5-甲基胞苷及胸苷而依照WO99/14226所记载的方法所制造的核苷,关于烷撑的碳数为2~5个的2'-O,4'-C-烷撑鸟苷、腺苷、5-甲基胞苷及胸苷而依照WO00/47599所记载的方法所制造的核苷键结在CPG。通过使用被修饰的CPG(日本专利特开平7-87982的实施例12b所记载),可合成在3'末端结合了2-羟基乙基磷酸基的寡核苷酸。另外,如果使用3'-氨基-修饰基C3 CPG、3'-氨基-修饰基C7 CPG、甘油CPG(Glen Research)、3'-间隔基C3 SynBase CPG 1000、3'-间隔基C9SynBase CPG 1000(link technologies),则可合成在3'末端结合了羟基烷基磷酸基、或氨基烷基磷酸基的寡核苷酸。
本发明的寡核苷酸(反义寡核苷酸)可经由连接基及磷酸部而键结了GalNAc。
本发明中的所谓GalNAc单元是键结有键结了GalNAc的连接基的磷酸基,可进而具有1个键结键。GalNAc单元的磷酸基可与寡核苷酸的5'末端及/或3'末端键结,适宜为键结在寡核苷酸的5'末端。当GalNAc单元具有键结键时,该键结键可与羟基、GalNAc、键结了GalNAc的连接基、其他GalNAc单元的磷酸基、或寡核苷酸的3'末端的磷酸基键结。作为键结在1个GalNAc单元的GalNAc的个数,适宜为1至7个,更适宜为1至5个,尤其适宜为1至3个,最佳个数为2个。
在本发明中,1个GalNAc单元也可键结在寡核苷酸,多个GalNAc单元也可连续键结而键结在寡核苷酸。作为键结在1个寡核苷酸的GalNAc单元的个数,适宜为1至7个,更适宜为1至5个,尤其适宜为1至3个,最佳个数为1个。
在本发明中,可在与GalNAc单元键结的寡核苷酸(反义寡核苷酸)的5'末端及/或3'末端具有碱基序列与反义寡核苷酸不同、包含磷酸二酯键、且可在生物体内切断的寡核苷酸序列。作为可切断的寡核苷酸的链长,适宜为1至6个核苷酸,进而适宜为1至3个核苷酸。可切断的寡核苷酸只要可切断,则无特别限定,可列举全部包含DNA的天然型寡脱氧核苷酸、及全部包含RNA的天然型寡核苷酸等。作为碱基序列,只要为可切断的序列,则无特别限定,可列举5'-TCATCA-3'、5'-CATCA-3'、5'-ATCA-3'5'-TCA-3'、5'-CA-3'、5'-A-3'等。
作为本发明的GalNAc单元的例,例如为通式
[化35]
Figure BDA0002550837380000201
[式中,Ra表示式
[化36]
Figure BDA0002550837380000211
所表示的基团,Rb表示式
[化37]
Figure BDA0002550837380000212
所表示的基团或氢原子,XX表示式
[化38]
Figure BDA0002550837380000213
所表示的基团,G表示5-乙酰胺-2-羟基甲基-3,4-二羟基四氢吡喃-6-基(GalNAc),Z表示氧原子或硫原子,L1及L2中一个表示亚甲基(CH2),另一个表示不隔着原子,p、q、r、s、t及u互相独立地表示0或1,n及n'互相独立地表示1~15的整数,m及m'互相独立地表示0~5的整数,当Rb不为氢原子时,v表示1,当Rb为氢原子时,v表示1~7;其中,当n为1时,m为0~5的整数,当n为2~15的整数时,m为0,当n'为1时,m'为1~5的整数,当n'为2~15的整数时,m'为0;可在距磷原子较远的键结键上键结羟基、XX基、或OG基]所表示的基团,适宜为式
[化39]
Figure BDA0002550837380000214
[式中,G、Z、L1、L2、n及m表示与所述相同的含义]所表示的基团、式
[化40]
Figure BDA0002550837380000221
[式中,G、Z、L1、L2、q、n及m表示与所述相同的含义,Ra'表示式
[化41]
Figure BDA0002550837380000222
所表示的基团]所表示的基团、式
[化42]
Figure BDA0002550837380000223
[式中,G、Z、L1、L2、s、n、m及v表示与所述相同的含义,Rb'表示式
[化43]
Figure BDA0002550837380000224
(式中,n'及m'表示与所述相同的含义)所表示的基团或氢原子]所表示的基团、式
[化44]
Figure BDA0002550837380000231
[式中,G、Z、L1、L2、n及m表示与所述相同的含义]所表示的基团、或式
[化45]
Figure BDA0002550837380000232
[式中,G、Z、L1、L2、n、m及Ra'表示与所述相同的含义]所表示的基团。
在本发明中,GalNAc单元所键结的寡核苷酸例如为式
[化46]
RO-Xg-Xf-Xe-Xd-Xc-Xb-Xa-T
[式中,R表示氢原子、XX基、或G基,T表示5'末端不具有羟基的寡核苷酸,Xg表示具有键结键的GalNAc单元,Xa、Xb、Xc、Xd、Xe及Xf互相独立地表示具有键结键的GalNAc单元或单键]所表示的寡核苷酸。
作为Xa、Xb、Xc、Xd、Xe、Xf及Xg中的“具有键结键的GalNAc单元”,可列举如下基团。
[化47]
Figure BDA0002550837380000233
[化48]
Figure BDA0002550837380000241
[化49]
Figure BDA0002550837380000242
[化50]
Figure BDA0002550837380000243
[化51]
Figure BDA0002550837380000244
[化52]
Figure BDA0002550837380000251
[化53]
Figure BDA0002550837380000252
[化54]
Figure BDA0002550837380000253
[化55]
Figure BDA0002550837380000254
[化56]
Figure BDA0002550837380000261
[化57]
Figure BDA0002550837380000262
[化58]
Figure BDA0002550837380000263
[化59]
Figure BDA0002550837380000264
[化60]
Figure BDA0002550837380000271
[化61]
Figure BDA0002550837380000272
另外,作为“具有键结键的GalNAc单元”的Xg、及R包含XX基或G基的RO-Xg-的“GalNAc单元”可列举如下基团。
[化62]
Figure BDA0002550837380000273
[化63]
Figure BDA0002550837380000281
[化64]
Figure BDA0002550837380000282
[化65]
Figure BDA0002550837380000283
[化66]
Figure BDA0002550837380000291
[化67]
Figure BDA0002550837380000292
[化68]
Figure BDA0002550837380000293
本发明的GalNAc单元所键结的寡核苷酸通过将含有GalNAc单元的酰胺与核苷的酰胺试剂同样地使用,可使用市售的合成仪(例如,PerkinElmer公司的利用亚磷酰胺法获得的模型392)等,依照文献(Nucleic Acids Research,12,4539(1984))所记载的方法而合成。当键结在寡核苷酸的5'末端时,可通过在结束寡核苷酸的部分的链伸长后,将含有GalNAc单元的酰胺进行偶合而合成。另外,当键结在寡核苷酸的3'末端时,可使用被修饰的CPG(日本专利特开平7-87982的实施例12b所记载)、3'-氨基-修饰基C3CPG,3'-氨基-修饰基C7CPG,甘油CPG,(Glen Research),3'-间隔基C3SynBase CPG 1000,3'-间隔基C9SynBase CPG 1000(link technologies)等,将含有GalNAc单元的酰胺进行偶合,其后进行寡核苷酸的部分的链伸长,由此合成3'末端具有羟基烷基磷酸基、或氨基烷基磷酸基、进而键结了GalNAc单元的寡核苷酸。
含有GalNAc单元的酰胺的合成法
本发明的含有GalNAc单元的酰胺可依照下文所述的A法至I法而制造。在A法至I法中,各反应结束后,各反应的目标化合物是依照常规方法自反应混合物中采集。例如是通过如下方法获得:将反应混合物适当中和,另外,当存在不溶物时,通过过滤去除后,添加如水与乙酸乙酯的不混合的有机溶剂,将含有目标物的有机层分离,利用水等洗净后,利用无水硫酸钠等加以干燥后,将溶剂蒸馏去除。所获得的化合物可视需要通过常规方法、例如硅胶柱色谱法进行分离、精制。或可通过再沉淀、再结晶而精制。
A法
A法是用来制造化合物(8)的方法。如果使用与化合物(2)相反的立体构型的化合物,则化合物(8)中键结了-P(R3)R4的二级羟基的立体构型也变得相反。
[化69]
Figure BDA0002550837380000301
式中R1是羟基的通常的保护基,R2是4,4'-二甲氧基三苯甲基。式中,-P(R3)R4表示:[R3及R4相同或不同而表示被羟基、被保护的羟基、巯基、被保护的巯基、氨基、碳数1至4个的烷氧基、碳数1至4个的烷硫基、碳数1至5个的氰基烷氧基或碳数1至4个的烷基取代的氨基]。式中X为碳原子或氧原子。式中n为1~15的整数,m为0~5的整数。其中,当n为1时,m为0~5的整数,当n为2~15的整数时,m为0。
步骤A-1是制造化合物(3)的步骤,于惰性溶剂中在酸的存在下,使化合物(1)与化合物(2)进行反应,而在环氧化物开环时生成醚键。
作为所述反应所使用的惰性溶剂,例如可列举:烃类、芳香族烃类、卤化烃类、醚类、乙腈等,优选二氯甲烷。
作为所述反应所使用的酸,例如可列举有机酸类、路易斯酸等。作为有机酸,例如可列举三氟甲磺酸等,作为路易斯酸,例如可列举三氟化硼-二乙醚络合物等。优选三氟甲磺酸。
反应温度根据化合物(1)及化合物(2)、酸、惰性溶剂等而不同,通常为-20℃至回流温度。优选30℃至45℃。
反应时间根据化合物(1)及化合物(2)、酸、惰性溶剂、反应温度等而不同,通常为15分钟至72小时,优选2小时至24小时。
步骤A-2是制造化合物(5)的步骤,于惰性溶剂中在酸的存在下,使化合物(3)及化合物(4)进行反应,而生成糖苷键。
作为所述反应所使用的惰性溶剂,例如可列举:烃类、芳香族烃类、卤化烃类、醚类、乙腈等,优选二氯甲烷。
作为所述反应所使用的酸,例如可列举有机酸类、路易斯酸等。作为有机酸,例如可列举三氟甲磺酸等,作为路易斯酸,例如可列举三氟化硼-二乙醚络合物等,优选三氟化硼-二乙醚络合物。
反应温度根据化合物(3)、酸、惰性溶剂等而不同,通常为-20℃至回流温度。优选30℃至45℃。
反应时间根据化合物(3)、酸、惰性溶剂、反应温度等而不同,通常为15分钟至72小时,优选2小时至24小时。
步骤A-3是制造化合物(6)的步骤,去除作为化合物(5)中的羟基的保护基的R1。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,Protective Groups in organic Synthesis.ThirdEdition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤A-4是制造化合物(7)的步骤,于惰性溶剂中在4,4'-二甲氧基三苯氯甲烷与碱的存在下,将R2导入化合物(6)的一级羟基中。
作为所述反应所使用的惰性溶剂,例如可列举:烃类、芳香族烃类、卤化烃类、醚类、乙腈等,优选二氯甲烷或吡啶。
作为所述反应所使用的碱,例如可列举:三乙胺、N,N-二异丙基乙基胺、吡啶、4-二甲氨基吡啶等,优选N,N-二异丙基乙基胺或吡啶。
反应温度根据碱、惰性溶剂等而不同,通常为-20℃至回流温度。优选10℃至30℃。
反应时间根据碱、惰性溶剂、反应温度等而不同,通常为15分钟至24小时,优选1小时至4小时。
步骤A-5是制造化合物(8)的步骤,于惰性溶剂中在2-氰基乙基二异丙基氯亚磷酰胺与碱的存在下,将-P(R3)R4导入化合物(7)的二级羟基中。
作为所述反应所使用的惰性溶剂,例如可列举:烃类、芳香族烃类、卤化烃类、醚类、乙腈等,优选二氯甲烷。
作为所述反应所使用的碱,例如可列举:三乙胺、N,N-二异丙基乙基胺、吡啶、4-二甲氨基吡啶等,优选N,N-二异丙基乙基胺。
反应温度根据碱、惰性溶剂等而不同,通常为-20℃至回流温度。优选10℃至30℃。
反应时间根据碱、惰性溶剂、反应温度等而不同,通常为15分钟至24小时,优选1小时至4小时。
B法
B法是用来制造化合物(14)或分支型的化合物(19)的方法。如果使用与化合物(2)相反的立体构型的化合物,则化合物(14)或分支型的化合物(19)中键结了-P(R3)R4的二级羟基的立体构型也变得相反。
[化70]
Figure BDA0002550837380000331
式中R1、R2、R3、R4、X、n及m表示与所述相同的含义,R5及R6是氨基的通常的保护基。
B-1步骤是制造化合物(10)的步骤,于惰性溶剂中在酸的存在下,使化合物(9)与化合物(2)进行反应,而在环氧化物开环时生成醚键。可与上文所述的步骤A-1同样地进行。
步骤B-2是制造化合物(11)的步骤,去除作为保护基的R5。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,Protective Groups in organic Synthesis.Third Edition,1999年,JohnWiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤B-3是制造化合物(13)的步骤,于惰性溶剂中在缩合剂、碱的存在下,将化合物(11)及化合物(12)进行酰胺缩合。
所述反应所使用的惰性溶剂可根据所使用的缩合剂的种类而适当选择。例如可列举水、醇类、非质子性极性溶剂等,优选二氯甲烷或N,N-二甲基甲酰胺。
作为所述反应所使用的碱,例如可列举:三乙胺、N,N-二异丙基乙基胺、吡啶、4-二甲氨基吡啶等,优选N,N-二异丙基乙基胺。
作为所述反应所使用的缩合剂,例如可列举:碳二亚胺系缩合剂的WSC(1-[3-(二甲氨基)丙基]-3-乙基碳二亚胺)、DIC(N,N'-二异丙基碳二亚胺)、咪唑系缩合剂的CDI(N,N'-羰基二咪唑)、三嗪系缩合剂的DMT-MM(4-(4,6-二甲氧基-1,3,5-三嗪-2-基)-4-甲基吗啉鎓=氯化物n水合物)、脲阳离子系缩合剂的HATU(O-(7-氮杂苯并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐)、TSTU(O-(N-丁二酰亚胺基)-N,N,N',N'-四甲基脲四氟硼酸盐)、鏻系缩合剂的PyBOP(1H-苯并三唑-1-基氧基三吡咯烷基鏻六氟磷酸盐)等,优选WSC或HATU。另外,也可视需要添加添加剂的HOAt(1-羟基-7-氮杂苯并三唑)、HOBt(1-羟基苯并三唑)、Oxyma(乙基(羟基亚氨基)氰基乙酸酯)。
反应温度根据缩合剂、碱、溶剂等而不同,通常为-20℃至回流温度。优选10℃至30℃。
反应时间根据缩合剂、碱、溶剂、反应温度等而不同,通常为15分钟至72小时,优选1小时至24小时。
化合物(13)向化合物(14)的转换可与上文所述的A法同样地进行。
步骤B-4是去除作为保护基的R1的步骤,可与步骤A-3同样地进行。
步骤B-5是将R2导入一级羟基中的步骤,可与步骤A-4同样地进行。
步骤B-6是将-P(R3)R4导入二级羟基中的步骤,可与步骤A-4同样地进行。
步骤B-7是制造化合物(16)的步骤,于惰性溶剂中在缩合剂、碱的存在下,将化合物(11)与化合物(15)进行酰胺缩合。可与上文所述的步骤B-3同样地进行。
步骤B-8是制造化合物(17)的步骤,去除作为保护基的R6。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,Protective Groups in organic Synthesis.Third Edition,1999年,JohnWiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤B-9是制造化合物(18)的步骤,于惰性溶剂中在缩合剂、碱的存在下,将化合物(12)与化合物(17)进行酰胺缩合。可与上文所述的步骤B-3同样地进行。
化合物(18)向化合物(19)的转换可与上文所述的A法同样地进行。
步骤B-10是去除作为保护基的R1的步骤,可与步骤A-3同样地进行。
步骤B-11是将R2导入一级羟基中的步骤,可与步骤A-4同样地进行。
步骤B-12是将-P(R3)R4导入二级羟基中的步骤,可与步骤A-5同样地进行。
C法
C法是用来合成制造化合物(26)或分支型的化合物(30)的方法。如果使用化合物(23)的二级羟基相反的立体构型的化合物,则化合物(26)或分支型的化合物(30)中键结了-P(R3)R4的二级羟基的立体构型也变得相反。
[化71]
Figure BDA0002550837380000351
式中R2、R3、R4、X、n及m表示与所述相同的含义,R8是羟基的通常的保护基,R7及R9相同或不同,为氨基的通常的保护基。
C-1步骤是制造化合物(21)的步骤,于惰性溶剂中在酸的存在下,使化合物(20)与化合物(4)进行反应,而生成糖苷键。可与上文所述的步骤A-2同样地进行。
步骤C-2是制造化合物(22)的步骤,去除作为化合物(21)的氨基的保护基的R7。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,Protective Groups in organic Synthesis.ThirdEdition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤C-3是制造化合物(24)的步骤,于惰性溶剂中在活化剂、碱的存在下,使化合物(23)转换为活性酯后,与化合物(22)进行反应,而进行氨基甲酸酯化。
作为所述反应所使用的惰性溶剂,例如可列举:烃类、芳香族烃类、卤化烃类、醚类等,优选二氯甲烷。
作为所述反应所使用的活化剂,只要为形成活化酯的活化剂,则无特别限定,例如可列举:碳酸双(五氟苯基)酯、碳酸双(4-硝基苯基)酯、氯甲酸4-硝基苯酯等。优选氯甲酸4-硝基苯酯。
作为所述反应所使用的碱,例如可列举:三乙胺、N,N-二异丙基乙基胺、吡啶、4-二甲氨基吡啶等,优选在制备活性酯时使用吡啶,继而在与胺进行反应时追加N,N-二异丙基乙基胺。
反应温度根据活化剂、碱、惰性溶剂等而不同,通常为-20℃至回流温度。优选10℃至30℃。
反应时间根据活化剂、碱、惰性溶剂、反应温度等而不同,通常为15分钟至24小时,优选1小时至4小时。
步骤C-4是制造化合物(25)的步骤,去除作为化合物(24)的羟基的保护基的R8。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,Protective Groups in organic Synthesis.ThirdEdition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
化合物(25)向化合物(26)的转换可与上文所述的A法同样地进行。
步骤C-5是将R2导入一级羟基中的步骤,可与步骤A-4同样地进行。
步骤C-6是将-P(R3)R4导入二级羟基中的步骤,可与步骤A-5同样地进行。
步骤C-7是制造化合物(28)的步骤,于惰性溶剂中在缩合剂、碱的存在下,将化合物(22)与化合物(27)进行酰胺缩合。可与上文所述的B法步骤B-3同样地进行。
化合物(28)向化合物(29)的转换可与上文所述的方法同样地进行。
步骤C-8是去除作为化合物(28)的氨基的保护基的R9的步骤,可与步骤C-2同样地进行。
步骤C-9是进行氨基甲酸酯化的步骤,可与步骤C-3同样地进行。
步骤C-10是去除作为保护基的R8的步骤,可与步骤C-4同样地进行。
化合物(29)向化合物(30)的转换可与上文所述的A法同样地进行。
步骤C-11是将R2导入一级羟基中的步骤,可与步骤A-4同样地进行。
步骤C-12是将-P(R3)R4导入二级羟基中的步骤,可与步骤A-5同样地进行。
D法
D法是用来制造化合物(35)的方法。可改变2次酰胺缩合的顺序,或根据各化合物的保护基的状态适当选择步骤。如果使用化合物(23)的二级羟基相反的立体构型的化合物,则化合物(35)中键结了-P(R3)R4的二级羟基的立体构型也变得相反。
[化72]
Figure BDA0002550837380000371
式中R2、R3、R4、R8、X、n及m表示与所述相同的含义,R10是氨基的通常的保护基。
步骤D-1是制造化合物(32)的步骤,于惰性溶剂中在缩合剂、碱的存在下,将化合物(31)与化合物(12)进行酰胺缩合。可与上文所述的步骤B-3同样地进行。
步骤D-2是制造化合物(33)的步骤,去除作为化合物(32)的氨基的保护基的R10。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,Protective Groups in organic Synthesis.ThirdEdition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤D-3是制造化合物(34)的步骤,于惰性溶剂中在活化剂、碱的存在下,使化合物(23)转换为活性酯后,与化合物(33)进行反应,而进行氨基甲酸酯化。可与上文所述的步骤C-3同样地进行。
化合物(34)向化合物(35)的转换可与上文所述的C法同样地进行。
步骤D-4是去除作为保护基的R8的步骤,可与步骤C-4同样地进行。
步骤D-5是将R2导入一级羟基中的步骤,可与步骤C-5同样地进行。
步骤D-6是将-P(R3)R4导入二级羟基中的步骤,可与步骤C-6同样地进行。
步骤D-7是制造化合物(36)的步骤,于惰性溶剂中在活化剂、碱的存在下,使化合物(23)转换为活性酯后,与化合物(31)进行反应,而进行氨基甲酸酯化。可与上文所述的步骤C-3同样地进行。
步骤D-8是仅去除作为化合物(36)的氨基的保护基的R10而制造化合物(37),或同时去除作为羟基的保护基的R8与作为氨基的保护基的R10而制造化合物(38)。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,Protective Groups in organic Synthesis.Third Edition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤D-9是制造化合物(34)的步骤,于惰性溶剂中在缩合剂、碱的存在下,将化合物(37)与化合物(12)进行酰胺缩合。可与上文所述的步骤B-3同样地进行。
步骤D-10是制造化合物(39)的步骤,于惰性溶剂中在缩合剂、碱的存在下,将化合物(38)与化合物(12)进行酰胺缩合。可与上文所述的步骤B-3同样地进行。
化合物(39)向化合物(35)的转换可通过步骤D-5及D-6进行。
E法
E法是用来利用D法所使用的化合物(31)或所合成的中间物(38)制造分支型的化合物(44)的方法。可改变2次酰胺缩合的顺序,或根据各化合物的保护基的状态适当选择步骤。如果使用化合物(23)的二级羟基相反的立体构型的化合物,则化合物(44)中键结了-P(R3)R4的二级羟基的立体构型也变得相反。
[化73]
Figure BDA0002550837380000391
式中R2、R3、R4、R6、R8、R10、X、n及m表示与所述相同的含义。
步骤E-1是制造化合物(40)的步骤,于惰性溶剂中在缩合剂、碱的存在下,将化合物(31)与化合物(15)进行酰胺缩合。可与上文所述的步骤B-3同样地进行。
步骤E-2是仅去除作为化合物(40)的氨基的保护基的R6而制造化合物(41)。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,Protective Groups in organic Synthesis.ThirdEdition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤E-3是制造化合物(42)的步骤,于惰性溶剂中在缩合剂、碱的存在下,将化合物(41)与化合物(12)进行酰胺缩合。可与上文所述的步骤B-3同样地进行。
化合物(42)向化合物(43)的转换可与上文所述的D法同样地进行。
步骤E-4是去除作为化合物(42)的氨基的保护基的R10的步骤,可与上文所述的步骤D-2同样地进行。
步骤E-5是进行氨基甲酸酯化的步骤。可与上文所述的D-3同样地进行。
化合物(43)向化合物(44)的转换可与上文所述的C法同样地进行。
步骤E-6是去除作为化合物(43)的羟基的保护基的R8的步骤,可与步骤C-4同样地进行。
步骤E-7是将R2导入一级羟基中的步骤,可与步骤C-5同样地进行。
步骤E-8是将-P(R3)R4导入二级羟基中的步骤,可与步骤C-6同样地进行。
步骤E-9是制造化合物(45)的步骤,于惰性溶剂中在缩合剂、碱的存在下,将化合物(38)与化合物(15)进行酰胺缩合。可与上文所述的步骤B-3同样地进行。
化合物(45)向化合物(46)的转换可与上文所述的步骤E-2及E-3同样地进行。
步骤E-10是去除作为化合物(45)的氨基的保护基的R6。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,Protective Groups in organic Synthesis.Third Edition,1999年,JohnWiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤E-11是通过酰胺缩合导入化合物(15)的步骤。可与上文所述的步骤B-3同样地进行。
化合物(46)向化合物(44)的转换可通过步骤E-7及E-8进行。
F法
F法是用来利用A法所合成的中间物(3)制造分支型的化合物(49)的方法。如果使用化合物(3)的二级羟基相反的立体构型的化合物,则化合物(49)中键结了GalNAc的二级羟基的立体构型也变得相反。
[化74]
Figure BDA0002550837380000411
式中R1、R3、R4、X、n及m表示与所述相同的含义。
步骤F-1是制造化合物(47)的步骤,于惰性溶剂中在酸的存在下,使化合物(3)与化合物(4)进行反应,而生成2个糖苷键。可与上文所述的步骤A-2同样地进行。
步骤F-2是制造化合物(48)的步骤,去除作为化合物(47)的羟基的保护基的R1。可与上文所述的步骤A-3同样地进行。
步骤F-3是制造化合物(49)的步骤,对羟基导入-P(R3)R4。可与上文所述的步骤A-5同样地进行。
G法
G法是用来利用C法所使用的中间物(22)而制造分支型的化合物(55)的方法。如果使用化合物(52)或化合物(56)的二级羟基相反的立体构型的化合物,则化合物(55)中键结了GalNAc的二级羟基的立体构型也变得相反。
[化75]
Figure BDA0002550837380000421
式中R3、R4、X、n及m表示与所述相同的含义,r表示0或1,R11为氨基的通常的保护基,R12及R13为羟基的通常的保护基。
步骤G-1是于惰性溶剂中在缩合剂、碱的存在下,将化合物(22)与化合物(50)进行酰胺缩合。可与上文所述的步骤B-3同样地进行。
步骤G-2是去除作为保护基的R11。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,ProtectiveGroups in organic Synthesis.Third Edition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤G-3是进行氨基甲酸酯化的步骤。可与上文所述的步骤C-3同样地进行。其中,当r=0时,将化合物(22)进行氨基甲酸酯化,当r=1时,将化合物(52)进行氨基甲酸酯化。
步骤G-4是去除作为保护基的R12。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,ProtectiveGroups in organic Synthesis.Third Edition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤G-5是制造化合物(55)的步骤,对羟基导入-P(R3)R4。可与上文所述的步骤A-5同样地进行。
步骤G-6是进行氨基甲酸酯化的步骤。可与上文所述的步骤C-3同样地进行。其中,当r=0时,将化合物(22)进行氨基甲酸酯化,当r=1时,将化合物(52)进行氨基甲酸酯化。
步骤G-7是去除作为保护基的R13。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,ProtectiveGroups in organic Synthesis.Third Edition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤G-8是进行氨基甲酸酯化的步骤。可与上文所述的C-3同样地进行。
H法
H法是用来利用C法所使用的中间物(22)或G法所使用的中间物(51)而制造分支型的化合物(61)的方法。化合物(52)或化合物(56)的立体构型并无限定。
[化76]
Figure BDA0002550837380000441
式中R3、R4、X、n、m、r、R12及R13表示与所述相同的含义。
步骤H-1是进行氨基甲酸酯化的步骤。可与上文所述的步骤C-3同样地进行。其中,当r=0时,将化合物(22)进行氨基甲酸酯化,当r=1时,将化合物(51)进行氨基甲酸酯化。
步骤H-2是去除作为保护基的R13。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,ProtectiveGroups in organic Synthesis.Third Edition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤H-3是制造化合物(61)的步骤,对羟基导入-P(R3)R4。可与上文所述的步骤A-5同样地进行。
步骤H-4是进行氨基甲酸酯化的步骤。可与上文所述的步骤C-3同样地进行。其中,当r=0时,将化合物(22)进行氨基甲酸酯化,当r=1时,将化合物(52)进行氨基甲酸酯化。
步骤H-5是去除作为保护基的R12。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,ProtectiveGroups in organic Synthesis.Third Edition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤H-6是进行氨基甲酸酯化的步骤。可与上文所述的步骤C-3同样地进行。
I法
I法是用来制造分支型的化合物(73)、及化合物(74)的方法。例如,通过使用化合物(70),可适当选择GalNAc部分的6位羟基的保护基。当R14为乙酰基时,使用可通过C法合成的化合物(22)作为化合物(70)。当R14为4,4'-二甲氧基三苯甲基时,使用例如可依照下文所述的参考例合成的化合物作为化合物(70)。
[化77]
Figure BDA0002550837380000461
式中R12及R13为羟基的通常的保护基,理想的是苄基。式中R14为羟基的通常的保护基,理想的是乙酰基、4,4'-二甲氧基三苯甲基。式中R15为羰基的通常的保护基,理想的是苄基。式中,-P(R3)R4表示:[R3及R4相同或不同而表示被羟基、被保护的羟基、巯基、被保护的巯基、氨基、碳数1至4个的烷氧基、碳数1至4个的烷硫基、碳数1至5个的氰基烷氧基或碳数1至4个的烷基取代的氨基]。式中X为碳或氧。式中n为1~15的整数,m为0~5的整数。其中,当n为1时,m为0~5的整数,当n为2~15的整数时,m为0。式中r独立为0或1。式中v为1~7。
步骤I-1是进行氨基甲酸酯化的步骤。可与上文所述的步骤C-3同样地进行。
步骤I-2是去除作为保护基的R12或R13与R15。保护基的去除根据其种类而不同,通常可依照有机合成化学的技术中周知的方法进行,例如可依照如T.H.Greene,P.G.Wuts,Protective Groups in organic Synthesis.Third Edition,1999年,John Wiley&Sons,Inc.等所记载的方法的常规方法进行。
步骤I-3是于惰性溶剂中在缩合剂、碱的存在下,与化合物(22)进行酰胺缩合。可与上文所述的步骤B-3同样地进行。
步骤I-4是制造化合物(73)或化合物(74)的步骤,对羟基导入-P(R3)R4。可与上文所述的步骤A-5同样地进行。
本发明的寡核苷酸(反义寡核苷酸)可以医药的形式尤其用于糖原病Ia型的治疗。治疗包括预防及事后治疗的任一者。
本发明的寡核苷酸(反义寡核苷酸)也可以药理上容许的盐的形态使用。所谓“药理上容许的盐”是指寡核苷酸(反义寡核苷酸)的盐,作为此种盐,可列举:如钠盐、钾盐、锂盐的碱金属盐;如钙盐、镁盐的碱土金属盐;铝盐、铁盐、锌盐、铜盐、镍盐、钴盐等金属盐;如铵盐的无机盐;如叔辛基胺盐、二苄基胺盐、吗啉盐、葡糖胺盐、苯基甘氨酸烷基酯盐、乙二胺盐、N-甲基还原葡糖胺盐、胍盐、二乙胺盐、三乙胺盐、二环己基胺盐、N,N'-二苄基乙二胺盐、氯普鲁卡因盐、普鲁卡因盐、二乙醇胺盐、N-苄基-苯乙基胺盐、哌嗪盐、四甲基铵盐、三(羟甲基)氨基甲烷盐的有机盐等胺盐;如氢氟酸盐、盐酸盐、氢溴酸盐、氢碘酸盐的氢卤酸盐;硝酸盐、高氯酸盐、硫酸盐、磷酸盐等无机酸盐;如甲磺酸盐、三氟甲磺酸盐、乙磺酸盐的低级烷磺酸盐;如苯磺酸盐、对甲苯磺酸盐的芳基磺酸盐;乙酸盐、苹果酸盐、反丁烯二酸盐、丁二酸盐、柠檬酸盐、酒石酸盐、草酸盐、顺丁烯二酸盐等有机酸盐;如甘氨酸盐、赖氨酸盐、精氨酸盐、鸟氨酸盐、谷氨酸盐、天冬氨酸盐的氨基酸盐等,优选碱金属盐,更优选钠盐。这些盐可通过公知的方法制造。
另外,寡核苷酸(反义寡核苷酸)及其药理上容许的盐有时也以溶剂合物(例如,水合物)的形式存在,也可为此种溶剂合物。
当将本发明的寡核苷酸(反义寡核苷酸)、其药理上容许的盐或溶剂合物用于糖原病Ia的治疗时,可将其本身或与适宜的药理上容许的赋形剂、稀释剂等混合,通过锭剂、胶囊剂、颗粒剂、散剂或糖浆剂等经口投予,或者通过注射剂、栓剂、贴附剂或外用剂等非经口投予。
这些制剂是使用赋形剂(例如,如以下的有机系赋形剂:如乳糖、白糖、葡萄糖、甘露糖醇、山梨糖醇的糖衍生物;如玉米淀粉、马铃薯淀粉、α淀粉、糊精的淀粉衍生物;如结晶纤维素的纤维素衍生物;阿拉伯胶;葡聚糖;支链淀粉;如以下的无机系赋形剂:如轻质无水硅酸、合成硅酸铝、硅酸钙、硅酸铝镁的硅酸盐衍生物;如磷酸氢钙的磷酸盐;如碳酸钙的碳酸盐;如硫酸钙的硫酸盐等;等)、润滑剂(例如,硬脂酸;如硬脂酸钙、硬脂酸镁的硬脂酸金属盐;滑石;胶体二氧化硅;如蜂蜡、鲸蜡的蜡类;硼酸;己二酸;如硫酸钠的硫酸盐;二醇;反丁烯二酸;苯甲酸钠;DL亮氨酸;如月桂基硫酸钠、月桂基硫酸镁的月桂基硫酸盐:如无水硅酸、硅酸水合物的硅酸类;所述淀粉衍生物等)、结合剂(例如,羟丙基纤维素、羟丙基甲基纤维素、聚乙烯基吡咯烷酮、聚乙二醇、与所述赋形剂同样的化合物等)、崩解剂(例如,如低取代度羟丙基纤维素、羧甲基纤维素、羧甲基纤维素钙、内部交联羧甲基纤维素钠的纤维素衍生物;如羧甲基淀粉、羧甲基淀粉钠、交联聚乙烯基吡咯烷酮的被化学修饰的淀粉-纤维素类等)、乳化剂(例如,如膨润土、胶体硅酸镁铝的胶体性黏土;如氢氧化镁、氢氧化铝的金属氢氧化物;如月桂基硫酸钠、硬脂酸钙的阴离子表面活性剂;如氯化苄烷铵的阳离子表面活性剂;如聚氧乙烯烷基醚、聚氧乙烯山梨糖醇酐脂肪酸酯、蔗糖脂肪酸酯的非离子表面活性剂等)、稳定剂(如对羟基苯甲酸甲酯、对羟基苯甲酸丙酯的对羟基苯甲酸酯类;如氯丁醇、苄醇、苯基乙醇的醇类;氯化苄烷铵;如苯酚、甲酚的酚类;硫柳汞;去氢乙酸;山梨酸等)、矫味除臭剂(例如,通常使用的甜味料、酸味料、香料等)、稀释剂等添加剂,通过周知的方法而制造。
本发明的治疗药含有0.1~250μmoles/mL的寡核苷酸(反义寡核苷酸)即可,优选也可使其含有1~50μmoles/mL的寡核苷酸(反义寡核苷酸)、其药理上容许的盐或溶剂合物、0.02~10%w/v的碳水化合物或多元醇及0.01~0.4%w/v的药理上容许的表面活性剂。
作为所述碳水化合物,特别优选单糖类或二糖类。作为这些碳水化合物及多元醇的例,可列举:葡萄糖、半乳糖、甘露糖、乳糖、麦芽糖、甘露糖醇及山梨糖醇。这些可单独使用,也可并用。
另外,作为本发明中的表面活性剂的优选的例,可列举:聚氧乙烯山梨糖醇酐单~三-酯、烷基苯基聚氧乙烯、牛胆酸钠、胆酸钠、及多元醇酯。其中,特别优选聚氧乙烯山梨糖醇酐单~三-酯,其中,作为酯,特别优选油酸酯、月桂酸酯、硬脂酸酯及棕榈酸酯。这些可单独使用,也可并用。
另外,本发明的治疗药进而优选可含有0.03~0.09M的药理上容许的中性盐、例如氯化钠、氯化钾及/或氯化钙。
另外,本发明的治疗药进而优选可含有0.002~0.05M的药理上容许的缓冲剂。作为优选的缓冲剂的例,可列举:柠檬酸钠、甘氨酸钠、磷酸钠、三(羟甲基)氨基甲烷。这些缓冲剂可单独使用,也可并用。
进而,所述治疗药可以溶液状态供给。然而,由于存在必须保存一定时间的情形等,故而为了使寡核苷酸(反义寡核苷酸)稳定而防止治疗效果的降低,通常优选预先冷冻干燥,在这种情况下,在使用时以溶解液(注射用蒸馏水等)再构成(reconstruction),即制成投予的液体状态使用即可。因此,本发明的治疗药也包含用于以各成分成为特定的浓度范围的方式以溶解液再构成而使用的被冷冻干燥的状态的治疗药。为了促进冷冻干燥物的溶解性,可使其进而含有白蛋白、甘氨酸等氨基酸。
本发明的寡核苷酸(反义寡核苷酸)可使用国际公开第2015/005253所记载的脂质等将其封入,以如国际公开第2015/005253等所记载的核酸脂质纳米粒子或脂质体的形式投予。
当将本发明的寡核苷酸(反义寡核苷酸)、其药理上容许的盐或溶剂合物对人投予时,例如以成人每天约0.01~100mg/kg(体重)、优选0.1~20mg/kg(体重)的投予量,1次或分数次进行皮下注射、点滴静脉注射、或静脉注射即可,其投予量或投予次数可根据疾病的种类、症状、年龄、投予方法等适当变更。
本发明的寡核苷酸(反义寡核苷酸)、其药理上容许的盐或溶剂合物向糖原病Ia型患者的投予例如可以如下方式进行。即,通过业者所周知的方法制造寡核苷酸(反义寡核苷酸)、其药理上容许的盐或溶剂合物,通过常规方法对其进行杀菌处理,例如制备125mg/mL的注射用溶液。以寡核苷酸(反义寡核苷酸)的投予量相对于体重每1kg例如成为10mg的方式,例如以输液的形式将该溶液点滴投予至患者静脉内。投予例如是以1周的间隔进行,其后也一边通过血糖值、血中乳酸值、利用CT(Computed Tomography,计算机断层扫描技术)获得的肝肿大/肝糖值等确认治疗效果,一边适当重复该治疗。
实施例
以下,通过实施例具体说明本发明。再者,这些实施例是用来说明本发明的,并不限定本发明的范围。
(实施例1~11)
HO-Ae2s-Gm1s-Am1s-Te2s-Am1s-Am1s-Ae2s-Am1s-Um1s-Ce2s-Cm1s-Gm1s-Ae2s-Um1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2-sAm1s-Ge2t-H(21e_002)(序列编号1)
使用核酸自动合成仪(“ABI 394DNA/RNA Synthesizer”Applied Biosystems制造),利用亚磷酰胺法(Nucleic Acids Research,12,4539(1984))进行合成。作为试剂,使用活化剂溶液-3(0.25mol/L的5-苄硫基-1H-四唑/乙腈溶液,和光纯药工业制造,产品编号013-20011)、CAP A for AKTA(1-甲基咪唑/乙腈溶液,Sigma-Aldrich制造,产品编号L040050)、Cap B1for AKTA(乙酸酐/乙腈溶液,Sigma-Aldrich制造,产品编号L050050)、Cap B2for AKTA(吡啶/乙腈溶液,Sigma-Aldrich制造,产品编号L050150)、DCA Deblock(二氯乙酸/甲苯溶液,Sigma-Aldrich制造,产品编号L023050)。作为用来形成硫代磷酸酯键的硫化试剂,以成为0.2M的方式使用乙腈(脱水,关东化学制造,产品编号01837-05)、吡啶(脱水,关东化学制造,产品编号11339-05)1:1(v/v)溶液溶解苯基乙酰基二硫醚(CARBOSYNTH制造,产品编号FP07495)使用。作为酰胺试剂,2'-O-Me核苷的亚磷酰胺(腺苷体产品编号ANP-5751,胞苷体产品编号ANP-5752,鸟苷体产品编号ANP-5753,尿苷体产品编号ANP-5754)是使用ChemGenes制造的亚磷酰胺。非天然型的亚磷酰胺是使用日本专利特开2000-297097的实施例14(5'-O-二甲氧基三苯甲基-2'-O,4'-C-亚乙基-6-N-苯甲酰基腺苷-3'-O-(2-氰基乙基N,N-二异丙基)亚磷酰胺)、实施例27(5'-O-二甲氧基三苯甲基-2'-O,4'-C-亚乙基-2-N-异丁酰基鸟苷-3'-O-(2-氰基乙基N,N-二异丙基)亚磷酰胺)、实施例22(5'-O-二甲氧基三苯甲基-2'-O,4'-C-亚乙基-4-N-苯甲酰基-5-甲基胞苷-3'-O-(2-氰基乙基N,N-二异丙基)亚磷酰胺)、实施例9(5'-O-二甲氧基三苯甲基-2'-O,4'-C-亚乙基-5-甲基尿苷-3'-O-(2-氰基乙基N,N-二异丙基)亚磷酰胺)的化合物。作为固相载体,使用Glen Unysupport 0.1μmol(GlenResearch制造),合成表述化合物。程序使用附属于核酸自动合成仪的0.2μmol尺度用,其中,酰胺体的缩合所需的时间设为600秒,硫化所需的时间设为150秒。
利用300μL的浓氨水处理具有目标序列的被保护的寡核苷酸相关物,由此自支持体切下低聚物,并且脱去磷原子上的保护基氰基乙基与核酸碱基上的保护基。使用ClarityQSP(Phenomenex制造),依照随附的操作说明进行精制。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第112号互补的序列。
实施例2至11的化合物也与实施例1同样地合成。将实施例1的数据、及实施例2至11记载于表1。
表1
Figure BDA0002550837380000511
表中的序列中大写字母表示2'-O,4'-C-亚乙基交联核酸,小写字母表示2'-OMe-RNA。2'-O,4'-C-亚乙基交联核酸的C是5-甲基胞嘧啶。开始及结束表示智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起的编号。化合物是通过负离子ESI(electrospray ionization,电喷雾电离)质量分析进行鉴定,将实测值示于表中。
(实施例12~22)
HO-Am1s-Gm1s-Am1s-Um1s-Am1s-Am1s-Am1s-Am1s-Um1s-Cm1s-Cm1s-Gm1s-Am1s-Um1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-AGm1t-H(21m_002)(序列编号1)
使用核酸自动合成仪(BioAutomation制造的MerMade 192X),与实施例1同样地进行合成及精制,获得目标化合物。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第112号互补的序列。
实施例13至22的化合物也与实施例12同样地合成。将实施例12的数据、及实施例13至22记载于表2。
表2
Figure BDA0002550837380000521
表中的序列中小写字母表示2'-OMe-RNA。开始及结束表示智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起的编号。化合物是通过负离子ESI质量分析进行鉴定,将实测值示于表中。
(实施例23~50)
HO-Ge2s-Am1s-Um1s-Ae2s-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(21e_015)(序列编号12)
与实施例12同样地进行合成及精制,获得目标化合物。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第111号互补的序列。
实施例24至50的化合物也与实施例23同样地合成。将实施例23的数据、及实施例24至50记载于表3。
表3
Figure BDA0002550837380000531
表中的序列中大写字母表示2'-O,4'-C-亚乙基交联核酸,小写字母表示2'-OMe-RNA。2'-O,4'-C-亚乙基交联核酸的C是5-甲基胞嘧啶。开始及结束表示智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起的编号。化合物是通过负离子ESI质量分析进行鉴定,将实测值示于表中。
(实施例51~69)
HO-Um1s-Ae2s-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(18e_005)(序列编号20)
与实施例12同样地进行合成。利用450μL的浓氨水处理具有目标序列的被保护的寡核苷酸相关物,由此自支持体切下低聚物,并且脱去磷原子上的保护基氰基乙基与核酸碱基上的保护基。将低聚物的混合溶液与Clarity QSP DNA上样缓冲液(Clarity QSP DNALoading Buffer)(Phenomenex制造)300μL混合并添加到Clarity SPE 96孔板(Phenomenex制造)上。依序添加Clarity QSP DNA上样缓冲液:水=1:1溶液1mL、水3mL、3%二氯乙酸(DCA)水溶液3mL、水6mL后,收集通过20mM Tris水溶液:乙腈=9:1溶液萃取的成分。将溶剂蒸馏去除后,获得目标化合物。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第109号互补的序列。
实施例52至69的化合物也与实施例51同样地合成。将实施例51的数据、及实施例52至69记载于表4。
表4
Figure BDA0002550837380000541
表中的序列中大写字母表示2'-O,4'-C-亚乙基交联核酸,小写字母表示2'-OMe-RNA。2'-O,4'-C-亚乙基交联核酸的C是5-甲基胞嘧啶。开始及结束表示智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起的编号。化合物是通过负离子ESI质量分析进行鉴定,将实测值示于表中。
(实施例70~82)
HO-Um1s-Am1s-Am1s-Am1s-Am1s-Um1s-Cm1s-Cm1s-Gm1s-Am1s-Um1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Am1s-Gm1t-H(18m_005)(序列编号20)
使用核酸自动合成仪(BioAutomation制造的MerMade 192X),与实施例12同样地进行合成及精制,而获得目标化合物。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第109号互补的序列。
实施例71至82的化合物也与实施例70同样地合成。将实施例70的数据、及实施例71至82记载于表5。
表5
Figure BDA0002550837380000551
表中的序列中小写字母表示2'-OMe-RNA。开始及结束表示智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起的编号。化合物是通过负离子ESI质量分析进行鉴定,将实测值示于表中。
(参考例1)
HO-Ae2s-Gm1s-Am1s-Te2s-Am1s-Am1s-Ae2s-Am1s-Um1s-Ce2s-Cm1s-Gm1s-Ae2s-Um1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2-sAm1s-Ge2t-H(21e_001)(序列编号33)
与实施例1同样地合成、精制,而获得目标化合物。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第95号至第115号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:7520.85)。
(参考例2~3)
HO-Ge2s-Cm1s-Am1s-Ge2s-Am1s-Um1s-Ae2s-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Ae2t-H(21e_013)(序列编号34)
与实施例12同样地进行合成及精制,而获得目标化合物。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第94号至第114号互补的序列。
参考例3的化合物也与参考例2同样地合成。将参考例2的数据、及参考例3记载于表6。
表6
Figure BDA0002550837380000561
表中的序列中大写字母表示2'-O,4'-C-亚乙基交联核酸,小写字母表示2'-OMe-RNA。2'-O,4'-C-亚乙基交联核酸的C是5-甲基胞嘧啶。开始及结束表示智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起的编号。化合物是通过负离子ESI质量分析进行鉴定,将实测值示于表中。
(参考例4~15)
HO-Cm1s-Ae2s-Gm1s-Am1s-Te2s-Am1s-Am1s-Ae2s-Am1s-Um1s-Ce2s-Cm1s-Gm1s-Ae2s-Um1s-Gm1s-Ge2s-Cm1t-H(18e_001)(序列编号36)
与实施例51同样地进行合成及精制,而获得目标化合物。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第96号至第113号互补的序列。
参考例5至15的化合物也与参考例4同样地合成。将参考例4的数据、及参考例5至15记载于表7。
表7
Figure BDA0002550837380000562
表中的序列中大写字母表示2'-O,4'-C-亚乙基交联核酸,小写字母表示2'-OMe-RNA。2'-O,4'-C-亚乙基交联核酸的C是5-甲基胞嘧啶。开始及结束表示智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起的编号。化合物是通过负离子ESI质量分析进行鉴定,将实测值示于表中。
(参考例16~20)
HO-Cm1s-Am1s-Gm1s-Am1s-Um1s-Am1s-Am1s-Am1s-Am1s-Um1s-Cm1s-Cm1s-Gm1s-Am1s-Um1s-Gm1s-Gm1s-Cm1t-H(18m_001)(序列编号36)
与实施例70同样地进行合成及精制,而获得目标化合物。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第96号至第113号互补的序列。
参考例17至20的化合物也与参考例16同样地合成。将参考例16的数据、及参考例17至20记载于表8。
表8
Figure BDA0002550837380000571
表中的序列中小写字母表示2'-OMe-RNA。开始及结束表示智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起的编号。化合物是通过负离子ESI质量分析进行鉴定,将实测值示于表中。
(实施例83~86)
HO-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(15e_001)(序列编号40)
使用AKTA Oligopilot,使用Primer Support 5G Unylinker 350,100μmol(GEHealthcare制造)作为固相载体,与实施例1同样地进行合成。利用25mL的浓氨水处理具有目标序列的被保护的寡核苷酸相关物,由此自支持体切下低聚物,并且脱去磷原子上的保护基氰基乙基与核酸碱基上的保护基。使用phenomenex Clarity QSP 5g对低聚物的混合溶液进行脱保护、精制,将溶剂蒸馏去除后,获得目标化合物。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。
实施例84至86的化合物也与实施例83同样地合成。将实施例83的数据、及实施例84至86记载于表9。
表9
Figure BDA0002550837380000581
表中的序列中大写字母表示2'-O,4'-C-亚乙基交联核酸,小写字母表示2'-OMe-RNA,标下划线的小写字母表示DNA。2'-O,4'-C-亚乙基交联核酸的C是5-甲基胞嘧啶。开始及结束表示智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起的编号。化合物是通过负离子ESI质量分析鉴定,将实测值示于表中。
(实施例87~90)
HO-Am1s-Ae2s-Um1s-Ce2s-Ce2s-Gm1s-Ae2s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(15e_001.1)(序列编号40)
与实施例1同样地进行合成。但使用Primer Support 5G Unylinker 350,10μmol(GE Healthcare制造)作为固相载体,且使用10μmol的程序。与实施例83同样地进行精制,而获得目标化合物。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。
实施例88至90的化合物也与实施例87同样地合成。将实施例87的数据、及实施例88至90记载于表10。
表10
Figure BDA0002550837380000582
表中的序列中大写字母表示2'-O,4'-C-亚乙基交联核酸,小写字母表示2'-OMe-RNA。2'-O,4'-C-亚乙基交联核酸的C是5-甲基胞嘧啶。开始及结束表示智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起的编号。化合物是通过负离子ESI质量分析进行鉴定,将实测值示于表中。
(实施例91)
HO-X-X-X-Ap-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号42)
与实施例1同样地进行合成。但使用Primer Support 5G Unylinker 350,10μmol(GE Healthcare制造)作为固相载体,且使用10μmol的程序。X部分使用文献(Bioorg.Med.Chem.(2016)24,26-32)所记载的GalNAc亚磷酰胺单元(phosphoramiditeunit)1缩合3次。与实施例83同样地进行精制,而获得目标化合物。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第107号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:7131.24)。
(实施例92)
HO-X-X-X-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
与实施例91同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6818.18)。
(实施例93)
HO-X-X-X-Tp-Cp-Ap-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号43)
与实施例91同样地进行合成。
本化合物的碱基序列具有与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第107号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:7738.35)。
(实施例94)
HO-X-X-X-Ap-Am1s-Ae2s-Um1s-Ce2s-Cm1s-Ge2s-Am1s-Te2s-Gm1s-Ge2s-Cm1s-Ge2s-Am1s-Ae2s-Gm1t-H(序列编号42)
与实施例91同样地进行合成。
本化合物的碱基序列具有与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第107号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:7141.22)。
(实施例95)
HO-X-X-X-Ap-Ae2s-Am1s-Te2s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Ge2s-Gm1s-Ce2s-Gm1s-Ae2s-Am1s-Ge2t-H(序列编号42)
与实施例91同样地进行合成。
本化合物的碱基序列具有与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第107号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:7167.24)。
(参考例21)
(21A)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[5-(苄氧基羰基氨基)戊氧基]四氢吡喃-2-基]甲酯(化合物21A)的合成
[化78]
Figure BDA0002550837380000601
在文献已知化合物的N-苄氧基羰基-1-羟基戊基-5-胺(J.Am.Chem.Soc.,2006,128,4058-4073.)(8.05g,33.9mmol)与文献已知化合物的乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4,6-三乙酰氧基-四氢吡喃-2-基]甲酯(WO2011053614)(12.0g,30.8mmol)的二氯甲烷(200mL)悬浮溶液中添加三氟甲磺酸(450μL,5.23mmol),在45℃下整夜搅拌。反应结束后,将溶剂减压蒸馏去除一半进行浓缩,添加到乙酸乙酯/饱和碳酸氢钠水溶液的混合溶液中。利用饱和碳酸氢钠水溶液、饱和食盐水/磷酸缓冲液(pH值7.0)洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v)将其进行精制,而获得非晶状的目标物21A(17.0g,产率94%)。
1H-NMR(CDCl3)δ:7.37-7.32(5H,m),5.69(1H,d,J=9.1Hz),5.35(1H,d,J=2.4Hz),5.29(1H,d,J=11.5Hz),5.10(2H,s),4.94(1H,br),4.68(1H,d,J=7.9Hz),4.20-4.09(2H,m),3.97-3.86(3H,m),3.49-3.44(1H,m),3.20-3.17(2H,m),2.14(3H,s),2.05(3H,s),2.01(3H,s),1.93(3H,s),1.66-1.34(6H,m).
C27H38N2O11:[M+H]+计算值567,实测值567.
(21B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-(5-氨基戊氧基)四氢吡喃-2-基]甲酯(化合物21B)的合成
[化79]
Figure BDA0002550837380000611
将步骤(21A)中合成的化合物21A(17.0g,30.0mmol)溶解于乙醇(200ml)中。添加10%钯/碳(湿基)(2g),于氢气环境下在室温下剧烈搅拌。反应结束后过滤,将所获得的通过液进行减压蒸馏去除而获得目标物21B(12.64g,产率97%)的粗产物。不再进一步进行精制,用于下一反应。
1H-NMR(CDCl3)δ:5.78(1H,d,J=8.5Hz),5.36-5.32(2H,m),4.72(1H,d,J=8.5Hz),4.21-4.09(2H,m),3.96-3.88(3H,m),3.52-3.47(1H,m),2.70(2H,t,J=6.7Hz),2.15(3H,s),2.05(3H,s),2.01(3H,s),1.96(3H,s),1.75-1.36(6H,m).
C19H32N2O9:[M+H]+计算值433,实测值433.
(21C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[5-[[(4S)-2,2-二甲基-1,3-二氧杂环戊烷-4-基]甲氧基羰基氨基]戊氧基]四氢吡喃-2-基]甲酯(化合物21C)的合成
[化80]
Figure BDA0002550837380000612
将(R)-(-)-2,2-二甲基-1,3-二氧杂环戊烷-4-甲醇(1.68g,12.8mmol)、三乙胺(3.22mL,23.1mmol)溶解于二氯甲烷(100mL)中。添加氯甲酸4-硝基苯酯(2.56g,12.7mmol),在室温下搅拌1小时。继而,添加三乙胺(5mL,36mmol)、步骤(21B)中合成的化合物21B(5.0g,11.56mmol)的二氯甲烷溶液(20mL),在45℃下搅拌1小时。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v)将其进行精制,而获得非晶状的目标物21C(3.46g,产率51%)。
1H-NMR(CDCl3)δ:5.75(1H,d,J=8.5Hz),5.36(1H,d,J=3.0Hz),5.30(1H,dd,J=11.2,3.3Hz),4.97(1H,br),4.71(1H,d,J=8.5Hz),4.33-4.29(1H,m),4.23-3.88(8H,m),3.74-3.72(1H,m),3.49-3.46(1H,m),3.19-3.14(2H,m),2.15(3H,s),2.05(3H,s),2.01(3H,s),1.96(3H,s),1.63-1.53(6H,m),1.44(3H,s),1.37(3H,s).
C26H42N2O13:[M+H]+计算值591,实测值591.
(21D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[5-[[(2S)-2,3-二羟基丙氧基]羰基氨基]戊氧基]四氢吡喃-2-基]甲酯(化合物21D)的合成
[化81]
Figure BDA0002550837380000621
在步骤(21C)中合成的化合物21C(4.38g,7.42mmol)中添加纯水(2mL)、三氟乙酸(6mL),在室温下搅拌1.5小时。反应结束后,将溶剂减压蒸馏去除。进而进行甲苯共沸,由此将水去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v)将其进行精制,而获得非晶状的目标物21D(2.47g,产率61%)。
1H-NMR(CDCl3)δ:5.75(1H,d,J=7.3Hz),5.35(1H,d,J=3.0Hz),5.22(1H,dd,J=11.5,3.0Hz),5.13(1H,br s),4.61(1H,d,J=8.5Hz),4.23-3.87(7H,m),3.67-3.60(3H,m),3.49-3.46(1H,m),3.22-3.16(2H,m),2.16(3H,s),2.05(3H,s),2.01(3H,s),1.97(3H,s),1.61-1.50(6H,m).
C23H38N2O13:[M+H]+计算值551,实测值551.
(21E)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[5-[[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-羟基-丙氧基]羰基氨基]戊氧基]四氢吡喃-2-基]甲酯(化合物21E)的合成
[化82]
Figure BDA0002550837380000622
将步骤(21D)中合成的化合物21D(2.47g,4.52mmol)溶解于吡啶(15mL)中。添加4,4'-二甲氧基三苯氯甲烷(1.82g,5.38mmol),在室温下加以搅拌。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v,其后乙酸乙酯:甲醇=95:5,v/v)将其进行精制,而获得非晶状的目标物21E(1.84g,产率48%)。
1H-NMR(CDCl3)δ:7.43-7.42(2H,m),7.32-7.29(6H,m),7.24-7.19(1H,m),6.84-6.81(4H,m),5.74(1H,d,J=8.5Hz),5.35(1H,d,J=3.0Hz),5.26(1H,dd,J=11.2,3.3Hz),4.94(1H,br),4.65(1H,d,J=8.5Hz),4.22-4.09(4H,m),3.97-3.91(4H,m),3.79(6H,s),3.47-3.43(1H,m),3.18-3.15(4H,m),3.00(1H,d,J=4.8Hz),2.14(3H,s),2.04(3H,s),1.99(3H,s),1.95(3H,s),1.65-1.34(6H,m).
C44H56N2O15:[M+Na]+计算值875,实测值875.
(21F)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[5-[[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基丙氧基]羰基氨基]戊氧基]四氢吡喃-2-基]甲酯(化合物21F)的合成
[化83]
Figure BDA0002550837380000631
将步骤(21E)中合成的化合物21E(1.84g,2.16mmol)添加适量的吡啶并在减压下共沸后,溶解于二氯甲烷(21mL)中。添加N,N-二异丙基乙基胺(2.25mL,12.9mmol)、2-氰基乙基二异丙基氯亚磷酰胺(0.96mL,4.31mmol),在室温下搅拌1.5小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯共沸后获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物21F(1.87g,产率82%)。
1H-NMR(CDCl3)δ:7.46-7.40(2H,m),7.35-7.17(7H,m),6.82-6.80(4H,m),5.73-5.63(1H,m),5.37-5.35(1H,m),5.30-5.26(1H,m),4.97-4.94(0.5H,m),4.72-4.68(1H,m),4.42-4.40(0.5H,m),4.22-4.10(4H,m),3.99-3.43(14H,m),3.18-3.12(4H,m),2.67-2.62(1H,m),2.46-2.44(1H,m),2.14(3H,s),2.01-1.96(9H,m),1.65-0.97(18H,m).
(实施例96)
HO-X1-X1-X1-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X1,与实施例91同样地进行合成。X1的部分是使用参考例21中合成的化合物21F,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6830.15)。
(参考例22)
(22A)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[5-[[(4R)-2,2-二甲基-1,3-二氧杂环戊烷-4-基]甲氧基羰基氨基]戊氧基]四氢吡喃-2-基]甲酯(化合物22A)的合成
[化84]
Figure BDA0002550837380000641
将(S)-(+)-2,2-二甲基-1,3-二氧杂环戊烷-4-甲醇(1.68g,2.54mmol)、三乙胺(3.22mL,23.1mmol)溶解于二氯甲烷(100mL)中。添加氯甲酸4-硝基苯酯(2.56g,12.72mmol),在室温下搅拌1小时。继而,添加三乙胺(5mL,36mmol)、步骤(21B)中合成的化合物21B(5.2g,13mmol),在45℃下搅拌1小时。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v)将其进行精制,而获得非晶状的目标物22A(3.82g,产率54%)。
1H-NMR(CDCl3)δ:5.71(1H,d,J=8.5Hz),5.36(1H,d,J=3.0Hz),5.31(1H,dd,J=11.2,3.0Hz),4.97(1H,br),4.71(1H,d,J=8.5Hz),4.33-4.30(1H,m),4.22-3.99(5H,m),3.95-3.89(3H,m),3.74-3.71(1H,m),3.50-3.46(1H,m),3.19-3.14(2H,m),2.15(3H,s),2.05(3H,s),2.01(3H,s),1.96(3H,s),1.69-1.47(6H,m),1.44(3H,s),1.37(3H,s).
C26H42N2O13:[M+H]+计算值591,实测值591.
(22B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[5-[[(2R)-2,3-二羟基丙氧基]羰基氨基]戊氧基]四氢吡喃-2-基]甲酯(化合物22B)的合成
[化85]
Figure BDA0002550837380000651
在步骤(22A)中合成的化合物22A(3.82g,6.47mmol)中添加纯水(2mL)、三氟乙酸(6mL),在室温下搅拌1.5小时。反应结束后,将溶剂减压蒸馏去除。进而进行甲苯共沸,由此将水去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v)将其进行精制,而获得非晶状的目标物22B(2.49g,产率70%)。
1H-NMR(CDCl3)δ:5.98(1H,d,J=8.5Hz),5.37-5.20(3H,m),4.63(1H,d,J=8.5Hz),4.21-3.88(7H,m),3.69-3.57(3H,m),3.51-3.44(1H,m),3.21-3.14(2H,m),2.16(3H,s),2.05(3H,s),2.01(3H,s),1.97(3H,s),1.66-1.34(6H,m).
C23H38N2O13:[M+H]+计算值551,实测值551.
(22C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[5-[[(2R)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-羟基-丙氧基]羰基氨基]戊氧基]四氢吡喃-2-基]甲酯(化合物22C)的合成
[化86]
Figure BDA0002550837380000652
将步骤(22B)中合成的化合物22B(2.49g,4.52mmol)溶解于吡啶(15mL)中。添加4,4'-二甲氧基三苯氯甲烷(1.84g,5.43mmol),在室温下加以搅拌。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v,其后乙酸乙酯:甲醇=95:5,v/v)将其进行精制,而获得非晶状的目标物22C(2.1g,产率54%)。
1H-NMR(CDCl3)δ:7.42(2H,d,J=7.9Hz),7.32-7.16(6H,m),6.83(4H,d,J=9.1Hz),5.74(1H,d,J=8.5Hz),5.35(1H,d,J=3.0Hz),5.27(1H,dd,J=11.2,3.0Hz),4.93(1H,br),4.66(1H,d,J=8.5Hz),4.25-4.11(4H,m),4.01-3.89(4H,m),3.79(6H,s),3.50-3.43(1H,m),3.21-3.13(4H,m),2.98(1H,br),2.13(3H,s),2.04(3H,s),1.99(3H,s),1.94(3H,s),1.65-1.34(6H,m).
C44H56N2O15:[M+Na]+计算值875,实测值875.
(22D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[5-[[(2R)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基丙氧基]羰基氨基]戊氧基]四氢吡喃-2-基]甲酯(化合物22D)的合成
[化87]
Figure BDA0002550837380000661
将步骤(22C)中合成的化合物22C(2.10g,2.50mmol)添加适量的吡啶并在减压下共沸后,溶解于二氯甲烷(20mL)中。添加N,N-二异丙基乙基胺(2.6mL,15mmol)、2-氰基乙基二异丙基氯亚磷酰胺(1.L1ml,4.9mmol),在室温下搅拌1.5小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯共沸后获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物22D(1.63g,产率63%)。
1H-NMR(CDCl3)δ:7.46-7.40(2H,m),7.35-7.17(7H,m),6.85-6.78(4H,m),5.70-5.57(1H,m),5.38-5.34(1H,m),5.32-5.24(1H,m),4.96-4.91(0.5H,m),4.73-4.65(1H,m),4.44-4.38(0.5H,m),4.23-4.08(4H,m),4.00-3.41(14H,m),3.27-3.03(4H,m),2.68-2.60(1H,m),2.49-2.42(1H,m),2.14(3H,s),2.07-1.91(9H,m),1.65-0.97(18H,m).
(实施例97)
HO-X2-X2-X2-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X2,与实施例91同样地进行合成。X2的部分是使用参考例22中合成的化合物22D,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6830.14)。
(参考例23)
(23A)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[8-(苄氧基羰基氨基)辛氧基]四氢吡喃-2-基]甲酯(化合物23A)的合成
[化88]
Figure BDA0002550837380000671
在文献已知化合物的N-(8-羟基辛基)氨基甲酸苄酯(J.Med.Chem,1993,36,3721-3726.)(6.5g,23mmol)与文献已知化合物的乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4,6-三氧基-四氢吡喃-2-基]甲酯(WO2011053614)(8.2g,21mmol)的二氯甲烷(150mL)悬浮溶液中添加三氟甲磺酸(310μL,3.6mmol),在45℃下整夜搅拌。反应结束后,将溶剂减压蒸馏去除一半进行浓缩,添加到乙酸乙酯/饱和碳酸氢钠水溶液的混合溶液中。利用饱和碳酸氢钠水溶液、饱和食盐水/磷酸缓冲液(pH值7.0)洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v)将其进行精制,而获得非晶状的目标物23A(12.68g,产率99%)。
1H-NMR(CDCl3)δ:7.39-7.29(5H,m),5.65(1H,d,J=8.5Hz),5.35(1H,d,J=3.0Hz),5.29(1H,dd,J=11.5,3.0Hz),5.10(2H,s),4.83(1H,br),4.68(1H,d,J=7.9Hz),4.20-4.09(2H,m),3.99-3.85(3H,m),3.50-3.42(1H,m),3.22-3.15(2H,m),2.14(3H,s),2.05(3H,s),2.00(3H,s),1.95(3H,s),1.62-1.27(12H,m).
C30H44N2O11:[M+H]+计算值609,实测值609.
(23B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-(8-氨基辛氧基)四氢吡喃-2-基]甲酯(化合物23B)的合成
[化89]
Figure BDA0002550837380000672
将步骤(23A)中合成的化合物23A(12.68g,20.83mmol)溶解于乙醇(200mL)中。添加10%钯/碳(湿基)(2g),于氢气环境下在室温下剧烈搅拌。反应结束后过滤,将所获得的通过液进行减压蒸馏去除而获得目标物23B(10.1g)的粗产物。不再进一步进行精制,用于下一反应。
C22H38N2O9:[M+H]+计算值475,实测值475.
(23C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[8-[[(4S)-2,2-二甲基-1,3-二氧杂环戊烷-4-基]甲氧基羰基氨基]辛氧基]四氢吡喃-2-基]甲酯(化合物23C)的合成
[化90]
Figure BDA0002550837380000681
将(R)-(-)-2,2-二甲基-1,3-二氧杂环戊烷-4-甲醇(1.6g,12mmol)、三乙胺(3.1mL,22mmol)溶解于二氯乙烷(30mL)中。添加氯甲酸4-硝基苯酯(2.2g,12mmol),在室温下搅拌1.5小时。继而,添加三乙胺(4.5mL,32mmol)、步骤(23B)中合成的化合物23B(5.1g,11mmol),在45℃下搅拌4小时。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v)将其进行精制,而获得非晶状的目标物23C(2.45g,产率36%)。
1H-NMR(CDCl3)δ:5.64(1H,d,J=7.9Hz),5.36(1H,d,J=3.0Hz),5.29(1H,dd,J=11.2,3.0Hz),4.85(1H,br),4.69(1H,d,J=7.9Hz),4.35-3.86(9H,m),3.76-3.70(1H,m),3.50-3.43(1H,m),3.20-3.12(2H,m),2.14(3H,s),2.05(3H,s),2.01(3H,s),1.96(3H,s),1.65-1.28(12H,m),1.44(3H,s),1.37(3H,s).
C29H48N2O13:[M+H]+计算值633,实测值633.
(23D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[8-[[(2S)-2,3-二羟基丙氧基]羰基氨基]辛氧基]四氢吡喃-2-基]甲酯(化合物23D)的合成
[化91]
Figure BDA0002550837380000682
在步骤(23C)中合成的化合物23C(2.45g,3.87mmol)中添加纯水(2mL)、三氟乙酸(6mL),在室温下搅拌1.5小时。反应结束后,将溶剂减压蒸馏去除。进而进行甲苯共沸,由此将水去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v)将其进行精制,而获得非晶状的目标物23D(1.18g,产率51%)。
1H-NMR(CDCl3)δ:5.87(1H,d,J=7.9Hz),5.35(1H,d,J=3.0Hz),5.27(1H,dd,J=11.2,3.0Hz),5.07(1H,br),4.66(1H,d,J=8.5Hz),4.27-3.86(7H,m),3.70-3.57(2H,m),3.50-3.43(2H,m),3.24-3.13(2H,m),2.15(3H,s),2.05(3H,s),2.01(3H,s),1.96(3H,s),1.67-1.24(12H,m).
C26H44N2O13:[M+H]+计算值593,实测值593.
(23E)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[8-[[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-羟基-丙氧基]羰基氨基]辛氧基]四氢吡喃-2-基]甲酯(化合物23E)的合成
[化92]
Figure BDA0002550837380000691
将步骤(23D)中合成的化合物23D(1.18g,1.99mmol)溶解于吡啶(20mL)中。添加4,4'-二甲氧基三苯氯甲烷(0.81g,2.39mmol),在室温下加以搅拌。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯而共沸后,获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v,其后乙酸乙酯:甲醇=95:5,v/v)将其进行精制,而获得非晶状的目标物23E(0.6g,产率34%)。
1H-NMR(CDCl3)δ:7.44-7.40(2H,m),7.33-7.19(7H,m),6.85-6.81(4H,m),5.61(1H,d,J=8.5Hz),5.35(1H,d,J=3.0Hz),5.29(1H,dd,J=11.2,3.3Hz),4.79(1H,br),4.69(1H,d,J=8.5Hz),4.24-4.09(4H,m),4.00-3.86(4H,m),3.79(6H,s),3.50-3.43(1H,m),3.21-3.12(4H,m),2.14(3H,s),2.04(3H,s),2.00(3H,s),1.95(3H,s),1.63-1.26(12H,m).
C47H62N2O15:[M+Na]+计算值917,实测值917.
(23F)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[8-[[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基丙氧基]羰基氨基]辛氧基]四氢吡喃-2-基]甲酯(化合物23F)的合成
[化93]
Figure BDA0002550837380000692
将步骤(23E)中合成的化合物23E(0.60g,0.67mmol)添加适量的吡啶并在减压下共沸后,溶解于二氯乙烷(5mL)中。添加N,N-二异丙基乙基胺(0.70ml,4.0mmol)、2-氰基乙基二异丙基氯亚磷酰胺(0.30mL,1.3mmol),在室温下搅拌1.5小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯共沸后获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物23F(0.51g,产率69%)。
1H-NMR(CDCl3)δ:7.46-7.40(2H,m),7.34-7.17(7H,m),6.84-6.78(4H,m),5.56-5.48(1H,m),5.37-5.34(1H,m),5.32-5.28(1H,m),4.87-4.80(0.5H,m),4.73-4.68(1H,m),4.43-4.37(0.5H,m),4.23-4.08(4H,m),3.97-3.43(14H,m),3.26-3.06(4H,m),2.66-2.61(1H,m),2.47-2.41(1H,m),2.14(3H,s),2.06-1.93(9H,m),1.64-1.23(12H,m),1.21-0.98(12H,m).
(实施例98)
HO-X3-X3-X3-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X3,与实施例91同样地进行合成。X3的部分是使用参考例23中合成的化合物23F,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6957.27)。
(参考例24)
(24A)
7-[(2S)-3-苄氧基-2-羟基丙氧基]庚烷-1-醇(化合物24A)的合成
[化94]
Figure BDA0002550837380000701
将苄基(S)-(+)-缩水甘油醚(5.0g,30mmol)溶解于二氯甲烷(150mL)中。添加1,7-庚二醇(6.0g,45mmol)、三氟化硼-二乙醚络合物(0.76mL,6.1mmol),在室温下搅拌2天。将反应溶液添加到乙酸乙酯/饱和碳酸氢钠水溶液的混合溶液中,利用乙酸乙酯进行萃取。利用饱和食盐水/饱和碳酸氢钠水溶液洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=50:50,v/v)将其进行精制,而获得无色油状的目标物24A(3.3g,产率37%)。
1H-NMR(CDCl3)δ:7.39-7.28(5H,m),4.57(2H,s),4.02-3.96(1H,m),3.67-3.61(2H,m),3.59-3.43(6H,m),2.48(1H,d,J=4.2Hz),1.61-1.52(4H,m),1.37-1.30(6H,m).
C17H28O4:[M+Na]+计算值319,实测值319.
(24B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[7-[(2S)-3-苄氧基-2-羟基-丙氧基]庚氧基]四氢吡喃-2-基]甲酯(化合物24B-1)的合成
[化95]
Figure BDA0002550837380000711
及乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[7-[(2S)-2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基-3-苄氧基-丙氧基]庚氧基]-3,4-二乙酰氧基四氢吡喃-2-基]甲酯(化合物24B-2)的合成
[化96]
Figure BDA0002550837380000712
向步骤(24A)中合成的化合物15A(3.3g,11mmol)与文献已知化合物的乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4,6-三乙酰氧基-四氢吡喃-2-基]甲酯(WO2011053614)(4.0g,10mmol)的二氯甲烷(200mL)悬浮溶液中添加三氟甲磺酸(0.15mL,1.7mmol),在45℃下搅拌3天。反应结束后,将溶剂减压蒸馏去除一半进行浓缩,添加到乙酸乙酯/饱和碳酸氢钠水溶液的混合溶液中,利用乙酸乙酯进行萃取。利用饱和碳酸氢钠水溶液、饱和食盐水/磷酸缓冲液(pH值7.0)洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v)将其进行精制,而获得非晶状的目标物24B-1(4.5g,产率70%)及24B-2(1.9g,产率20%)。
(化合物24B-1)
1H-NMR(CDCl3)δ:7.39-7.28(5H,m),5.51(1H,d,J=8.5Hz),5.37-5.29(2H,m),4.71(1H,d,J=8.5Hz),4.56(2H,s),4.20-4.09(2H,m),4.03-3.85(4H,m),3.58-3.41(7H,m),2.58(1H,d,J=4.2Hz),2.14(3H,s),2.05(3H,s),2.00(3H,s),1.95(3H,s),1.63-1.52(4H,m),1.36-1.29(6H,m).
C31H47NO12:[M+H]+计算值626,实测值626.
(化合物24B-2)
1H-NMR(CDCl3)δ:7.41-7.28(5H,m),5.65(1H,d,J=8.5Hz),5.48(1H,d,J=8.5Hz),5.42-5.23(4H,m),4.84(1H,d,J=8.5Hz),4.72(1H,d,J=8.5Hz),4.59-4.49(2H,m),4.20-3.38(17H,m),2.19-1.92(24H,m),1.61-1.47(4H,m),1.38-1.26(6H,m).
C45H66N2O20:[M+H]+计算值955,实测值955.
(24C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[7-[(2R)-2,3-二羟基丙氧基]庚氧基]四氢吡喃-2-基]甲酯(化合物24C)的合成[化97]
Figure BDA0002550837380000721
将步骤(24B)中合成的化合物24B-1(4.5g,7.2mmol)溶解于乙醇(100mL)中。添加10%钯/碳(湿基)(2.0g),于氢气环境下在室温下剧烈搅拌5小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除。添加适量的甲苯而共沸后,添加适量的吡啶进行共沸,而获得目标物24C的粗产物。不再进一步进行精制,用于下一反应。
1H-NMR(CDCl3)δ:5.55(1H,d,J=9.1Hz),5.37-5.27(2H,m),4.69(1H,d,J=8.5Hz),4.21-4.09(2H,m),3.99-3.42(11H,m),2.69(1H,d,J=5.4Hz),2.15(3H,s),2.05(3H,s),2.01(3H,s),1.96(3H,s),1.65-1.52(4H,m),1.40-1.29(6H,m).
C24H41NO12:[M+H]+计算值536,实测值536.
(24D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[7-[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-羟基-丙氧基]庚氧基]四氢吡喃-2-基]甲酯(化合物24D)的合成[化98]
Figure BDA0002550837380000722
将步骤(24C)中合成的化合物24C的粗产物溶解于吡啶(30mL)中。添加4,4'-二甲氧基三苯氯甲烷(2.7g,7.9mmol),在室温下搅拌13小时。反应结束后,将溶剂减压蒸馏去除。添加甲苯而共沸后,获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=50:50-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物24D(3.0g,产率2步49%)。
1H-NMR(CDCl3)δ:7.45-7.41(2H,m),7.34-7.20(7H,m),6.85-6.80(4H,m),5.50(1H,d,J=8.5Hz),5.37-5.29(2H,m),4.71(1H,d,J=8.5Hz),4.20-4.09(2H,m),3.98-3.85(4H,m),3.79(6H,s),3.55-3.40(5H,m),3.22-3.13(2H,m),2.51(1H,d,J=4.2Hz),2.14(3H,s),2.05(3H,s),2.00(3H,s),1.93(3H,s),1.60-1.52(4H,m),1.35-1.27(6H,m).
C45H59NO14:[M+Na]+计算值860,实测值860.
(24E)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[7-[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-[2-氰基乙基-(二异丙氨基)膦基]氧基丙氧基]庚氧基]四氢吡喃-2-基]甲酯(化合物24E)的合成
[化99]
Figure BDA0002550837380000731
将步骤(24D)中合成的化合物24D(3.0g,3.6mmol)通过适量的吡啶共沸后,溶解于二氯甲烷(50mL)中。添加N,N-二异丙基乙基胺(2.5mL,14mmol)、2-氰基乙基二异丙基氯亚磷酰胺(0.88mL,3.9mmol),在室温下搅拌1.5小时。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=50:50-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物24E(3.0g,产率82%)。
1H-NMR(CDCl3)δ:7.48-7.41(2H,m),7.36-7.15(7H,m),6.85-6.77(4H,m),5.59-5.41(1H,m),5.38-5.26(2H,m),4.75-4.68(1H,m),4.20-4.07(2H,m),3.97-3.06(21H,m),2.67-2.40(2H,m),2.14(3H,s),2.04(3H,s),2.00(3H,s),1.92(3H,s),1.64-1.46(4H,m),1.37-1.22(6H,m),1.22-0.97(12H,m).
(实施例99)
HO-X4-X4-X4-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X4,与实施例91同样地进行合成。X4的部分是使用参考例24中合成的化合物24E,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6785.22)
(参考例25)
(25A)
7-[(2R)-3-苄氧基-2-羟基丙氧基]庚烷-1-醇(化合物25A)的合成
[化100]
Figure BDA0002550837380000741
将苄基(R)-(-)-缩水甘油醚(5.0g,30mmol)溶解于二氯甲烷(150mL)中。添加1,7-庚二醇(6.0g,45mmol)、三氟化硼-二乙醚络合物(0.76mL,6.1mmol),在室温下搅拌2天。将反应溶液添加到乙酸乙酯/饱和碳酸氢钠水溶液的混合溶液中,利用乙酸乙酯进行萃取。利用饱和食盐水/饱和碳酸氢钠水溶液洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=50:50,v/v)将其进行精制,而获得无色油状的目标物25A(4.0g,产率44%)。
1H-NMR(CDCl3)δ:7.39-7.27(5H,m),4.56(2H,s),4.04-3.94(1H,m),3.67-3.59(2H,m),3.58-3.40(6H,m),2.51(1H,d,J=4.2Hz),1.63-1.49(4H,m),1.41-1.30(6H,m).
C17H28O4:[M+Na]+计算值319,实测值319.
(25B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[7-[(2R)-3-苄氧基-2-羟基-丙氧基]庚氧基]四氢吡喃-2-基]甲酯(化合物25B-1)的合成
[化101]
Figure BDA0002550837380000742
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[7-[(2R)-2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基-3-苄氧基-丙氧基]庚氧基]-3,4-二乙酰氧基四氢吡喃-2-基]甲酯(化合物25B-2)的合成
[化102]
Figure BDA0002550837380000751
在步骤(25A)中合成的化合物25A(4.0g,14mmol)与文献已知化合物的乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4,6-三乙酰氧基-四氢吡喃-2-基]甲酯(WO2011053614)(4.8g,12mmol)的二氯甲烷(200mL)悬浮溶液中添加三氟甲磺酸(0.18mL,2.1mmol),在45℃下搅拌3天。反应结束后,将溶剂减压蒸馏去除一半进行浓缩,添加到乙酸乙酯/饱和碳酸氢钠水溶液的混合溶液中,利用乙酸乙酯进行萃取。利用饱和碳酸氢钠水溶液、饱和食盐水/磷酸缓冲液(pH值7.0)洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v)将其进行精制,而获得非晶状的目标物25B-1(4.8g,产率62%)及25B-2(1.9g,产率16%)。
(化合物25B-1)
1H-NMR(CDCl3)δ:7.39-7.27(5H,m),5.50(1H,d,J=9.1Hz),5.37-5.28(2H,m),4.70(1H,d,J=8.5Hz),4.57(2H,s),4.20-4.08(2H,m),4.03-3.85(4H,m),3.58-3.42(7H,m),2.58(1H,d,J=4.2Hz),2.14(3H,s),2.05(3H,s),2.00(3H,s),1.95(3H,s),1.64-1.50(4H,m),1.38-1.29(6H,m).
C31H47NO12:[M+H]+计算值626,实测值626.
(化合物25B-2)
1H-NMR(CDCl3)δ:7.39-7.28(5H,m),5.85-5.21(6H,m),4.90-4.73(2H,m),4.53(2H,s),4.22-3.38(17H,m),2.20-1.91(24H,m),1.63-1.51(4H,m),1.41-1.30(6H,m).
C45H66N2O20:[M+H]+计算值955,实测值955.
(25C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[7-[(2S)-2,3-二羟基丙氧基]庚氧基]四氢吡喃-2-基]甲酯(化合物25C)的合成
[化103]
Figure BDA0002550837380000752
将步骤(25B)中合成的化合物25B-1(4.8g,7.7mmol)溶解于乙醇(100mL)中。添加10%钯/碳(湿基)(2.0g),于氢气环境下在室温下剧烈搅拌5小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除。添加适量的甲苯而共沸后,添加适量的吡啶进行共沸,而获得目标物25C的粗产物。不再进一步进行精制,用于下一反应。
1H-NMR(CDCl3)δ:5.62(1H,d,J=8.5Hz),5.38-5.26(2H,m),4.69(1H,d,J=8.5Hz),4.21-4.09(2H,m),4.00-3.43(11H,m),2.74(1H,br s),2.15(3H,s),2.05(3H,s),2.01(3H,s),1.96(3H,s),1.68-1.50(4H,m),1.41-1.29(6H,m).
C24H41NO12:[M+H]+计算值536,实测值536.
(25D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[7-[(2R)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-羟基-丙氧基]庚氧基]四氢吡喃-2-基]甲酯(化合物25D)的合成
[化104]
Figure BDA0002550837380000761
将步骤(25C)中合成的化合物25C的粗产物溶解于吡啶(30mL)中。添加4,4'-二甲氧基三苯氯甲烷(2.7g,8.0mmol),在室温下搅拌1.5小时。反应结束后,将溶剂减压蒸馏去除。添加甲苯而共沸后,获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=50:50-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物25D(4.5g,产率2步70%)。
1H-NMR(CDCl3)δ:7.46-7.40(2H,m),7.34-7.18(7H,m),6.86-6.79(4H,m),5.50(1H,d,J=8.5Hz),5.37-5.28(2H,m),4.70(1H,d,J=8.5Hz),4.20-4.08(2H,m),3.98-3.84(4H,m),3.79(6H,s),3.55-3.39(5H,m),3.21-3.14(2H,m),2.51(1H,d,J=4.2Hz),2.14(3H,s),2.04(3H,s),2.00(3H,s),1.94(3H,s),1.65-1.47(4H,m),1.36-1.27(6H,m).
C45H59NO14:[M+Na]+计算值860,实测值860.
(25E)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[7-[(2R)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-[2-氰基乙基-(二异丙氨基)膦基]氧基丙氧基]庚氧基]四氢吡喃-2-基]甲酯(化合物25E)的合成
[化105]
Figure BDA0002550837380000771
将步骤(25D)中合成的化合物25D(4.5g,5.4mmol)通过适量的吡啶共沸后,溶解于二氯甲烷(50mL)中。添加N,N-二异丙基乙基胺(3.7mL,21mmol)、2-氰基乙基二异丙基氯亚磷酰胺(1.3ml,5.9mmol),在室温下搅拌1小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯共沸后获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=50:50-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物25E(4.5g,产率81%)。
1H-NMR(CDCl3)δ:7.48-7.40(2H,m),7.36-7.16(7H,m),6.84-6.77(4H,m),5.58-5.42(1H,m),5.37-5.27(2H,m),4.74-4.68(1H,m),4.20-4.07(2H,m),3.97-3.06(21H,m),2.67-2.39(2H,m),2.14(3H,s),2.05(3H,s),2.00(3H,s),1.92(3H,s),1.63-1.45(4H,m),1.36-1.23(6H,m),1.21-0.98(12H,m).
(实施例100)
HO-X5-X5-X5-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X5,与实施例91同样地进行合成。X5的部分是使用参考例16中合成的化合物25E,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6785.21)。
(参考例26)
(26A)
13-[(2S)-3-苄氧基-2-羟基丙氧基]十三烷-1-醇(化合物26A)的合成
[化106]
Figure BDA0002550837380000772
将苄基(S)-(+)-缩水甘油醚(4.0g,24mmol)溶解于二氯甲烷(150mL)中。添加十三烷-1,13-二醇(7.6g,35mmol)、三氟化硼-二乙醚络合物(0.61mL,4.9mmol),在室温下搅拌2天。将反应溶液添加到乙酸乙酯/饱和碳酸氢钠水溶液的混合溶液中,利用乙酸乙酯进行萃取。利用饱和食盐水/饱和碳酸氢钠水溶液洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=50:50,v/v)将其进行精制,而获得无色油状的目标物26A(3.8g,产率41%)。
1H-NMR(CDCl3)δ:7.38-7.27(5H,m),4.56(2H,s),4.02-3.94(1H,m),3.69-3.39(8H,m),2.49(1H,d,J=4.2Hz),1.61-1.50(4H,m),1.39-1.21(18H,m).
C23H40O4:[M+H]+计算值381,实测值381.
(26B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[13-[(2S)-3-苄氧基-2-羟基-丙氧基]十三烷氧基]四氢吡喃-2-基]甲酯(化合物26B)的合成
[化107]
Figure BDA0002550837380000781
在步骤(26A)中合成的化合物26A(3.8g,9.9mmol)与文献已知化合物的乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4,6-三乙酰氧基-四氢吡喃-2-基]甲酯(WO2011053614)(3.5g,9.0mmol)的二氯甲烷(60mL)悬浮溶液中添加三氟甲磺酸(0.13mL,1.5mmol),在45℃下搅拌17小时。反应结束后,将溶剂减压蒸馏去除一半进行浓缩,添加到乙酸乙酯/饱和碳酸氢钠水溶液的混合溶液中,利用乙酸乙酯进行萃取。利用饱和碳酸氢钠水溶液、饱和食盐水/磷酸缓冲液(pH值7.0)洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v)将其进行精制,而获得非晶状的目标物26B(3.7g,产率58%)。
1H-NMR(CDCl3)δ:7.38-7.27(5H,m),5.39-5.30(3H,m),4.72(1H,d,J=8.5Hz),4.57(2H,s),4.20-4.09(2H,m),4.02-3.85(4H,m),3.58-3.40(7H,m),2.48(1H,d,J=4.2Hz),2.14(3H,s),2.05(3H,s),2.01(3H,s),1.96(3H,s),1.63-1.51(4H,m),1.37-1.21(18H,m).
C37H59NO12:[M+H]+计算值710,实测值710.
(26C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[13-[(2R)-2,3-二羟基丙氧基]十三烷氧基]四氢吡喃-2-基]甲酯(化合物26C)的合成
[化108]
Figure BDA0002550837380000791
将步骤(26B)中合成的化合物26B(3.7g,5.2mmol)溶解于乙醇(100mL)中。添加10%钯/碳(湿基)(2.0g),于氢气环境下在室温下剧烈搅拌5小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(乙酸乙酯:甲醇=100:0-90:10,v/v)将其进行精制,而获得无色油状的目标物26C(1.4g,产率43%)。
1H-NMR(CDCl3)δ:5.42-5.29(3H,m),4.57(1H,d,J=8.5Hz),4.21-4.09(2H,m),3.95-3.44(11H,m),2.60(1H,d,J=4.8Hz),2.14(3H,s),2.05(3H,s),2.01(3H,s),1.96(3H,s),1.64-1.51(4H,m),1.37-1.22(18H,m).
C30H53NO12:[M+Na]+计算值642,实测值642.
(26D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[13-[(2S)-3-[双(4-甲氧基苯基)-苯基甲氧基]-2-羟基-丙氧基]十三烷氧基]四氢吡喃-2-基]甲酯(化合物26D)的合成
[化109]
Figure BDA0002550837380000792
将步骤(26C)中合成的化合物26C(1.4g,2.3mmol)溶解于吡啶(10mL)中。添加4,4'-二甲氧基三苯氯甲烷(0.84g,2.5mmol),在室温下搅拌15小时。反应结束后,将溶剂减压蒸馏去除。添加甲苯而共沸后,获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=50:50-20:80,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物26D(1.9g,产率91%)。
1H-NMR(CDCl3)δ:7.45-7.41(2H,m),7.34-7.18(7H,m),6.85-6.80(4H,m),5.40-5.30(3H,m),4.72(1H,d,J=8.5Hz),4.20-4.09(2H,m),3.97-3.84(4H,m),3.79(6H,s),3.56-3.40(5H,m),3.22-3.13(2H,m),2.43(1H,d,J=4.8Hz),2.14(3H,s),2.05(3H,s),2.01(3H,s),1.95(3H,s),1.63-1.50(4H,m),1.35-1.21(18H,m).
C51H71NO14:[M+Na]+计算值944,实测值944.
(26E)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[13-[(2S)-3-[双(4-甲氧基苯基)-苯基甲氧基]-2-[2-氰基乙基-(二异丙氨基)膦基]氧基丙氧基]十三烷氧基]四氢吡喃-2-基]甲酯(化合物26E)的合成
[化110]
Figure BDA0002550837380000801
将步骤(26D)中合成的化合物26D(1.9g,2.1mmol)通过适量的吡啶共沸后,溶解于二氯甲烷(50mL)中。添加N,N-二异丙基乙基胺(1.4mL,8.0mmol)、2-氰基乙基二异丙基氯亚磷酰胺(0.49mL,2.2mmol),在室温下搅拌1.5小时。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-50:50,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物26E(1.7g,产率75%)。
1H-NMR(CDCl3)δ:7.48-7.41(2H,m),7.36-7.16(7H,m),6.84-6.78(4H,m),5.41-5.30(3H,m),4.72(1H,d,J=8.5Hz),4.20-4.09(2H,m),3.95-3.07(21H,m),2.66-2.40(2H,m),2.14(3H,s),2.05(3H,s),2.00(3H,s),1.95(3H,s),1.63-1.45(4H,m),1.35-1.21(18H,m),1.21-0.99(12H,m).
(实施例101)
HO-X6-X6-X6-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X6,与实施例91同样地进行合成。X6的部分是使用参考例26中合成的化合物26E,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:7037.48)。
(参考例27)
(27A)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[7-[(2R)-2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基-3-羟基-丙氧基]庚氧基]-3,4-二乙酰氧基四氢吡喃-2-基]甲酯(化合物27A)的合成
[化111]
Figure BDA0002550837380000811
将步骤(24B)中合成的化合物24B-2(1.9g,2.0mmol)溶解于乙醇(60mL)中。添加10%钯/碳(湿基)(2.0g),于氢气环境下在室温下剧烈搅拌8小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除。添加适量的甲苯而共沸后,添加适量的吡啶进行共沸,而获得目标物27A的粗产物(1.3g)。不再进一步进行精制,用于下一反应。
1H-NMR(CDCl3)δ:5.84(1H,d,J=8.5Hz),5.69(1H,d,J=8.5Hz),5.41-5.14(4H,m),4.85(1H,d,J=8.5Hz),4.70(1H,d,J=8.5Hz),4.22-3.40(17H,m),2.86-2.81(1H,m),2.20-1.93(24H,m),1.65-1.49(4H,m),1.39-1.23(6H,m).
C38H60N2O20:[M+H]+计算值865,实测值865.
(27B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[7-[(2S)-2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基-3-[2-氰基乙氧基-(二异丙氨基)膦基]氧基丙氧基]庚氧基]-3,4-二乙酰氧基四氢吡喃-2-基]甲酯(化合物27B)的合成
[化112]
Figure BDA0002550837380000812
将步骤(27A)中合成的化合物27A的粗产物(1.3g)溶解于二氯甲烷(50mL)中。添加二异丙基乙基胺(1.0mL,5.8mmol)、2-氰基乙基二异丙基氯亚磷酰胺(0.36mL,1.6mmol),在室温下搅拌1小时。进而,添加2-氰基乙基二异丙基氯亚磷酰胺(0.36mL,1.6mmol),在室温下搅拌1小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯共沸后获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙腈=100:0-90:10,v/v)将其进行精制,而获得非晶状的目标物27B(0.56g,产率2步26%)。
1H-NMR(CDCl3)δ:6.04-5.69(2H,m),5.39-5.06(4H,m),4.86-4.69(2H,m),4.25-3.40(21H,m),2.80-2.67(2H,m),2.21-1.92(24H,m),1.66-1.48(4H,m),1.38-1.15(18H,m).
(实施例102)
HO-X7-X4-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X4与X7,与实施例91同样地进行合成。X4的部分是使用参考例15中合成的化合物24E,进行1次缩合。X7的部分是使用参考例27中合成的化合物27B,进行1次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6517.17)。
(参考例28)
(28A)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[7-[(2S)-2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基-3-羟基-丙氧基]庚氧基]-3,4-二乙酰氧基四氢吡喃-2-基]甲酯(化合物28A)的合成
[化113]
Figure BDA0002550837380000821
将步骤(25B)中合成的化合物25B-2(1.9g,2.0mmol)溶解于乙醇(60mL)中。添加10%钯/碳(湿基)(2.0g),于氢气环境下在室温下剧烈搅拌5小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除。添加适量的甲苯而共沸后,添加适量的吡啶进行共沸,而获得目标物28A的粗产物(1.8g)。不再进一步进行精制,用于下一反应。
1H-NMR(CDCl3)δ:5.93(1H,d,J=8.5Hz),5.71(1H,d,J=8.5Hz),5.42-5.22(4H,m),4.82-4.73(2H,m),4.23-3.35(17H,m),2.98-2.92(1H,m),2.21-1.92(24H,m),1.66-1.48(4H,m),1.42-1.23(6H,m).
C38H60N2O20:[M+H]+计算值865,实测值865.
(28B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[7-[(2R)-2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基-3-[2-氰基乙氧基-(二异丙氨基)膦基]氧基丙氧基]庚氧基]-3,4-二乙酰氧基四氢吡喃-2-基]甲酯(化合物28B)的合成
[化114]
Figure BDA0002550837380000831
将步骤(28A)中合成的化合物28A的粗产物(1.8g)溶解于二氯甲烷(50mL)中。添加二异丙基乙基胺(1.5mL,8.4mmol)、2-氰基乙基二异丙基氯亚磷酰胺(0.51mL,2.3mmol),在室温下搅拌5.5小时。进而,添加2-氰基乙基二异丙基氯亚磷酰胺(0.51mL,2.3mmol),在室温下搅拌1小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯共沸后获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙腈=100:0-90:10,v/v)将其进行精制,而获得非晶状的目标物28B(1.5g,产率2步71%)。
1H-NMR(CDCl3)δ:5.91-5.67(2H,m),5.41-5.18(4H,m),4.91-4.72(2H,m),4.26-3.35(21H,m),2.79-2.63(2H,m),2.20-1.92(24H,m),1.67-1.50(4H,m),1.40-1.13(18H,m).
(实施例103)
HO-X8-X5-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X5与X8,与实施例91同样地进行合成。X5的部分是使用参考例25中合成的化合物25E,进行1次缩合。X8的部分是使用参考例28中合成的化合物28B,进行1次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6517.10)。
(参考例29)
(29A)
(2R)-1-苄氧基-3-[2-[2-(2-羟基乙氧基)乙氧基]乙氧基]丙烷-2-醇(化合物29A)的合成
[化115]
Figure BDA0002550837380000841
将三乙二醇(6.9g,46mmol)、苄基(S)-(+)-缩水甘油醚(5.0g,30mmol)溶解于二氯甲烷(75mL)中,添加三氟化硼-二乙醚络合物(0.77mL,6.1mmol),在室温下搅拌16小时。反应结束后,添加饱和碳酸氢钠水溶液,并利用二氯甲烷进行萃取。利用饱和食盐水/饱和碳酸氢钠水溶液洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过以0.1%三氟乙酸水溶液与0.1%三氟乙酸乙腈溶液作为洗脱液的反相HPLC(high performance liquid chromatography,高效液相色谱法)(GL Science,InertsilODS-3)进行分离精制,将含有目标物的组分汇集,将溶剂减压蒸馏去除。将目标物溶解于二氯甲烷中,利用饱和食盐水、饱和食盐水/饱和碳酸氢钠水溶液洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得油状的目标物29A(5.6g,产率58%)。
1H-NMR(CDCl3)δ:7.37-7.25(5H,m),4.55(2H,s),4.05-3.97(1H,m),3.65-3.56(16H,m).
C16H26O6:[M+H]+计算值315,实测值315.
(29B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2R)-3-苄氧基-2-羟基-丙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物29B)的合成
[化116]
Figure BDA0002550837380000842
在步骤(29A)中合成的化合物29A(5.6g,18mmol)与文献已知化合物的乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4,6-三乙酰氧基-四氢吡喃-2-基]甲酯(WO2011053614)(6.3g,16mmol)的二氯甲烷(100mL)悬浮溶液中添加三氟甲磺酸(0.24mL,2.8mmol),在45℃下搅拌16小时。反应结束后,添加饱和碳酸氢钠水溶液,并利用二氯甲烷进行萃取。利用饱和食盐水/饱和碳酸氢钠水溶液洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过以0.1%三氟乙酸水溶液与0.1%三氟乙酸乙腈溶液作为洗脱液的反相HPLC(GL Science,Inertsil ODS-3)进行分离精制,将含有目标物的组分汇集,将溶剂减压蒸馏去除。将目标物溶解于乙酸乙酯中,利用饱和食盐水、饱和食盐水/饱和碳酸氢钠水溶液洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得非晶状的目标物29B(4.9g,产率47%)。
1H-NMR(CDCl3)δ:7.38-7.27(5H,m),6.69(1H,d,J=9.1Hz),5.28(1H,d,J=3.0Hz),5.02(1H,dd,J=11.2,3.0Hz),4.77(1H,d,J=8.5Hz),4.56(2H,s),4.29-3.47(21H,m),2.15(3H,s),2.04(3H,s),1.97(3H,s),1.96(3H,s).
C30H45NO14:[M+H]+计算值644,实测值644.
(29C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2R)-2,3-二羟基丙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物29C)的合成
[化117]
Figure BDA0002550837380000851
将步骤(29B)中合成的化合物29B(4.9g,7.6mmol)溶解于乙醇(100mL)中。添加10%钯/碳(湿基)(4.0g),于氢气环境下在室温下剧烈搅拌8小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除。添加适量的甲苯进行共沸,而获得油状的目标物29C(4.0g,产率95%)。
1H-NMR(CDCl3)δ:6.83-6.76(1H,m),5.32(1H,d,J=3.0Hz),5.11(1H,dd,J=11.2,3.0Hz),4.79(1H,d,J=9.1Hz),4.27-4.08(3H,m),3.97-3.53(18H,m),2.16(3H,s),2.06(3H,s),2.00(3H,s),1.97(3H,s).
C23H39NO14:[M+H]+计算值554,实测值554.
(29D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2S)-3-[双(4-甲氧基苯基)-苯基甲氧基]-2-羟基-丙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物29D)的合成
[化118]
Figure BDA0002550837380000852
在步骤(29C)中合成的化合物29C(4.0g,7.2mmol)中添加适量的吡啶,在减压下进行共沸。溶解于吡啶(30mL)中,添加4,4'-二甲氧基三苯氯甲烷(2.7g,8.0mmol),在室温下搅拌3小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯而共沸后,获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-50:50,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物29D(3.5g,产率57%)。
1H-NMR(CDCl3)δ:7.44-7.40(2H,m),7.33-7.18(7H,m),6.85-6.80(4H,m),6.59(1H,d,J=9.7Hz),5.29(1H,d,J=3.0Hz),5.00(1H,dd,J=11.2,3.0Hz),4.77(1H,d,J=8.5Hz),4.27-4.07(3H,m),4.00-3.82(4H,m),3.79(6H,s),3.71-3.49(12H,m),3.20-3.10(2H,m),2.14(3H,s),2.01(3H,s),1.93(6H,s).
C44H57NO16:[M+Na]+计算值878,实测值878.
(29E)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2S)-3-[双(4-甲氧基苯基)-苯基甲氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基丙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物29E)的合成
[化119]
Figure BDA0002550837380000861
将步骤(29D)中合成的化合物29D(3.5g,4.1mmol)通过适量的吡啶共沸后,溶解于二氯甲烷(40mL)中。添加N,N-二异丙基乙基胺(2.8mL,16mmol)、2-氰基乙基二异丙基氯亚磷酰胺(1.1mL,4.9mmol),在室温下搅拌3小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯共沸后获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=50:50-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物29E(2.2g,产率51%)。
1H-NMR(CDCl3)δ:7.47-7.40(2H,m),7.35-7.16(7H,m),6.85-6.77(4H,m),6.40(1H,d,J=9.1Hz),5.33-5.28(1H,m),5.03-4.93(1H,m),4.81-4.74(1H,m),4.28-4.08(3H,m),3.96-3.46(26H,m),3.27-3.04(2H,m),2.69-2.41(2H,m),2.15(3H,s),2.04(3H,s),1.97-1.90(6H,m),1.30-0.98(12H,m).
(实施例104)
HO-X9-X9-X9-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X9,与实施例91同样地进行合成。X9的部分是使用参考例29中合成的化合物29E,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6839.16)。
(参考例30)
(30A)
(2R)-1-苄氧基-3-[2-[2-[2-(2-羟基乙氧基)乙氧基]乙氧基]乙氧基]丙烷-2-醇(化合物30A的合成)
[化120]
Figure BDA0002550837380000871
将四乙二醇(8.87g,45.7mmol)、苄基(S)-(+)-缩水甘油醚(4.66mL,30.5mmol)溶解于二氯甲烷(75mL)中,添加三氟化硼-二乙醚络合物(0.76mL,6.1mmol),在室温下整夜搅拌。反应结束后,添加饱和碳酸氢钠水溶液。利用饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过以0.1%三氟乙酸水溶液与0.1%三氟乙酸乙腈溶液作为洗脱液的反相HPLC(GLScience,InertsilODS-3)进行分离精制,将含有目标物的组分汇集,将溶剂减压蒸馏去除。将目标物溶解于二氯甲烷中,利用饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得油状的目标物30A(5.3g,产率49%)。
1H-NMR(CDCl3)δ:7.37-7.23(5H,m),4.56(2H,s),4.01(1H,br),3.75-3.41(20H,m).
C18H30O7:[M+H]+计算值359,实测值359.
(30B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[2-[(2R)-3-苄氧基-2-羟基-丙氧基]乙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物30B的合成)
[化121]
Figure BDA0002550837380000872
在步骤30A中合成的化合物(5.3g,15mmol)与文献已知化合物的乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4,6-三乙酰氧基-四氢吡喃-2-基]甲酯(WO2011053614)(5.2g,13mmol)的二氯甲烷(100mL)悬浮溶液中添加三氟甲磺酸(0.2mL,2.3mmol),在45℃下搅拌22小时。反应结束后,将溶剂减压蒸馏去除并进行浓缩,添加乙酸乙酯。利用饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过以0.1%三氟乙酸水溶液与0.1%三氟乙酸乙腈溶液作为洗脱液的反相HPLC(GLScience,Inertsil ODS-3)进行分离精制,将含有目标物的组分汇集,将溶剂减压蒸馏去除。将目标物溶解于二氯甲烷中,利用饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得非晶状的目标物30B(4.5g,产率49%)。
1H-NMR(CDCl3)δ:7.38-7.24(5H,m),6.72(1H,d,J=8.5Hz),5.29(1H,d,J=3.0Hz),5.00(1H,dd,J=11.2,3.3Hz),4.76(1H,d,J=8.5Hz),4.56(2H,s),4.31-4.21(1H,m),4.18-3.46(24H,m),2.15(3H,s),2.04(3H,s),1.97(6H,s).
C32H49NO15:[M+H]+计算值688,实测值688.
(30C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[2-[(2R)-2,3-二羟基丙氧基]乙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(30C的合成)
[化122]
Figure BDA0002550837380000881
将步骤(30B)中合成的化合物30B(4.5g,6.5mmol)溶解于乙醇(80mL)中。添加10%钯/碳(湿基)(4g),于氢气环境下在室温下剧烈搅拌8小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除而获得目标物30C(3.9g,产率定量)的粗产物。不再进一步进行精制,用于下一反应。
1H-NMR(CDCl3)δ:6.85(1H,d,J=9.7Hz),5.32(1H,d,J=3.0Hz),5.10(1H,dd,J=11.2,3.0Hz),4.74(1H,d,J=8.5Hz),4.32-4.09(2H,m),3.99-3.56(23H,m),2.16(3H,s),2.05(3H,s),2.00(3H,s),1.99(3H,s).
C25H43NO15:[M+H]+计算值598,实测值598.
(30D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[2-[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-羟基-丙氧基]乙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物30D的合成)
[化123]
Figure BDA0002550837380000891
在步骤(30C)中合成的化合物30C(3.9g,6.5mmol)添加适量的吡啶,在减压下进行共沸。溶解于吡啶(22mL)中,添加4,4'-二甲氧基三苯氯甲烷(4,4'-DimethoxytritylChloride)(2.4g,7.2mmol),在室温下搅拌2小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯而共沸后,获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-50:50,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物30D(3.12g,产率53%)。
1H-NMR(CDCl3)δ:7.44-7.40(2H,m),7.33-7.18(7H,m),6.85-6.79(4H,m),6.63(1H,d,J=9.1Hz),5.29(1H,d,J=3.0Hz),4.96(1H,dd,J=11.2,3.3Hz),4.75(1H,d,J=8.5Hz),4.29-4.21(1H,m),4.17-4.07(2H,m),4.00-3.81(4H,m),3.79(6H,s),3.71-3.58(14H,m),3.53-3.43(2H,m),3.21-3.10(2H,m),2.14(3H,s),2.02(3H,s),1.95(6H,s).
C46H61NO17:[M+Na]+计算值922,实测值922.
(30E)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[2-[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基-丙氧基]乙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物30E的合成)
[化124]
Figure BDA0002550837380000892
在步骤(30D)中合成的化合物30D(3.12g,3.47mmol)中添加适量的吡啶,在减压下共沸后溶解于二氯甲烷(35mL)中。添加N,N-二异丙基乙基胺(2.42mL,13.9mmol)、2-氰基乙基二异丙基氯亚磷酰胺(0.93mL,4.16mmol),在室温下搅拌1小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯,在减压下共沸后获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物30E(2.98g,产率78%)。
1H-NMR(CDCl3)δ:7.46-7.40(2H,m),7.35-7.17(7H,m),6.84-6.78(4H,m),6.43(1H,d,J=9.1Hz),5.31(1H,br),5.00-4.93(1H,m),4.78(1H,d,J=8.5Hz),4.29-4.08(3H,m),3.91-3.48(30H,m),3.27-3.04(2H,m),2.67-2.62(1H,m),2.46-2.41(1H,m),2.15(3H,s),2.04(3H,s),1.97-1.94(6H,m),1.30-0.99(12H,m).
(实施例105)
HO-X10-X10-X10-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X10,与实施例91同样地进行合成。X10的部分是使用参考例30中合成的化合物30E,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6971.21)。
(参考例31)
(31A)
(2R)-1-苄氧基-3-[2-(2-羟基乙氧基)乙氧基]丙烷-2-醇(化合物31A的合成)
[化125]
Figure BDA0002550837380000901
将二乙二醇(5.0g,30.5mmol)、苄基(S)-(+)-缩水甘油醚(6.5,60.9mmol)溶解于二氯甲烷(75mL)中,添加三氟化硼-二乙醚络合物(0.76mL,6.1mmol),在室温下搅拌2小时。反应结束后,添加饱和碳酸氢钠水溶液。利用饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过以0.1%三氟乙酸水溶液与0.1%三氟乙酸乙腈溶液作为洗脱液的反相HPLC(GL Science,InertsilODS-3)进行分离精制,将含有目标物的组分汇集,将溶剂减压蒸馏去除。将目标物溶解于二氯甲烷中,利用饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得油状的目标物31A(5.3g,产率64%)。
1H-NMR(CDCl3)δ:7.38-7.27(5H,m),4.56(2H,s),4.05-3.97(1H,m),3.77-3.48(12H,m),2.85-2.82(1H,m),2.47-2.42(1H,m).
C14H22O5:[M+Na]+计算值293,实测值293.
(31B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[(2R)-3-苄氧基-2-羟基-丙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物31B的合成)
[化126]
Figure BDA0002550837380000911
在步骤31A中合成的化合物(4.0g,15mmol)与文献已知化合物的乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4,6-三乙酰氧基-四氢吡喃-2-基]甲酯(WO2011053614)(5.2g,13mmol)的二氯甲烷(100mL)悬浮溶液中添加三氟甲磺酸(0.2mL,2.3mmol),在45℃下搅拌22小时。反应结束后,将溶剂减压蒸馏去除并进行浓缩,添加乙酸乙酯。利用饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过以0.1%三氟乙酸水溶液与0.1%三氟乙酸乙腈溶液作为洗脱液的反相HPLC(GLScience,Inertsil ODS-3)进行分离精制,将含有目标物的组分汇集,将溶剂减压蒸馏去除。将目标物溶解于二氯甲烷中,利用饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得非晶状的目标物31B(4.15g,产率52%)。
1H-NMR(CDCl3)δ:7.37-7.28(5H,m),6.71(1H,d,J=9.7Hz),5.30(1H,d,J=3.0Hz),5.12(1H,dd,J=11.2,3.3Hz),4.77(1H,d,J=8.5Hz),4.57(2H,s),4.27-4.05(1H,m),3.93-3.45(16H,m),2.15(3H,s),2.05(3H,s),1.98(3H,s),1.95(3H,s).
C28H41NO13:[M+Na]+计算值622,实测值622.
(31C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[(2R)-2,3-二羟基丙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物31C的合成)
[化127]
Figure BDA0002550837380000921
将步骤(31B)中合成的化合物31B(4.15g,6.9mmol)溶解于乙醇(80mL)中。添加10%钯/碳(湿基)(4g),于氢气环境下在室温下剧烈搅拌8小时。进而添加10%钯/碳(湿基)(1g),于氢气环境下在50℃下剧烈搅拌4小时。进而,添加10%钯/碳(湿基)(1g),于氢气环境下在50℃下剧烈搅拌8小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除而获得目标物31C(3.0g,产率86%)的粗产物。不再进一步进行精制,用于下一反应。
1H-NMR(CDCl3)δ:6.58(1H,d,J=9.1Hz),5.32-5.30(1H,m),5.16(1H,dd,J=11.2,3.3Hz),4.78(1H,d,J=8.5Hz),4.26-4.09(2H,m),3.95-3.58(15H,m),2.16(3H,s),2.06(3H,s),2.01(3H,s),1.98(3H,s).
C21H35NO13:[M+H]+计算值510,实测值510.
(31D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[(2S)-3-[双(4-甲氧基苯基)-苯基甲氧基]-2-羟基-丙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物31D)的合成
[化128]
Figure BDA0002550837380000922
在步骤(31C)中合成的化合物31C(3.0g,5.9mmol)中添加适量的吡啶,在减压下进行共沸。溶解于吡啶(25mL)中,添加4,4'-二甲氧基三苯氯甲烷(2.2g,6.5mmol),在室温下搅拌2小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯而共沸后,获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-50:50,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物31D(1.7g,产率36%)。
1H-NMR(CDCl3)δ:7.47-7.42(2H,m),7.35-7.18(7H,m),6.86-6.80(4H,m),6.73(1H,d,J=9.7Hz),5.31(1H,d,J=3.0Hz),5.14(1H,dd,J=11.2,3.0Hz),4.76(1H,d,J=8.5Hz),4.28-4.09(3H,m),4.07-3.83(4H,m),3.79(6H,s),3.72-3.49(8H,m),3.26(1H,d,J=3.6Hz),3.18-3.13(2H,m),2.14(3H,s),2.04(3H,s),1.94(3H,s),1.90(3H,s).
C42H53NO15:[M+Na]+计算值834,实测值834.
(31E)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[(2S)-3-[双(4-甲氧基苯基)-苯基甲氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基丙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物31E)的合成
[化129]
Figure BDA0002550837380000931
将步骤(31D)中合成的化合物31D(1.7g,2.1mmol)通过适量的吡啶共沸后,溶解于二氯甲烷(20mL)中。添加N,N-二异丙基乙基胺(1.5mL,8.4mmol)、2-氰基乙基二异丙基氯亚磷酰胺(0.56mL,2.5mmol),在室温下搅拌3小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯共沸后获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=50:50-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物31E(1.5g,产率71%)。
1H-NMR(CDCl3)δ:7.47-7.40(2H,m),7.37-7.17(7H,m),6.86-6.77(4H,m),6.08-5.95(1H,m),5.34-5.29(1H,m),5.16-5.06(1H,m),4.76-4.69(1H,m),4.20-4.02(3H,m),3.95-3.47(22H,m),3.31-3.08(2H,m),2.69-2.40(2H,m),2.14(3H,s),2.04-2.02(3H,m),1.97-1.94(3H,m),1.91-1.88(3H,m),1.21-1.01(12H,m).
(实施例106)
HO-X11-X11-X11-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X11,与实施例91同样地进行合成。X11的部分是使用参考例31中合成的化合物31E,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6708.09)。
(参考例32)
(32A)
(2S)-1-苄氧基-3-[2-[2-(2-羟基乙氧基)乙氧基]乙氧基]丙烷-2-醇(化合物32A)的合成
[化130]
Figure BDA0002550837380000941
将三乙二醇(9.2g,61mmol)、苄基(R)-(-)-缩水甘油醚(5.0g,30mmol)溶解于二氯甲烷(75mL)中,添加三氟化硼-二乙醚络合物(0.77mL,6.1mmol),在室温下搅拌4小时。反应结束后,添加饱和碳酸氢钠水溶液,并利用二氯甲烷进行萃取。利用饱和食盐水/饱和碳酸氢钠水溶液洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过以0.1%三氟乙酸水溶液与0.1%三氟乙酸乙腈溶液作为洗脱液的反相HPLC(GLScience,Inertsil ODS-3)进行分离精制,将含有目标物的组分汇集,将溶剂减压蒸馏去除。将目标物溶解于二氯甲烷中,利用饱和食盐水、饱和食盐水/饱和碳酸氢钠水溶液洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得油状的目标物32A(6.4g,产率67%)。
1H-NMR(CDCl3)δ:7.38-7.25(5H,m),4.56(2H,s),4.19-3.45(17H,m).
C16H26O6:[M+H]+计算值315,实测值315.
(32B)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2S)-3-苄氧基-2-羟基-丙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物32B)的合成
[化131]
Figure BDA0002550837380000942
在步骤(32A)中合成的化合物32A(6.4g,20mmol)与文献已知化合物的乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4,6-三乙酰氧基-四氢吡喃-2-基]甲酯(WO2011053614)(7.2g,18mmol)的二氯甲烷(200mL)悬浮溶液中添加三氟甲磺酸(0.28mL,3.1mmol),在45℃下搅拌20小时。反应结束后,添加饱和碳酸氢钠水溶液,并利用二氯甲烷进行萃取。利用饱和食盐水/饱和碳酸氢钠水溶液洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过以0.1%三氟乙酸水溶液与0.1%三氟乙酸乙腈溶液作为洗脱液的反相HPLC(GL Science,Inertsil ODS-3)进行分离精制,将含有目标物的组分汇集,将溶剂减压蒸馏去除。将目标物溶解于乙酸乙酯中,利用饱和食盐水、饱和食盐水/饱和碳酸氢钠水溶液洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得非晶状的目标物32B(5.6g,产率47%)。
1H-NMR(CDCl3)δ:7.39-7.25(5H,m),6.68(1H,d,J=9.1Hz),5.33-5.27(1H,m),5.07-4.95(1H,m),4.78(1H,d,J=8.5Hz),4.55(2H,s),4.25-3.24(21H,m),2.15(3H,s),2.04(3H,s),1.97(3H,s),1.96(3H,s).
C30H45NO14:[M+H]+计算值644,实测值644.
(32C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2S)-2,3-二羟基丙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物32C)的合成
[化132]
Figure BDA0002550837380000951
将步骤(32B)中合成的化合物32B(5.6g,8.7mmol)溶解于乙醇(100mL)中。添加20%氢氧化钯/碳(湿基)(1.5g),于氢气环境下在50℃下剧烈搅拌8小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除。添加适量的甲苯进行共沸,而获得油状的目标物32C(4.1g,产率85%)。
1H-NMR(CDCl3)δ:6.80(1H,d,J=9.1Hz),5.34-5.30(1H,m),5.15-5.03(1H,m),4.81(1H,d,J=8.5Hz),4.33-4.08(3H,m),3.99-3.48(18H,m),2.16(3H,s),2.06(3H,s),2.00(3H,s),1.98(3H,s).
C23H39NO14:[M+H]+计算值554,实测值554.
(32D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2R)-3-[双(4-甲氧基苯基)-苯基甲氧基]-2-羟基-丙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物32D)的合成
[化133]
Figure BDA0002550837380000952
在步骤(32C)中合成的化合物32C(4.1g,7.4mmol)中添加适量的吡啶,在减压下进行共沸。溶解于吡啶(30mL)中,添加4,4'-二甲氧基三苯氯甲烷(2.8g,8.2mmol),在室温下搅拌3小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯而共沸后,获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-50:50,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物32D(1.9g,产率30%)。
1H-NMR(CDCl3)δ:7.44-7.40(2H,m),7.35-7.18(7H,m),6.86-6.79(4H,m),6.67(1H,d,J=9.1Hz),5.29(1H,d,J=3.0Hz),5.03(1H,dd,J=11.2,3.0Hz),4.77(1H,d,J=9.1Hz),4.26-4.06(3H,m),4.00-3.81(4H,m),3.79(6H,s),3.75-3.50(12H,m),3.23-3.11(2H,m),2.15(3H,s),2.01(3H,s),1.94(6H,s).
C44H57NO16:[M+Na]+计算值878,实测值878.
(32E)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2R)-3-[双(4-甲氧基苯基)-苯基甲氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基丙氧基]乙氧基]乙氧基]乙氧基]四氢吡喃-2-基]甲酯(化合物32E)的合成
[化134]
Figure BDA0002550837380000961
将步骤(32D)中合成的化合物32D(1.9g,2.2mmol)通过适量的甲苯共沸后,溶解于二氯甲烷(22mL)中。添加N,N-二异丙基乙基胺(1.6mL,9.0mmol)、2-氰基乙基二异丙基氯亚磷酰胺(0.59mL,2.7mmol),在室温下搅拌1小时。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=50:50-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物32E(1.5g,产率64%)。
1H-NMR(CDCl3)δ:7.47-7.40(2H,m),7.36-7.16(7H,m),6.85-6.78(4H,m),6.45-6.38(1H,m),5.33-5.28(1H,m),5.03-4.94(1H,m),4.80-4.75(1H,m),4.27-4.08(3H,m),3.93-3.45(26H,m),3.28-3.04(2H,m),2.69-2.40(2H,m),2.15(3H,s),2.04(3H,s),1.97-1.92(6H,m),1.21-1.01(12H,m).
(实施例107)
HO-X12-X12-X12-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X12,与实施例91同样地进行合成。X12的部分是使用参考例32中合成的化合物32E,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6839.16)。
(实施例108)
HO-X9-X9-X9-X9-X9-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X9,与实施例91同样地进行合成。X9的部分是使用参考例29中合成的化合物29E,进行5次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:7817.33)。
(实施例109)
HO-X9-X9-X9-X9-X9-X9-X9-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X9,与实施例91同样地进行合成。X9的部分是使用参考例29中合成的化合物29E,进行7次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:8796.73)。
(参考例33)
(33A)
N-[2-[2-[(2R)-3-苄氧基-2-羟基-丙氧基]乙氧基]乙基]氨基甲酸9H-芴-9-基甲酯(化合物33A)的合成
[化135]
Figure BDA0002550837380000971
将文献已知化合物的N-[2-(2-羟基乙氧基)乙基]氨基甲酸9H-芴-9-基甲酯(Bioconjugate Chemistry,2000,11,755-761)(3.11g,10mmol)与苄基(S)-(+)-缩水甘油醚(0.8g,5mmol)溶解于二氯甲烷(30mL)中,添加三氟化硼-二乙醚络合物(0.1mL,1mmol),在室温下搅拌16小时。反应结束后,添加饱和碳酸氢钠水溶液。利用饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=80:20-0:100,v/v)进行精制,而获得油状的目标物33A(0.74g,产率30%)。
1H-NMR(CDCl3)δ:7.76(2H,d,J=7.9Hz),7.60(2H,d,J=7.3Hz),7.42-7.37(2H,m),7.35-7.27(7H,m),5.40(1H,s),4.53(2H,s),4.39(2H,d,J=6.7Hz),4.25-4.19(1H,m),4.04-3.97(1H,m),3.69-3.35(12H,m).
C29H33NO6:[M+H]+计算值492,实测值492.
(33B)
(2R)-1-[2-(2-氨基乙氧基)乙氧基]-3-苄氧基-丙烷-2-醇、三氟乙酸盐(化合物33B)的合成
[化136]
Figure BDA0002550837380000981
将步骤(33A)中合成的化合物33A(13.8g,28.1mmol)溶解于乙醇/四氢呋喃(50mL/50mL)中,添加1N氢氧化钠水溶液(100mL),在室温下搅拌2小时。反应结束后,将有机溶剂减压蒸馏去除,添加1N盐酸(100mL)。通过过滤将产生的固形物去除。利用乙酸乙酯对作为通过液的水层所含的副产物进行萃取,减压蒸馏去除后在所获得的残渣中添加乙腈并过滤。将通过液进行减压蒸馏去除而获得粗产物。通过以0.1%三氟乙酸水溶液与0.1%三氟乙酸乙腈溶液作为洗脱液的反相HPLC(GL Science,Inertsil ODS-3)进行分离精制,将含有目标物的组分汇集,将溶剂减压蒸馏去除,而获得油状的目标物33B(7.1g,产率66%)。
1H-NMR(CDCl3)δ:7.38-7.27(5H,m),4.55(2H,s),4.07-3.99(1H,m),3.77-3.48(10H,m),2.96-2.88(2H,m).
(33C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2R)-3-苄氧基-2-羟基-丙氧基]乙氧基]乙基氨基]-2-侧氧基-乙氧基]四氢吡喃-2-基]甲酯(化合物33C)的合成
[化137]
Figure BDA0002550837380000991
将文献已知化合物的2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基乙酸(WO2012037254)(6g,14.8mmol)、1-(-3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(3.4g,17.8mmol)、3H-1,2,3-三唑[4,5-b]吡啶-3-醇(2.0g,14.8mmol)、N,N-二异丙基乙基胺(9.0mL,51.8mmol)、步骤(33B)中合成的化合物33B(6.7g,17.5mmol)溶解于二氯甲烷(130mL)中,在室温下搅拌4小时。反应结束后,利用1N盐酸、饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(乙酸乙酯:甲醇=100:0-90:10,v/v)进行精制,而获得非晶状的目标物33C(7.9g,产率81%)。
1H-NMR(CDCl3)δ:7.39-7.28(5H,m),7.00-6.93(1H,m),6.50-6.44(1H,m),5.33-5.29(1H,m),5.16(1H,dd,J=11.5,3.6Hz),4.63-4.53(3H,m),4.34(1H,d,J=15.1Hz),4.22-3.83(5H,m),3.73-3.26(13H,m),2.15(3H,s),2.05(3H,s),1.99(6H,s).
C30H44N2O14:[M+H]+计算值657,实测值657.
(33D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2R)-2,3-二羟基丙氧基]乙氧基]乙基氨基]-2-侧氧基-乙氧基]四氢吡喃-2-基]甲酯乙酸酯(化合物33D)的合成
[化138]
Figure BDA0002550837380000992
将步骤(33C)中合成的化合物33C(7.9g,12mmol)溶解于乙醇(80mL)中。添加20%氢氧化钯/碳(湿基)(2.0g),于氢气环境下在50℃下剧烈搅拌8小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除。获得非晶状的目标物33D(6.7g,产率98%)。
1H-NMR(CDCl3)δ:7.03-6.98(1H,m),6.43(1H,d,J=9.1Hz),5.35(1H,d,J=3.3Hz),5.15(1H,dd,J=11.2,3.3Hz),4.58(1H,d,J=7.9Hz),4.35(1H,d,J=15.7Hz),4.28-3.82(5H,m),3.77-3.34(13H,m),2.18(3H,s),2.06(3H,s),2.03(3H,s),2.01(3H,s).
C23H38N2O14:[M+H]+计算值568,实测值568.
(33E)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-羟基-丙氧基]乙氧基]乙基氨基]-2-侧氧基-乙氧基]四氢吡喃-2-基]甲酯(化合物33E)的合成
[化139]
Figure BDA0002550837380001001
在步骤(33D)中合成的化合物33D(6.8g,12mmol)中添加适量的吡啶,在减压下进行共沸。溶解于吡啶(40mL)中,添加4,4'-二甲氧基三苯氯甲烷(4.5g,13mmol),在室温下搅拌2小时。反应结束后,将溶剂减压蒸馏去除。添加适量的甲苯而共沸后,获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-50:50,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物33E(6.9g,产率66%)。
1H-NMR(CDCl3)δ:7.42(2H,d,J=7.9Hz),7.33-7.19(7H,m),7.01-6.94(1H,m),6.83(4H,d,J=9.1Hz),6.37(1H,d,J=8.5Hz),5.33(1H,d,J=3.3Hz),5.15(1H,dd,J=11.2,3.3Hz),4.58(1H,d,J=7.9Hz),4.32(1H,d,J=15.7Hz),4.22-3.86(5H,m),3.79(6H,s),3.66-3.12(13H,m),2.13(3H,s),2.03(3H,s),1.97(3H,s),1.95(3H,s).
C44H56N2O16:[M+Na]+计算值893,实测值892.
(33F)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[2-[2-[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基-丙氧基]乙氧基]乙基氨基]-2-侧氧基-乙氧基]四氢吡喃-2-基]甲酯(化合物33F)的合成
[化140]
Figure BDA0002550837380001011
将步骤(33E)中合成的化合物33E(6.9g,7.9mmol)通过适量的甲苯共沸后,溶解于二氯甲烷(80mL)中。添加N,N-二异丙基乙基胺(5.5mL,32mmol)、2-氰基乙基二异丙基氯亚磷酰胺(2.1mL,9.5mmol),在室温下搅拌1小时。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-50:50,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物33F(6.6g,产率78%)。
1H-NMR(CDCl3)δ:7.47-7.40(2H,m),7.35-7.17(7H,m),6.98-6.91(1H,m),6.85-6.78(4H,m),6.05-5.89(1H,m),5.37-5.33(1H,m),5.17-5.07(1H,m),4.59-4.49(1H,m),4.37-4.30(1H,m),4.23-3.06(28H,m),2.69-2.42(2H,m),2.15(3H,s),2.05(3H,s),2.02-1.98(3H,m),1.97-1.94(3H,m),1.30-1.00(12H,m).
(实施例110)
HO-X13-X13-X13-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X13,与实施例91同样地进行合成。X13的部分是使用参考例33中合成的化合物33F,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6878.11)。
(实施例111)
HO-X13-X13-X13-X13-X13-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X13,与实施例91同样地进行合成。X13的部分是使用参考例33中合成的化合物33F,进行5次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:7882.43)。
(实施例112)
HO-X13-X13-X13-X13-X13-X13-X13-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X13,与实施例91同样地进行合成。X13的部分是使用参考例33中合成的化合物33F,进行7次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是在以下的HPLC条件下进行分析。分析管柱使用Clarity Oligo-MS C18(Phenomenex制造)(2.6μm,50×2.1mm),流动相A使用100mM六氟异丙醇、8mM三乙胺水溶液,流动相B使用甲醇,在流动相B于4分钟内自10%变化为25%的梯度、流速0.5mL/min、60℃下进行分析。化合物的HPLC保持时间为3.0分钟。
(参考例34)
(34A)
N-[(5S)-6-[2-[2-[(2R)-3-苄氧基-2-羟基-丙氧基]乙氧基]乙基氨基]-5-(叔丁氧基羰基氨基)-6-侧氧基-己基]氨基甲酸叔丁酯(化合物34A)的合成
[化141]
Figure BDA0002550837380001021
将(2S)-2,6-双(叔丁氧基羰基氨基)己酸(1.7g,4.9mmol)、1-(-3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(1.3g,6.9mmol)、3H-1,2,3-三唑[4,5-b]吡啶-3-醇(0.67g,4.9mmol)、N,N-二异丙基乙基胺(3.0mL,17mmol)、步骤(33B)中合成的化合物33B(2.1g,5.4mmol)溶解于二氯甲烷(40mL)中,在室温下搅拌4小时。进而,添加1-(-3-二甲氨基丙基)-3-乙基碳二酰胺盐酸盐(1.3g,6.9mmol)、N,N-二异丙基乙基胺(1.0ml,5.7mmol)并整夜搅拌。反应结束后,利用1N盐酸、饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得含有化合物34A的粗产物(3.1g)。不再进一步进行精制,将全部量用于下一反应中。
C30H51N3O9:[M+H]+计算值599,实测值599.
(34B)
(2S)-2,6-二氨基-N-[2-[2-[(2R)-3-苄氧基-2-羟基-丙氧基]乙氧基]乙基]己酰胺TFA盐(trifluoroacetate,三氟乙酸盐)(化合物34B)的合成
[化142]
Figure BDA0002550837380001031
将步骤(34A)中合成的含有化合物34A的粗产物(3.1g)溶解于二氯甲烷(24mL)/三氟乙酸(6mL)中,在室温下搅拌90分钟。反应结束后,将溶剂减压蒸馏去除,添加适量的二氯甲烷,再次将溶剂减压蒸馏去除。继而,添加适量的乙腈/蒸馏水(4/1),再次将溶剂减压蒸馏去除。重复所述操作直至可去除过量的三氟乙酸为止。获得含有化合物34B的粗产物(3.8g)。不再进一步进行精制,将全部量用于下一反应中。
C20H35N3O5:[M+H]+计算值399,实测值398.
(34C)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[2-[[(5S)-5-[[2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基乙酰基]氨基]-6-[2-[2-[(2R)-3-苄氧基-2-羟基-丙氧基]乙氧基]乙基氨基]-6-侧氧基-己基]氨基]-2-侧氧基-乙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物34C)的合成
[化143]
Figure BDA0002550837380001032
将文献已知化合物的2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基乙酸(WO2012037254)(3.5g,8.6mmol)、1-(-3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(2.3g,12mmol)、3H-1,2,3-三唑[4,5-b]吡啶-3-醇(1.3g,9.6mmol)、N,N-二异丙基乙基胺(10mL,59mmol)、步骤(34B)中合成的含有化合物34B的粗产物溶解于二氯甲烷(80mL)中,在室温下整夜搅拌。反应结束后,利用1N盐酸、饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(乙酸乙酯:甲醇=100:0-70:30,v/v)进行精制,而获得非晶状的目标物34C(3.5g,产率62%(3步))。
1H-NMR(CDCl3)δ:7.50-7.44(1H,m),7.39-7.28(5H,m),7.17-7.11(2H,m),6.94-6.88(1H,m),6.30-6.26(1H,m),5.37-5.32(2H,m),5.09-4.99(2H,m),4.57(2H,s),4.56-3.11(30H,m),2.18(3H,s),2.16(3H,s),2.07-1.99(15H,m),1.97(3H,s),1.96-1.34(6H,m).
C52H77N5O25:[M+H]+计算值1172,实测值1173.
(34D)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[2-[[(5S)-5-[[2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基乙酰基]氨基]-6-[2-[2-[(2R)-2,3-二羟基丙氧基]乙氧基]乙基氨基]-6-侧氧基-己基]氨基]-2-侧氧基-乙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物34D)的合成
[化144]
Figure BDA0002550837380001041
将步骤(34C)中合成的化合物34C(3.5g,3.0mmol)溶解于乙醇(40mL)中。添加20%氢氧化钯/碳(湿基)(1.2g),于氢气环境下在50℃下剧烈搅拌8小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除。获得非晶状的目标物34D(3.14g,产率97%)。
1H-NMR(CDCl3)δ:7.72-7.67(1H,m),7.16(2H,d,J=9.1Hz),7.04-6.98(1H,m),6.27(1H,d,J=9.1Hz),5.36(2H,d,J=3.0Hz),5.10-4.99(2H,m),4.67-3.07(30H,m),2.18(3H,s),2.17(3H,s),2.08-2.00(15H,m),1.98(3H,s),1.93-1.33(6H,m).
C45H71N5O25:[M+H]+计算值1082,实测值1083.
(34E)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[2-[[(5S)-5-[[2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基乙酰基]氨基]-6-[2-[2-[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-羟基-丙氧基]乙氧基]乙基氨基]-6-侧氧基-己基]氨基]-2-侧氧基-乙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物34E)的合成
[化145]
Figure BDA0002550837380001051
在步骤(34D)中合成的化合物34D(3.14g,2.9mmol)中添加适量的吡啶,在减压下进行共沸。溶解于吡啶(10ml)中,添加4,4'-二甲氧基三苯氯甲烷(1.1g,3.2mmol),在室温下搅拌2小时。反应结束后,添加甲苯(20mL)、乙醇(1mL)、N,N-二异丙基乙基胺(1mL),将溶剂进行减压蒸馏去除后,获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-50:50,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物34E(2.5g,产率62%)。
1H-NMR(CDCl3)δ:7.60-7.55(1H,m),7.43(2H,d,J=7.3Hz),7.35-7.20(7H,m),7.17-7.10(2H,m),6.92-6.87(1H,m),6.83(4H,d,J=9.1Hz),6.30(1H,d,J=9.1Hz),5.36-5.30(2H,m),5.09-4.95(2H,m),4.60-3.07(36H,m),2.19-2.14(6H,m),2.06-1.99(15H,m),1.97(3H,s),1.70-1.34(6H,m).
C66H89N5O27:[M+Na]+计算值1407,实测值1407.
(34F)
乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[2-[[(5S)-5-[[2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基乙酰基]氨基]-6-[2-[2-[(2S)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基-丙氧基]乙氧基]乙基氨基]-6-侧氧基-己基]氨基]-2-侧氧基-乙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物34F)的合成
[化146]
Figure BDA0002550837380001061
将步骤(34E)中合成的化合物34E(2.5g,1.8mmol)通过适量的甲苯/二氯甲烷(3/1)共沸后,溶解于二氯甲烷(18mL)中。添加N,N-二异丙基乙基胺(1.3mL,7.2mmol)、2-氰基乙基二异丙基氯亚磷酰胺(0.48mL,2.2mmol),在室温下搅拌1小时。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-50:50,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物34F(2.1g,产率73%)。
1H-NMR(CDCl3)δ:7.47-7.41(2H,m),7.35-7.05(10H,m),6.89-6.78(5H,m),6.35-6.25(1H,m),5.37-5.34(2H,m),5.11-4.98(2H,m),4.55-3.08(40H,m),2.70-2.45(2H,m),2.18(3H,s),2.17(3H,s),2.07-1.99(15H,m),1.98-1.94(3H,m),1.91-1.31(6H,m),1.21-1.02(12H,m).
(实施例113)
HO-X14-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X14,与实施例91同样地进行合成。X14的部分是使用参考例34中合成的化合物34F,进行1次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6263.04)。
(实施例114)
HO-X14-X14-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X14,与实施例91同样地进行合成。X14的部分是使用参考例34中合成的化合物34F,进行2次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:7154.36)。
(实施例115)
HO-X14-X14-X14-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X14,与实施例91同样地进行合成。X14的部分是使用参考例34中合成的化合物34F,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:8046.64)。
(实施例116~127)封入了寡核苷酸的核酸脂质粒子的制备
将二硬脂酰基磷脂酰胆碱(1,2-二硬脂酰基-sn-甘油-3-磷酸胆碱(1,2-Distearoyl-sn-glycero-3-phosphocholine):以下表述为DSPC,NOF CORPORATION)、胆固醇(Cholesterol:以下表述为Chol,Sigma-Aldrich,Inc.)、国际公开第2015/005253所记载的实施例8的化合物(设为LP)、及N-[甲氧基聚(乙二醇)2000]胺甲酰基]-1,2-二肉豆蔻氧基丙基-3-胺(以下表述为PEG-C-DMA,NOF CORPORATION)以DSPC:Chol:LP:PEG-C-DMA=10:48:40:2的摩尔比而以在乙醇中总脂质浓度成为5mM的方式制备脂质溶液。
将寡核苷酸(21e_002、18e_005、21m_002、18e_005、18m_022、15e_001、15ed_001、18e_008、18e_025、18m_008、15e_002、及15ed_002)分别溶解于柠檬酸缓冲液(20mM,柠檬酸盐缓冲液(Citrate Buffer),pH值4.0)中,来制备寡核苷酸溶液。
将所述脂质溶液与寡核苷酸溶液以来自LP的氮原子(N)与来自寡核苷酸的磷原子(P)的比率(N/P)成为3的方式,使用NanoAssemblr Benchtop(注册商标。PrecisionNanosystems),在附属的微流路筒内加以混合(流速:12mL/min,混合体积比率:脂质溶液:寡核苷酸溶液=1:3,温度:室温),而获得核酸脂质粒子的分散液。继而,利用约2L的磷酸缓冲液(pH值7.4)将核酸脂质粒子的分散液透析12-18小时(Float-A-Lyzer G2,MWCO:1000kD,Spectra/Por),由此去除乙醇及进行中和,而获得封入了寡核苷酸的核酸脂质粒子被精制过的分散液。为了调整浓度,可适当通过超过滤(Amicon-Ultra,MWCO:100kD,MILLIPORE)将核酸脂质粒子的分散液浓缩。
对实施例116~127的封入寡核苷酸的核酸脂质粒子的特性进行评价。以下对各特性评价的方法进行说明。
(1)寡核苷酸的封入率
寡核苷酸的封入率是使用Quant-iT RiboGreen RNA分析套组(Invitrogen),依照随附文件进行测定。即,在0.015%Triton X-100表面活性剂存在下及非存在下,对核酸脂质粒子的分散液中的寡核苷酸进行定量,通过下式算出封入率。
{[表面活性剂存在下的寡核苷酸量]-[表面活性剂非存在下的寡核苷酸量]}/[表面活性剂存在下的寡核苷酸量]×100(%)
(2)寡核苷酸与脂质的比率
使用磷脂质C-Test Wako(和光纯药工业股份有限公司),依照随附文件测定核酸脂质粒子的分散液中的磷脂质量。即,在1%Triton X-100表面活性剂存在下,对试样中的磷脂质进行定量。
通过反相色谱法测定核酸脂质粒子的分散液中的胆固醇及LP量(系统:Agilent1100系列,管柱:Chromolith Performance RP-18封端100-3整体化HPLC-管柱(Merck),缓冲液A:0.01%三氟乙酸,缓冲液B:0.01%三氟乙酸,甲醇,梯度(B%):82-97%(0-17min),流速:2mL/min,温度:50℃,检测:205nm)。
根据磷脂质量、胆固醇量、及LP量与构成脂质体的脂质成分的组成比算出总脂质量,根据所述(1)的“表面活性剂存在下的寡核苷酸量”,通过下式算出寡核苷酸与脂质的比率。
[表面活性剂存在下的寡核苷酸浓度]/[总脂质浓度](wt/wt)
(3)平均粒径
脂质体的粒径是通过ζ电位/粒子尺寸NICOMPTM 380ZLS(PARTICLE SIZINGSYSTEMS)进行测定。表中的平均粒径表示体积平均粒径,±以下表示偏差。
将结果示于表11。
(表11)
Figure BDA0002550837380001091
*ASO/脂质(wt/wt):寡核苷酸与脂质的重量比。
根据以上的结果可明确,寡核苷酸被封入脂质粒子内,这些核酸脂质粒子具有约50nm至约70nm的平均粒径。
(实施例128)
HO-X14-Am1s-Te2s-Cm1s-Cm1s-Ge2s-Am1s-Um1s-Ge2s-Gm1s-Cm1s-Ge2s-Am1s-Am1s-Ge2s-Cm1t-H(序列编号44)
使用所述序列即15e_005代替实施例113所使用的序列,与实施例113同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6210.94)。
(实施例129)
HO-X14-Um1s-Ce2s-Cm1s-Gm1s-Ae2s-Um1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2s-Am1s-Gm1s-Ce2s-Um1t-H(序列编号45)
使用所述序列即15e_006代替实施例113所使用的序列,与实施例113同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第90号至第104号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6201.95)。
(实施例130)
HO-X14-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Cm1s-Te2s-Gm1t-H(序列编号41)
使用所述序列即15e_002代替实施例113所使用的序列,与实施例113同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第89号至第103号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6268.98)。
(参考例35)
(35A)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[3-(叔丁氧基羰基氨基)丙基氨基]-2-侧氧基-乙氧基]四氢吡喃-2-基]甲酯(化合物35A)的合成
[化147]
Figure BDA0002550837380001101
在文献已知化合物的2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基乙酸(WO2012037254)(10g,24.7mmol)、N-(3-氨基丙基)氨基甲酸叔丁酯(4.7ml,27.1mmol)的N,N-二甲基甲酰胺(70ml)溶液中添加1-[双(二甲氨基)亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶3-氧化物六氟磷酸盐(11.3g,29.6mmol)与N,N-二异丙基乙基胺(8.6mL,49.3mmol),在室温下搅拌40分钟。反应结束后,添加乙酸乙酯,利用15%食盐水、0.5N盐酸、饱和食盐水、饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。将溶剂减压蒸馏去除,获得含有表述目标物的粗产物约14g。不再进一步进行精制,用于下一反应。
(35B)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-(3-氨基丙基氨基)-2-侧氧基-乙氧基]四氢吡喃-2-基]甲酯TFA盐(化合物35B)的合成
[化148]
Figure BDA0002550837380001111
将步骤(35A)中合成的粗产物(14g)溶解于二氯甲烷(40ml)中,至反应结束为止,添加三氟乙酸共计16ml。反应结束后,将溶剂减压蒸馏去除而获得粗产物。添加适量的二乙醚,进行倾析。添加适量的乙腈,进行减压蒸馏去除。进而,添加适量的二氯甲烷,进行减压蒸馏去除。获得含有表述目标物的粗产物约15.9g。不再进一步进行精制,用于下一反应。
C19H31N3O10:[M+H]+计算值462,实测值462.
(35C)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[3-[[(4R)-2,2-二甲基-1,3-二氧杂环戊烷-4-基]甲氧基羰基氨基]丙基氨基]-2-侧氧基-乙氧基]四氢吡喃-2-基]甲酯(化合物35C)的合成
[化149]
Figure BDA0002550837380001112
将(S)-(+)-1,2-亚异丙基甘油(6.53g,49.4mmol)、氯甲酸4-硝基苯酯(9.96g,49.4mmol)溶解于二氯甲烷(200ml)中,添加吡啶(7.95ml,98.8mmol),在室温下搅拌30分钟。在该反应液中添加步骤(35B)中合成的粗产物(15.9g)的二氯甲烷(100ml)溶液、三乙胺(20.5ml,148mmol),在室温下整夜搅拌。反应结束后,利用0.5N盐酸、饱和食盐水、饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。通过硅胶柱色谱法(乙酸乙酯:甲醇=100:0-65:35,v/v)进行精制,而以固体的形式获得目标物35C(9.0g,产率59%(3步))。
1H-NMR(CDCl3)δ:7.09-7.01(1H,m),6.16(1H,d,J=8.5Hz),5.53-5.46(1H,m),5.37(1H,d,J=3.6Hz),5.22-5.14(1H,m),4.53(1H,d,J=8.5Hz),4.41-3.99(9H,m),3.96-3.89(1H,m),3.79-3.71(1H,m),3.44-3.15(4H,m),2.17(3H,s),2.06(3H,s),2.04(3H,s),1.98(3H,s),1.80-1.58(2H,m),1.43(3H,s),1.37(3H,s).
C26H41N3O14:[M+Na]+计算值642,实测值642.
(35D)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[3-[[(2R)-2,3-二羟基丙氧基]羰基氨基]丙基氨基]-2-侧氧基-乙氧基]四氢吡喃-2-基]甲酯(化合物35D)的合成
[化150]
Figure BDA0002550837380001121
在步骤(35C)中合成的化合物(7.87g,12.7mmol)的甲醇溶液(160ml)中添加对甲苯磺酸(0.242g,1.27mmol),进行整夜搅拌。反应结束后,将溶剂减压蒸馏去除,而获得含有表述目标物的粗产物7.36g。不再进一步进行精制,用于下一反应。
C23H37N3O14:[M+H]+计算值580,实测值580,[M+Na]+计算值602,实测值602.
(35E)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[3-[[(2R)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-羟基-丙氧基]羰基氨基]丙基氨基]-2-侧氧基-乙氧基]四氢吡喃-2-基]甲酯(化合物35E)的合成
[化151]
Figure BDA0002550837380001122
在步骤(35D)中合成的粗产物(7.36g)中添加二氯甲烷(150ml)、吡啶(10ml),将溶剂减压蒸馏去除。其后,溶解于吡啶(60ml)中,添加4,4'-二甲氧基三苯氯甲烷(5.59g,16.5mmol),在室温下搅拌30分钟。反应结束后,添加甲醇(1.03ml,25.4mmol)、N,N-二异丙基乙基胺(4.42mL,25.4mmol),将溶剂减压蒸馏去除。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-0:100,v/v,含有1%三乙胺)将其进行精制,而以固体的形式获得目标物35E(4.51g,产率40%)。
1H-NMR(CDCl3)δ:7.45-7.39(2H,m),7.34-7.28(6H,m),7.24-7.18(1H,m),7.07-6.99(1H,m),6.86-6.80(4H,m),6.21(1H,d,J=8.5Hz),5.48-5.41(1H,m),5.36(1H,d,J=3.6Hz),5.19-5.13(1H,m),4.52(1H,d,J=8.5Hz),4.39-3.88(9H,m),3.79(6H,s),3.50-3.12(6H,m),2.92(1H,d,J=4.8Hz),2.16(3H,s),2.05(3H,s),1.99(3H,s),1.95(3H,s),1.80-1.54(2H,m).
C44H55N3O16:[M+Na]+计算值904,实测值904.
(35F)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-[2-[3-[[(2R)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基-丙氧基]羰基氨基]丙基氨基]-2-侧氧基-乙氧基]四氢吡喃-2-基]甲酯(化合物35F)的合成
[化152]
Figure BDA0002550837380001131
将步骤(35E)中合成的化合物35E(4.51g,5.11mmol)通过适量的乙酸乙酯/甲苯(1/4)共沸后,溶解于二氯甲烷(90ml)中。添加N,N-二异丙基乙基胺(3.56ml,20.5mmol)、2-氰基乙基二异丙基氯亚磷酰胺(1.57ml,5.63mmol),在室温下搅拌1小时。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-50:50,v/v,含有1%三乙胺)将其进行精制,而以固体的形式获得目标物35F(3.97g,产率72%)。
1H-NMR(CDCl3)δ:7.47-7.38(2H,m),7.35-7.16(7H,m),7.12-7.04(1H,m),6.86-6.76(4H,m),6.25-6.12(1H,m),5.58-5.18(3H,m),4.61-4.53(1H,m),4.46-3.42(19H,m),3.39-3.02(6H,m),2.68-2.41(2H,m),2.19-2.13(3H,m),2.08-2.02(3H,m),2.01-1.91(6H,m),1.78-1.54(2H,m),1.31-0.94(12H,m).
(参考例36)
(36A)N-[2-(叔丁氧基羰基氨基)乙基]氨基甲酸[(4R)-2,2-二甲基-1,3-二氧杂环戊烷-4-基]甲酯(化合物36A)的合成
[化153]
Figure BDA0002550837380001132
将(S)-(+)-1,2-亚异丙基甘油(5.0g,37.5mmol)、氯甲酸4-硝基苯酯(7.55g,37.5mmol)溶解于二氯甲烷(150ml)中,添加吡啶(5.0ml,61.8mmol),在室温下搅拌1小时。在该反应液中添加N-(2-氨基乙基)氨基甲酸叔丁酯(6g,37.5mmol)的二氯甲烷溶液(40ml)、三乙胺(8.8ml,63.7mmol),在室温下搅拌1小时。反应结束后,反应结束后,利用0.5N盐酸、饱和食盐水、饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而以固体的形式获得含有目标物的粗产物(10.6g)。不再进一步进行精制,用于下一反应。
(36B)N-(2-氨基乙基)氨基甲酸[(2R)-2,3-二羟基丙基]酯TFA盐(化合物36B)的合成
[化154]
Figure BDA0002550837380001141
在步骤(36A)中合成的粗产物(10.6g)中添加三氟乙酸(16.6ml)、纯水(5.55ml),在室温下搅拌1小时。反应结束后,将溶剂减压蒸馏去除。继而,添加乙腈,将溶剂减压蒸馏去除。进而,添加乙腈/纯水(4/1),将溶剂减压蒸馏去除后,在减压下加以干燥。获得含有目标物的油状的粗产物(14.3g)。不再进一步进行精制,用于下一反应。
(36C)N-[(5S)-5-(苄氧基羰基氨基)-6-[2-[[(2R)-2,3-二羟基丙氧基]羰基氨基]乙基氨基]-6-侧氧基-己基]氨基甲酸苄酯(化合物36C)的合成
[化155]
Figure BDA0002550837380001142
在N,N'-二-Cbz-L-赖氨酸(13.7g)的N,N-二甲基甲酰胺(100ml)溶液中添加1-[双(二甲氨基)亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶3-氧化物六氟磷酸盐(15.0g,40mmol)与N,N-二异丙基乙基胺(12mL,66mmol)。进而,添加步骤(36B)中合成的粗产物(9.7g)与N,N-二异丙基乙基胺(12mL,66mmol)的N,N-二甲基甲酰胺(20ml)溶液,在室温下搅拌40分钟。反应结束后,添加乙酸乙酯,利用15%食盐水、0.5N盐酸、饱和食盐水、饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得固形物。利用1N盐酸、纯水将该固形物洗净后,利用二氯甲烷、二乙醚洗净,其后在减压下加以干燥,而获得含有目标物的粗产物(10.5g)。
C28H38N4O9:[M+H]+计算值575,实测值575.
(36D)N-[2-[[(2S)-2,6-二氨基己酰基]氨基]乙基]氨基甲酸[(2R)-2,3-二羟基丙基]酯盐酸盐(化合物36D)的合成
[化156]
Figure BDA0002550837380001151
将步骤(36C)中合成的粗产物(9.5g)溶解于四氢呋喃/1当量浓度的盐酸(36ml)中,添加10%钯碳(2.0g),于氢气环境下在室温下搅拌2.5小时。反应结束后进行过滤。将溶剂进行减压蒸馏去除后,利用高速浓缩装置V-10(Biotage)在减压下加以干燥。获得表述目标化合物的粗产物(6.4g)。不再进一步进行精制,用于下一反应。
(36E)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[2-[[(5S)-5-[[2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基乙酰基]氨基]-6-[2-[[(2R)-2,3-二羟基丙氧基]羰基氨基]乙基氨基]-6-侧氧基-己基]氨基]-2-侧氧基-乙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物36E)的合成
[化157]
Figure BDA0002550837380001152
在文献已知化合物的2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基乙酸(WO2012037254)(2.64g,6.5mmol)、步骤(36D)中合成的粗产物(1.37g,3.6mmol)的N,N-二甲基甲酰胺(30ml)溶液中添加1-[双(二甲氨基)亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶3-氧化物六氟磷酸盐(3.0g,8.0mmol)与N,N-二异丙基乙基胺(3.8mL,21.7mmol),在室温下搅拌40分钟。反应结束后,添加二乙醚(500ml),获得沉淀的残渣。通过以0.1%三氟乙酸水溶液与0.1%三氟乙酸乙腈溶液作为洗脱液的反相HPLC(GL Science,Inertsil ODS-3)进行分离精制,将含有目标物的组分汇集,将溶剂减压蒸馏去除。获得非晶状的目标物(2.23g,产率57%)。
1H-NMR(DMSO-D6)δ:8.14-8.08(1H,m),8.03-7.91(2H,m),7.33-7.22(2H,m),7.16-7.10(1H,m),5.27-5.23(2H,m),5.01-4.93(2H,m),4.59-4.52(2H,m),4.26-3.55(17H,m),3.36-3.30(2H,m),3.18-2.86(7H,m),2.14-2.06(6H,m),2.04-1.98(6H,m),1.94-1.89(6H,m),1.88-1.79(6H,m),1.71-1.48(2H,m),1.47-1.35(2H,m),1.32-1.15(2H,m).
C44H68N6O25:[M+H]+计算值1081,实测值1081.
(36F)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[2-[[(5S)-5-[[2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基乙酰基]氨基]-6-[2-[[(2R)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-羟基-丙氧基]羰基氨基]乙基氨基]-6-侧氧基-己基]氨基]-2-侧氧基-乙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物36F)的合成
[化158]
Figure BDA0002550837380001161
在步骤(36E)中合成的化合物(7.36g,2.1mmol)中添加吡啶(10ml),将溶剂减压蒸馏去除。将该操作重复3次。其后,溶解于吡啶(10ml)中,添加4,4'-二甲氧基三苯氯甲烷(0.77g,2.3mmol),在室温下搅拌30分钟。反应结束后,添加乙醇(1.0ml)、N,N-二异丙基乙基胺(1.0mL),将溶剂减压蒸馏去除。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物(1.17g,产率41%)。
1H-NMR(CDCl3)δ:7.47-7.38(2H,m),7.36-6.95(10H,m),6.86-6.79(4H,m),6.33-6.27(1H,m),5.53-4.99(4H,m),4.57-3.07(30H,m),2.21-2.14(6H,m),2.08-1.94(18H,m),1.92-1.07(6H,m).
C65H86N6O27:[M+Na]+计算值1406,实测值1406.
(36G)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[2-[[(5S)-5-[[2-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基乙酰基]氨基]-6-[2-[[(2R)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-[2-氰基乙基-(二异丙氨基)膦基]氧基-丙氧基]羰基氨基]乙基氨基]-6-侧氧基-己基]氨基]-2-侧氧基-乙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物36G)的合成
[化159]
Figure BDA0002550837380001171
将步骤(36F)中合成的化合物36F(1.17g,0.85mmol)通过适量的二氯甲烷/甲苯(1/4)共沸后,溶解于二氯甲烷(8ml)中。添加N,N-二异丙基乙基胺(0.59ml,3.4mmol)、2-氰基乙基二异丙基氯亚磷酰胺(0.23ml,1.0mmol),在室温下搅拌1小时。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(乙酸乙酯:乙酸乙酯/甲醇(5/1)=100:0-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物36G(0.81g,产率61%)。
1H-NMR(CDCl3)δ:7.47-7.40(2H,m),7.36-7.10(11H,m),6.95-6.86(1H,m),6.85-6.78(4H,m),6.34-6.28(1H,m),5.56-5.33(2H,m),5.12-4.98(2H,m),4.52-3.04(36H,m),2.72-2.46(2H,m),2.20-2.15(6H,m),2.08-1.94(18H,m),1.93-1.81(2H,m),1.67-1.52(2H,m),1.46-1.34(2H,m),1.22-0.98(12H,m).
(参考例37)
(37A)乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4-二乙酰氧基-6-[3-(苄氧基羰基氨基)丙氧基]四氢吡喃-2-基]甲酯(化合物37A)的合成
[化160]
Figure BDA0002550837380001172
在N-(3-羟基丙基)氨基甲酸苄酯(6.4g,30.8mmol)与文献已知化合物的乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4,6-三乙酰氧基-四氢吡喃-2-基]甲酯(WO2011053614)(10g,25.7mmol)的二氯甲烷(200ml)悬浮溶液中添加三氟甲磺酸(450μl,5.1mmol),在45度下搅拌4小时。反应结束后,将溶剂减压蒸馏去除一半进行浓缩。利用饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除而获得粗产物。添加异丙醚(100m)并搅拌3小时。将所获得的固形物进行过滤,而获得目标物37A(11.9g)。不再进一步进行精制,用于下一反应。
1H-NMR(CDCl3)δ:7.43-7.29(5H,m),6.26(1H,d,J=8.5Hz),5.36-5.29(1H,m),5.12(1H,d,J=12.1Hz),5.08(1H,d,J=12.1Hz),5.03-4.95(2H,m),4.33(1H,d,J=9.1Hz),4.21-4.06(3H,m),4.01-3.93(1H,m),3.80-3.73(1H,m),3.62-3.49(1H,m),3.44-3.35(1H,m),3.14-3.04(1H,m),2.15(3H,s),2.05(3H,s),2.01(3H,s),1.95(3H,s),1.88-1.75(1H,m),1.69-1.56(1H,m).
C25H34N2O11:[M+H]+计算值539,实测值539.
(37B)乙酸[(2R,3R,4R,5R)-5-乙酰胺-3,4-二乙酰氧基-6-(3-氨基丙氧基)四氢吡喃-2-基]甲酯盐酸盐(化合物37B)的合成
[化161]
Figure BDA0002550837380001181
将步骤(37A)中合成的化合物37A(10g,18.6mmol)溶解于四氢呋喃(200ml)/1N盐酸(20ml)中。添加10%钯/碳(湿基)(1g),于氢气环境下在室温下剧烈搅拌1小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除而获得含有目标物37B的粗产物(8.97g)。不再进一步进行精制,用于下一反应。
C17H28N2O9:[M+H]+计算值405,实测值405.
(37C)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[[(3S)-4-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基丙基酰胺]-3-(9H-芴-9-基甲氧基羰基氨基)-4-侧氧基-丁酰基]氨基]丙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物37C)的合成
[化162]
Figure BDA0002550837380001182
在N-[(9H-芴-9-基甲氧基)羰基]-L-天冬氨酸(1.7g,4.78mmol)、步骤(37B)中合成的化合物(5.48g,12.4mmol)的N,N-二甲基甲酰胺(15ml)溶液中添加1-[双(二甲氨基)亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶3-氧化物六氟磷酸盐(4.7g,12.4mmol)与N,N-二异丙基乙基胺(5.8mL,33.5mmol),在室温下搅拌1小时。添加乙酸乙酯,利用15%食盐水、0.5N盐酸、饱和食盐水、饱和碳酸氢钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得固形物。利用异丙醚将该固形物洗净后,在减压下加以干燥,而获得含有目标物37C的粗产物(5.4g)。不再进一步进行精制,用于下一反应。
C53H69N5O22:[M+H]+计算值1128,实测值1129,[M+Na]+计算值1151,实测值1151.
(37D)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[[(3S)-4-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基丙基氨基]-3-氨基-4-侧氧基-丁酰基]氨基]丙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯TFA盐(化合物37D)的合成
[化163]
Figure BDA0002550837380001191
在步骤(37C)中合成的化合物(5.4g,4.8mmol)的N,N-二甲基甲酰胺(25ml)溶液中添加哌啶(0.57ml,5.7mmol),在室温下搅拌1.5小时。反应结束后,添加三氟乙酸(0.31ml)。将反应液添加到适量的二乙醚中,获得沉淀的残渣。通过以0.1%三氟乙酸水溶液与0.1%三氟乙酸乙腈溶液作为洗脱液的反相HPLC(GL Science,Inertsil ODS-3)进行分离精制,将含有目标物的组分汇集,将溶剂减压蒸馏去除。获得非晶状的目标物(2.7g,产率55%)。
1H-NMR(DMSO-D6)δ:8.34-8.26(1H,m),8.14-8.05(4H,m),7.90-7.82(2H,m),5.25-5.21(2H,m),5.00-4.92(2H,m),4.50-4.45(2H,m),4.08-3.82(5H,m),3.80-3.63(3H,m),3.51-3.39(3H,m),3.19-3.02(4H,m),2.70-2.53(2H,m),2.14-2.05(6H,m),2.04-1.96(6H,m),1.93-1.86(6H,m),1.84-1.75(6H,m),1.69-1.57(4H,m).
C38H59N5O20:[M+H]+计算值905,实测值906.
(37E)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[[(3S)-4-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基丙基氨基]-3-[[(4R)-2,2-二甲基-1,3-二氧杂环戊烷-4-基]甲氧基羰基氨基]-4-侧氧基-丁酰基]氨基]丙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物37E)的合成
[化164]
Figure BDA0002550837380001201
使用步骤(37D)中合成的化合物(2.7g,2.6mmol),以与步骤(35C)同样的方式,获得非晶状的目标物(0.77g,产率27%)。
1H-NMR(CDCl3)δ:7.19-7.12(1H,m),6.96-6.85(2H,m),6.83-6.75(1H,m),6.16(1H,d,J=9.1Hz),5.41-5.34(2H,m),5.25-5.08(2H,m),4.66(1H,d,J=8.5Hz),4.51-3.87(16H,m),3.79-3.72(1H,m),3.64-3.14(6H,m),3.01-2.91(1H,m),2.68-2.57(1H,m),2.22-2.14(6H,m),2.10-1.93(18H,m),1.90-1.63(4H,m),1.42(3H,s),1.35(3H,s).
C45H69N5O24:[M+Na]+计算值1086,实测值1086.
(37F)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[[(3S)-4-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基丙基氨基]-3-[[(2R)-2,3-二羟基丙氧基]羰基氨基]-4-侧氧基-丁酰基]氨基]丙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物37F)的合成
[化165]
Figure BDA0002550837380001202
使用步骤(37E)中合成的化合物(0.77g,0.72mmol),以与步骤(35D)同样的方式,获得含有目标物37F的粗产物(0.74g)。不再进一步进行精制,用于下一反应。
C42H65N5O24:[M+H]+计算值1024,实测值1024.
(37G)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[[(3S)-4-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基丙基氨基]-3-[[(2R)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-羟基-丙氧基]羰基氨基]-4-侧氧基-丁酰基]氨基]丙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物37G)的合成
[化166]
Figure BDA0002550837380001211
使用步骤(37F)中合成的化合物(0.74g),以与步骤(35E)同样的方式,获得非晶状的目标物(0.63g,产率66%(2步))。
1H-NMR(CDCl3)δ:7.44-7.38(2H,m),7.33-7.09(9H,m),6.86-6.69(6H,m),6.22(1H,d,J=7.9Hz),5.38-5.33(2H,m),5.23-5.09(2H,m),4.66(1H,d,J=7.9Hz),4.54-4.42(2H,m),4.24-3.87(16H,m),3.79(6H,s),3.57-3.14(8H,m),2.97-2.87(1H,m),2.66-2.50(1H,m),2.19-2.13(6H,m),2.08-1.91(10H,m),1.87-1.65(4H,m).
C63H83N5O26:[M+Na]+计算值1349,实测值1349.
(37H)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[[(3S)-4-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基丙基氨基]-3-[[(2R)-3-[双(4-甲氧基苯基)-苯基-甲氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基-丙氧基]羰基氨基]-4-侧氧基-丁酰基]氨基]丙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物37H)的合成
[化167]
Figure BDA0002550837380001212
使用步骤(37G)中合成的化合物(0.63g,0.48mmol),以与步骤(35F)同样的方式,获得非晶状的目标物(0.52g,产率71%)。
1H-NMR(CDCl3)δ:7.45-7.38(2H,m),7.34-6.95(9H,m),6.88-6.62(6H,m),6.18-6.10(1H,m),5.39-5.32(2H,m),5.24-5.05(2H,m),4.69-4.60(1H,m),4.52-4.41(2H,m),4.34-2.90(32H,m),2.68-2.42(3H,m),2.20-2.14(6H,m),2.09-1.91(18H,m),1.87-1.66(4H,m),1.21-0.97(12H,m).
(参考例38)
(38A)N-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二羟基-6-(羟甲基)四氢吡喃-2-基]氧基丙基]氨基甲酸苄酯(化合物38A)的合成
[化168]
Figure BDA0002550837380001221
在步骤(37A)中合成的化合物(12.4g,23mmol)的乙醇(200ml)悬浮溶液中添加28%甲醇钠甲醇溶液(0.85ml),在室温下加以搅拌。伴随反应的进行,一度成为透明的溶液。放置60分钟后获得沉淀物。将沉淀物过滤,利用乙醇、二异丙醚洗净后,在减压下加以干燥。以固体的形式获得含有目标物38A的粗产物(10g)。不再进一步进行精制,用于下一反应。
1H-NMR(DMSO-D6)δ:7.60(1H,d,J=9.1Hz),7.40-7.17(5H,m),5.01(2H,s),4.62-4.55(2H,m),4.49(1H,d,J=4.2Hz),4.20(1H,d,J=8.5Hz),3.76-3.27(6H,m),3.08-2.99(2H,m),1.81(3H,s),1.66-1.56(2H,m).
C19H28N2O8:[M+Na]+计算值435,实测值435.
(38B)N-[(2R,3R,4R,5R,6R)-2-(3-氨基丙氧基)-4,5-二羟基-6-(羟甲基)四氢吡喃-3-基]乙酰胺盐酸盐(化合物38B)的合成
[化169]
Figure BDA0002550837380001222
将步骤(38A)中合成的化合物(22.8g,55.3mmol)溶解于四氢呋喃(280ml)/1N盐酸(61ml)中。添加10%钯/碳(湿基)(5.56g),于氢气环境下在室温下剧烈搅拌3.5小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除。添加适量的乙醇,将所产生的固形物过滤,利用乙醇、二乙醚洗净后,在减压下加以干燥。获得含有目标物38B的粗产物(17g)。不再进一步进行精制,用于下一反应。
1H-NMR(D2O)δ:4.27(1H,d,J=8.5Hz),3.90-3.50(8H,m),2.93(2H,t,J=7.0Hz),1.89(3H,s),1.82-1.75(2H,m).
(38C)N-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二羟基-6-(羟甲基)四氢吡喃-2-基]氧基丙基]氨基甲酸9H-芴-9-基甲酯(化合物38C)的合成
[化170]
Figure BDA0002550837380001231
将步骤(38B)中合成的化合物(16.4g,52.1mmol)溶解于四氢呋喃(200ml)/纯水(50ml)中,添加N,N-二异丙基乙基胺(12.7mL,72.9mmol)。在冰浴冷却下添加N-[(9H-芴-9-基甲氧基)羰氧基]丁二酰亚胺(21.1g,62.5mmol),在室温下搅拌1.5小时。反应结束后,将溶剂减压蒸馏去除。添加二乙醚(100ml),并搅拌1小时。利用乙醇、乙酸乙酯、二乙醚依序洗净固形物后,在减压下加以干燥,而获得含有目标物38C的粗产物(22.9g)。
1H-NMR(DMSO-D6)δ:7.89(2H,d,J=7.3Hz),7.69(2H,d,J=7.3Hz),7.61(1H,d,J=9.1Hz),7.42(2H,t,J=7.3Hz),7.33(2H,t,J=7.3Hz),7.24(1H,t,J=5.7Hz),4.60-4.57(2H,m),4.49(1H,d,J=4.2Hz),4.31-4.18(4H,m),3.76-3.28(8H,m),3.05-2.97(2H,m),1.81(3H,s),1.62-1.57(2H,m).
C26H32N2O8:[M+Na]+计算值523,实测值523.
(38D)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-4-乙酰氧基-2-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]-6-[3-(9H-芴-9-基甲氧基羰基氨基)丙氧基]四氢吡喃-3-基]酯(化合物38D)的合成
[化171]
Figure BDA0002550837380001232
在步骤(38C)中合成的化合物(1.56g,3.1mmol)的吡啶(20ml)悬浮液中添加4,4'-二甲氧基三苯氯甲烷(1.27g,3.7mmol),在室温下搅拌30分钟。继而,添加乙酸酐(1.18ml,12.5mmol),在室温下搅拌20小时。反应结束后,添加N,N-二异丙基乙基胺(1.1mL,6.2mmol)、乙醇(2ml),将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=75:25-0:100,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物38D(2.8g,定量)。
1H-NMR(CDCl3)δ:7.77(2H,d,J=7.3Hz),7.62(2H,d,J=7.3Hz),7.43-7.18(13H,m),6.83-6.79(4H,m),6.03(1H,d,J=9.1Hz),5.55(1H,d,J=3.0Hz),5.14-5.03(2H,m),4.46-4.43(3H,m),4.24-4.04(2H,m),3.97-3.91(1H,m),3.85-3.82(1H,m),3.77(6H,s),3.72-3.71(1H,m),3.54-3.33(3H,m),3.09-3.04(2H,m),2.03(3H,s),1.89(6H,s),1.65-1.56(2H,m).
C52H55NO12:[M+Na]+计算值908,实测值909.
(38E)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-4-乙酰氧基-6-(3-氨基丙氧基)-2-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-3-基]酯(化合物38D)的合成
[化172]
Figure BDA0002550837380001241
在步骤(38D)中合成的化合物(2.49g,2.8mmol)的二氯甲烷(8ml)溶液中添加哌啶(0.45ml,4.5mmol),在室温下加以搅拌。如果反应不完全,就适当追加哌啶。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过NH-硅胶柱色谱法(二氯甲烷:甲醇=100:0-85:15,v/v)将其进行精制,而获得非晶状的目标物38E(1.48g,产率79%)。
1H-NMR(CDCl3)δ:7.39-7.18(9H,m),6.83-6.80(4H,m),5.55(1H,d,J=3.0Hz),5.51(1H,d,J=9.1Hz),5.27(1H,dd,J=11.2,3.3Hz),4.64(1H,d,J=8.5Hz),3.98-3.90(2H,m),3.84-3.82(1H,m),3.79(6H,s),3.75-3.74(1H,m),3.58-3.56(1H,m),3.35(1H,dd,J=9.1,5.4Hz),3.07(1H,t,J=8.5Hz),2.82-2.74(4H,m),2.01(3H,s),1.96(3H,s),1.89(3H,s),1.74-1.69(2H,m).
C37H45NO10:[M+Na]+计算值687,实测值687.
(参考例39)
(39A)2-[[2-苄氧基-3-[(2-苄氧基-2-侧氧基-乙基)胺甲酰氧基]丙氧基]羰基氨基]乙酸苄酯(化合物39A)的合成
[化173]
Figure BDA0002550837380001251
将2-苄氧基-1,3-丙二醇(2.5g,14mmol)、氯甲酸4-硝基苯酯(5.8g,29mmol)溶解于四氢呋喃(100ml)中,添加吡啶(5.0ml,61.8mmol),在室温下搅拌20分钟。将所析出的固体过滤后,添加四氢呋喃(70ml)。继而,添加甘氨酸苄酯TFA盐(9.2g,33mmol)与N,N-二异丙基乙基胺(9.6mL,55mmol),在室温下整夜搅拌。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(己烷:乙酸乙酯=100:0-40:60,v/v)将其进行精制,而获得橡胶状的目标物39A(6.5g,产率84%)。
1H-NMR(CDCl3)δ:7.37-7.33(15H,m),5.48(2H,t,J=5.4Hz),5.18(4H,s),4.64(2H,s),4.23(4H,d,J=5.4Hz),3.99(4H,d,J=5.4Hz),3.84(1H,t,J=5.4Hz).
C30H32N2O9:[M+H]+计算值565,实测值565,[M+Na]+计算值587,实测值587
(39B)2-[[3-(羧甲基胺甲酰氧基)-2-羟基-丙氧基]羰基氨基]乙酸(化合物39B)的合成
[化174]
Figure BDA0002550837380001252
将步骤(39A)中合成的化合物39A(7.3g,2.8mmol)溶解于四氢呋喃(200ml)/纯水(50ml)中。添加20%氢氧化钯-活性碳(约50%含水)(3g),于氢气环境下在室温下剧烈搅拌5小时。反应结束后过滤,将所获得的通过液进行减压蒸馏去除而获得含有目标物39B的粗产物(3.2g)。不再进一步进行精制,用于下一反应。
1H-NMR(D2O)δ:4.21-4.14(5H,m),3.86(4H,s).
(39C)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[[2-[[3-[[2-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-[[双(4-甲氧基苯基)-苯基l-甲氧基]甲基]四氢吡喃-2-基]氧基丙基氨基]-2-侧氧基-乙基]胺甲酰氧基]-2-羟基-丙氧基]羰基氨基]乙酰基]氨基]丙氧基]-4-乙酰氧基-2-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-3-基]酯(化合物39C)的合成
[化175]
Figure BDA0002550837380001261
在步骤(39B)中合成的化合物39B(0.31g,1.05mmol)、步骤(38E)中合成的化合物38E(1.47g,2.21mmol)、N,N-二异丙基乙基胺(0.91mL,5.27mmol)的N,N-二甲基甲酰胺(9ml)溶液中添加1-[双(二甲氨基)亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶3-氧化物六氟磷酸盐(11.3g,29.6mmol),在室温下搅拌3小时。反应结束后,将反应液滴加至二乙醚(共计185ml)中。将上清液的溶剂去除后,通过硅胶柱色谱法(二氯甲烷:甲醇=100:0-15:85,v/v,含有1%三乙胺)将所获得的凝胶状的粗产物进行精制,而以固体的形式获得目标物39C(1.05g,产率63%)。
1H-NMR(CDCl3)δ:7.39-7.17(18H,m),6.83-6.80(8H,m),6.70-6.27(2H,m),5.56-5.54(2H,m),5.10(2H,d,J=10.9Hz),4.49-3.02(44H,m),2.01(6H,s),1.96(6H,s),1.90(6H,s),1.80-1.63(4H,m).
C81H98N6O27:[M+Na]+计算值1611,实测值1611
(39D)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[[2-[[3-[[2-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-2-基]氧基丙基氨基]-2-侧氧基-乙基]胺甲酰氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基-丙氧基]羰基氨基]乙酰基]氨基]丙氧基]-4-乙酰氧基-2-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-3-基]酯(化合物39D)的合成
[化176]
Figure BDA0002550837380001271
将步骤(39C)中合成的化合物39C(0.47g,0.30mmol)通过适量的乙酸乙酯/甲苯(1/1)共沸后,溶解于二氯甲烷(3ml)中。添加N,N-二异丙基乙基胺(210μl,1.18mmol)、2-氰基乙基二异丙基氯亚磷酰胺(79μl,0.36mmol),在室温下搅拌1小时。进而,添加2-氰基乙基二异丙基氯亚磷酰胺(20μl,0.09mmol),在室温下搅拌15分钟。反应结束后,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(乙酸乙酯:甲醇=100:0-85:15,v/v,含有1%三乙胺)将其进行精制,而获得非晶状的目标物39D(0.34g,产率64%)。
1H-NMR(CDCl3)δ:7.39-7.17(18H,m),6.87-6.70(8H,m),6.29-6.06(2H,m),5.55(2H,d,J=3.0Hz),5.11(2H,d,J=10.9Hz),4.47-3.02(47H,m),2.63(2H,t,J=6.3Hz),2.02(6H,s),1.96(6H,s),1.90(6H,s),1.80-1.64(4H,m),1.17(12H,d,J=6.7Hz).
(40A)2-[[3-苄氧基-2-[(2-苄氧基-2-侧氧基-乙基)胺甲酰氧基]丙氧基]羰基氨基]乙酸苄酯(化合物40A)的合成
[化177]
Figure BDA0002550837380001272
使用(+/-)-3-苄氧基-1,2-丙二醇(1.0g,5.5mmol)代替2-苄氧基-1,3-丙二醇,以与步骤(39A)同样的方式,获得目标物40A(2.8g,产率90%)。
1H-NMR(CDCl3)δ:7.39-7.30(15H,m),5.37-5.35(2H,m),5.17-5.12(5H,m),4.56-4.51(2H,m),4.33-4.30(2H,m),4.03-3.94(4H,m),3.61(2H,d,J=5.4Hz).
C30H32N2O9:[M+Na]+计算值587,实测值587
(40B)2-[[2-(羧甲基胺甲酰氧基)-3-羟基-丙氧基]羰基氨基]乙酸(化合物40B)的合成
[化178]
Figure BDA0002550837380001281
使用化合物40A(2.8g,5.0mmol)代替化合物39A,以与步骤(39B)同样的方式,获得含有目标物40B的粗产物(1.2g)。
1H-NMR(D2O)δ:4.32-4.19(3H,m),3.94-3.87(4H,m),3.81-3.71(2H,m).
(40C)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[[2-[[2-[[2-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-2-基]氧基丙基氨基]-2-侧氧基-乙基]胺甲酰氧基]-3-羟基-丙氧基]羰基氨基]乙酰基]氨基]丙氧基]-4-乙酰氧基-2-[[双(4-甲氧基苯基)-苯基l-甲氧基]甲基]四氢吡喃-3-基]酯(化合物40C)的合成
[化179]
Figure BDA0002550837380001282
使用化合物40B(0.31g,1.05mmol)代替化合物39B,以与步骤(39C)同样的方式,获得目标物40C(0.74g,产率44%)。
1H-NMR(CDCl3)δ:7.40-7.18(18H,m),6.81(8H,dd,J=9.1,3.0Hz),6.70-6.50(1H,m),6.16-6.02(1H,m),5.56-5.54(2H,br),5.11-5.00(2H,m),4.53-2.99(44H,m),2.01(6H,s),1.95(6H,s),1.88(6H,s),1.77-1.68(4H,m).
C81H98N6O27:[M+Na]+计算值1611,实测值1611
(40D)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[[2-[[2-[[2-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-2-基]氧基丙基氨基]-2-侧氧基-乙基]胺甲酰氧基]-3-[2-氰基乙氧基-(二异丙氨基)膦基]氧基-丙氧基]羰基氨基]乙酰基]氨基]丙氧基]-4-乙酰氧基-2-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-3-基]酯(化合物40D)的合成
[化180]
Figure BDA0002550837380001291
使用化合物40C(0.31g,1.05mmol)代替化合物39C,以与步骤(39D)同样的方式,获得目标物40D(0.60g,产率72%)。
1H-NMR(CDCl3)δ:7.38-7.18(18H,m),7.13-6.97(1H,m),6.83-6.81(8H,m),6.58-6.36(1H,m),5.56-5.52(2H,m),5.10-5.04(2H,m),4.46-2.97(47H,m),2.65-2.63(2H,m),2.02(6H,s),1.95(3H,s),1.94(3H,s),1.90(3H,s),1.89(3H,s),1.77-1.67(4H,m),1.20-1.16(12H,m).
(实施例131)
HO-X16-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X16,与实施例91同样地进行合成。X16的部分是使用参考例36中合成的化合物36G,进行1次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6261.97)
(实施例132)
HO-X15-X15-X15-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X15,与实施例91同样地进行合成。X15的部分是使用参考例35中合成的化合物35F,进行3次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6917.09)
(实施例133)
X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X18,与实施例91同样地进行合成。X18的部分是使用参考例39中合成的化合物39D,进行1次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6247.96)
(实施例134)
HO-X15-X15-X15-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号44)
使用所述序列即15e_005.1代替实施例132所使用的序列,与实施例132同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6919.09)
(实施例135)
HO-X15-X15-X15-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-Ce2s-Um1t-H(序列编号45)
使用所述序列即15e_006.1代替实施例132所使用的序列,与实施例132同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第90号至第104号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6884.07)
(实施例136)
HO-X15-X15-X15-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号42)
使用所述序列即16e_001代替实施例132所使用的序列,与实施例132同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第107号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:7276.10)
(实施例137)
HO-X15-X15-X15-Am1s-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号46)
使用所述序列即17e_001代替实施例132所使用的序列,与实施例132同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第108号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:7636.19)
(实施例138)
X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号44)
使用所述序列即15e_005.1代替实施例133所使用的序列,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6250.00)
(实施例139)
X18-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(序列编号45)
使用所述序列即15e_006.1代替实施例133所使用的序列,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第90号至第104号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6214.96)
(实施例140)
X18-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号42)
使用所述序列即16e_001代替实施例133所使用的序列,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第107号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6607.02)
(实施例141)
X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号47)
使用所述序列即16e_002代替实施例133所使用的序列,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6609.03)
(实施例142)
X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(序列编号48)
使用所述序列即16e_003代替实施例133所使用的序列,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第90号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6586.00)
(实施例143)
X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
使用所述序列即15e_001.5代替实施例133所使用的序列,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6233.97)
(实施例144)
X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号44)
使用所述序列即15e_005.5代替实施例133所使用的序列,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6235.97)
(实施例145)
X18-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(序列编号45)
使用所述序列即15e_006.5代替实施例133所使用的序列,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第90号至第104号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6200.94)
(实施例146)
X18-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号42)
使用所述序列即16e_001.5代替实施例133所使用的序列,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第107号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6593.02)
(实施例147)
X18-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号47)
使用所述序列即16e_002.5代替实施例133所使用的序列,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6595.01)
(实施例148)
X18-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2s-Um1t-H(序列编号48)
使用所述序列即16e_003.5代替实施例133所使用的序列,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第90号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6571.98)
(实施例149)
HO-X16-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
使用所述序列即15e_001.5代替实施例131所使用的序列,与实施例131同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6247.99)
(实施例150)
X19-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X19,与实施例91同样地进行合成。X19的部分是使用参考例40中合成的化合物40D,进行1次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6247.99)
(实施例151)
X17-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X的部分置换为X17,与实施例91同样地进行合成。X17的部分是使用参考例37中合成的化合物37H,进行1次缩合。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6204.97)
(参考例41)
(41A)3-[[2-苄氧基-3-[(3-苄氧基-3-侧氧基-丙基)胺甲酰氧基]丙氧基]羰基氨基]丙酸苄酯(化合物41A)的合成
[化181]
Figure BDA0002550837380001351
使用3-氨基丙酸苄酯TFA盐(2.4g,8.17mmol)代替步骤(39A)所使用的甘氨酸苄酯TFA盐,以与步骤(39A)同样的方式,获得目标物41A(1.62g,产率80%)。
1H-NMR(CDCl3)δ:7.39-7.27(15H,m),5.21(2H,br s),5.14(4H,s),4.63(2H,s),4.24-4.10(4H,m),3.79-3.74(1H,m),3.48-3.44(4H,m),2.59(4H,t,J=6.0Hz).
C32H36N2O9:[M+H]+计算值593,实测值593,[M+Na]+计算值615,实测值615
(41B)3-[[3-(2-羧基乙基胺甲酰氧基)-2-羟基-丙氧基]羰基氨基]丙酸(化合物41B)的合成
[化182]
Figure BDA0002550837380001361
使用化合物41A(1.62g,2.73mmol)代替步骤(39B)所使用的化合物39A,以与步骤(39B)同样的方式,获得目标物41B(0.89g,定量)。
1H-NMR(D2O)δ:4.22-4.04(5H,m),3.46-3.32(4H,m),2.57(4H,t,J=6.7Hz).
(41C)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[3-[[3-[[3-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-2-基]氧基丙基氨基]-3-侧氧基-丙基]胺甲酰氧基]-2-羟基-丙氧基]羰基氨基]丙酰基氨基]丙氧基]-4-乙酰氧基-2-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-3-基]酯(化合物41C)的合成
[化183]
Figure BDA0002550837380001362
使用化合物41B(300mg,0.93mmol)代替步骤(39C)所使用的化合物39B,以与步骤(39C)同样的方式,获得目标物41C(950mg,产率63%)。
1H-NMR(CDCl3)δ:7.32-7.24(18H,m),6.82-6.80(8H,m),6.64-6.61(1H,br),6.27-6.24(1H,br),5.91-5.88(1H,br),5.56(2H,d,J=3.0Hz),5.10(2H,d,J=11.5Hz),4.46-3.05(43H,m),2.47-2.37(4H,m),2.02(6H,s),1.98(6H,s),1.90(6H,s),1.78-1.67(4H,m).
C83H102N6O27:[M+Na]+计算值1638,实测值1638
(41D)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[3-[[3-[[3-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-2-基]氧基丙基氨基]-3-侧氧基-丙基]胺甲酰氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基l]氧基-丙氧基]羰基氨基]丙酰基氨基]丙氧基]-4-乙酰氧基-2-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-3-基]酯(化合物41D)的合成
[化184]
Figure BDA0002550837380001371
使用化合物41C(945mg,0.58mmol)代替步骤(39D)所使用的化合物39C,以与步骤(39D)同样的方式,获得目标物41D(638mg,产率60%)。
1H-NMR(CDCl3)δ:7.39-7.18(18H,m),6.85-6.78(8H,m),6.73-6.64(1H,m),6.40-6.23(1H,m),5.83-5.72(1H,m),5.56(2H,d,J=3.0Hz),5.13-5.04(2H,m),4.45-4.35(2H,m),4.22-3.30(40H,m),3.22-3.03(4H,m),2.64(2H,t,J=6.0Hz),2.54-2.32(4H,m),2.02(6H,s),2.00-1.95(6H,m),1.90(6H,s),1.83-1.59(4H,m),1.20-1.10(12H,m).
(参考例42)
(42A)4-[[2-苄氧基-3-[(4-苄氧基-4-侧氧基-丁基)胺甲酰氧基]丙氧基]羰基氨基]丁酸苄酯(化合物42A)的合成
[化185]
Figure BDA0002550837380001372
使用4-氨基丁酸苄酯TFA盐(1.30g,4.21mmol)代替步骤(39A)所使用的甘氨酸苄酯TFA盐,以与步骤(39A)同样的方式,获得目标物42A(0.85g,产率78%)。
1H-NMR(CDCl3)δ:7.38-7.27(15H,m),5.11(4H,s),4.80(2H,br s),4.63(2H,s),4.19-4.15(4H,m),3.77-3.75(1H,m),3.23-3.18(4H,m),2.40(4H,t,J=7.3Hz),1.88-1.81(4H,m).
C34H40N2O9:[M+H]+计算值621,实测值622,[M+Na]+计算值643,实测值644
(42B)4-[[3-(3-羧基丙基胺甲酰氧基)-2-羟基-丙氧基]羰基氨基]丁酸(化合物42B)的合成
[化186]
Figure BDA0002550837380001381
使用化合物42A(0.85g,1.4mmol)代替步骤(39B)所使用的化合物39A,以与步骤(39B)同样的方式,获得目标物42B(0.49g,定量)。
1H-NMR(D2O)δ:4.19-4.05(5H,m),3.19-3.12(4H,m),2.36-2.27(4H,m),1.83-1.73(4H,m).
(42C)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[4-[[3-[[4-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-2-基]氧基丙基氨基]-4-侧氧基-丁基]胺甲酰氧基]-2-羟基-丙氧基]羰基氨基]丁酰基氨基]丙氧基]-4-乙酰氧基-2-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-3-基]酯(化合物42C)的合成
[化187]
Figure BDA0002550837380001382
使用化合物42B(300mg,0.86mmol)代替步骤(39C)所使用的化合物39B,以与步骤(39C)同样的方式,获得目标物42C(1.16g,产率82%)。
1H-NMR(CDCl3)δ:7.31-7.24(18H,m),6.82-6.80(8H,m),6.68-6.65(3H,m),5.91-5.84(1H,m),5.56(2H,d,J=3.0Hz),5.10(2H,d,J=10.9Hz),4.45(2H,d,J=8.5Hz),4.23-3.12(40H,m),2.31-2.22(4H,m),2.01(6H,s),1.98(6H,s),1.90(6H,s),1.81-1.68(8H,m).
C85H106N6O27:[M+Na]+计算值1666,实测值1667
(42D)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[3-[[3-[[3-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-2-基]氧基丙基氨基]-4-侧氧基-丁基]胺甲酰氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基-丙氧基]羰基氨基]丁酰基氨基]丙氧基]-4-乙酰氧基-2-[[双(4-甲氧基苯基)-苯基-甲氧基]甲基]四氢吡喃-3-基]酯(化合物42D)的合成
[化188]
Figure BDA0002550837380001391
使用化合物42C(1.16g,0.71mmol)代替步骤(39D)所使用的化合物39C,以与步骤(39D)同样的方式,获得目标物42D(795mg,产率61%)。
1H-NMR(CDCl3)δ:7.40-7.17(18H,m),6.85-6.77(8H,m),6.72-5.65(5H,m),5.56(2H,d,J=3.0Hz),5.11-5.03(2H,m),4.46-4.35(2H,m),4.25-3.02(42H,m),2.65(2H,t,J=6.0Hz),2.39-2.16(4H,m),2.02(6H,s),1.99-1.94(6H,m),1.90(6H,s),1.87-1.59(8H,m),1.18(12H,d,J=6.7Hz).
(参考例43)
(43A)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-3,4-二乙酰氧基-6-(5-氨基戊氧基)四氢吡喃-2-基]甲酯盐酸盐(化合物43A)的合成
[化189]
Figure BDA0002550837380001392
将步骤(21A)中合成的化合物21A(3.87g,6.83mmol)溶解于四氢吡喃(32ml)/1N盐酸(8ml)中。添加10%钯/碳(湿基)(2g),于氢气环境下在室温下剧烈搅拌。反应结束后过滤,将所获得的通过液进行减压蒸馏去除而获得目标物43A(3.1g,产率97%)的粗产物。不再进一步进行精制,用于下一反应。
C19H32N2O9:[M+H]+计算值433,实测值433.
(43B)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[5-[[3-[5-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基戊基胺甲酰氧基]-2-苄氧基-丙氧基]胺甲酰基氨基]戊氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物43B)的合成
[化190]
Figure BDA0002550837380001401
将2-苄氧基-1,3-丙二醇(600mg,3.29mmol)、氯甲酸4-硝基苯酯(1.39g,6.91mmol)溶解于四氢呋喃(22ml)中,添加吡啶(1.1ml,13.2mmol),在室温下搅拌15分钟。将所析出的固体过滤后,添加四氢呋喃(16ml)。继而,添加步骤(43A)中合成的化合物(43A)(3.09g,6.59mmol)的四氢呋喃(15ml)/二氯甲烷(5ml)溶液与N,N-二异丙基乙基胺(3.4mL,19.8mmol),于40℃下搅拌2小时。反应结束后,将溶剂减压蒸馏去除。添加二氯甲烷,利用0.5N盐酸、饱和食盐水、0.2N氢氧化钠水溶液、饱和食盐水洗净有机层后,利用无水硫酸钠进行干燥、过滤,将溶剂减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(二氯甲烷:甲醇=100:0-90:10,v/v)将其进行精制,而获得主要含有目标物43B的混合物(2.1g)。
C50H74N4O23:[M+H]+计算值1099,实测值1099.[M+Na]+计算值1121,实测值1121.
(43C)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[5-[[3-[5-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基戊基胺甲酰氧基]-2-羟基-丙氧基]羰基氨基]戊氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物43C)的合成
[化191]
Figure BDA0002550837380001402
将步骤(43B)中获得的含有43B的混合物(2.1g)溶解于四氢吡喃(20ml)/纯水(1ml)中。添加1N盐酸(0.38ml)、10%钯/碳(湿基)(1g),于氢气环境下在室温下剧烈搅拌。反应结束后过滤,将所获得的通过液进行减压蒸馏去除,而获得粗产物。通过硅胶柱色谱法(乙酸乙酯:甲醇=100:0-90:15,v/v)将其进行精制,而以固体的形式获得目标物43C(1.38g,产率72%)。
1H-NMR(CDCl3)δ:6.10-5.96(1H,m),5.38-4.94(6H,m),4.70-4.64(2H,m),4.23-3.44(19H,m),3.20-3.15(4H,m),2.15(6H,s),2.05(6H,s),2.01(6H,s),1.97(6H,s),1.67-1.38(12H,m).
C43H68N4O23:[M+H]+计算值1009,实测值1009.[M+Na]+计算值1031,实测值1031.
(43D)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[5-[[3-[5-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基戊基胺甲酰氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基-丙氧基]胺甲酰基氨基]戊氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物43D)的合成
[化192]
Figure BDA0002550837380001411
使用化合物43C(1.38g,1.37mmol)代替步骤(39D)所使用的化合物39C,以与步骤(39D)同样的方式,获得目标物43D(850mg,产率51%)。
1H-NMR(CDCl3)δ:5.95-5.89(1H,m),5.38-5.26(4H,m),5.20-5.16(1H,m),5.00-4.95(1H,m),4.71-4.68(2H,m),4.36-3.44(22H,m),3.15(4H,q,J=6.4Hz),2.67(2H,t,J=6.3Hz),2.15(6H,s),2.05(6H,s),2.01(6H,s),1.96(6H,s),1.67-1.33(12H,m),1.18(12H,d,J=6.7Hz).
(参考例44)
(44A)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[3-[[3-[[3-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基丙基氨基]-3-侧氧基-丙基]胺甲酰氧基]-2-羟基-丙氧基]羰基氨基]丙酰基氨基]丙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物44A)的合成
[化193]
Figure BDA0002550837380001421
在步骤(41B)中合成的化合物41B(200mg,0.62mmol)的N,N-二甲基甲酰胺(2ml)溶液中添加O-(N-丁二酰亚胺基)-N,N,N',N'-四甲基脲四氟硼酸盐(411mg,1.37mmol)、N,N-二异丙基乙基胺(0.32ml,1.86mmol),在室温下搅拌20分钟。将该反应液添加到步骤(37B)中合成的化合物37B(657mg,1.49mmol)的N,N-二甲基甲酰胺(2ml)溶液中后,添加N,N-二异丙基乙基胺(0.32ml,1.86mmol),在室温下搅拌60分钟。反应结束后,将反应液滴加至二乙醚(共计80ml)中。将上清液的溶剂去除后,通过硅胶柱色谱法(二氯甲烷:甲醇=100:0-75:25,v/v)将所获得的凝胶状的粗产物进行精制,而获得非晶状的目标物44A(408mg,产率60%)。
1H-NMR(CDCl3)δ:6.76(2H,br),6.69-6.63(2H,m),5.96(1H,br),5.36(2H,d,J=3.0Hz),5.13-5.08(2H,m),4.53(2H,d,J=8.5Hz),4.25-3.07(27H,m),2.51-2.44(4H,m),2.17(6H,s),2.06(6H,s),2.02(6H,s),2.00(6H,s),1.86-1.73(4H,m).
C45H70N6O25:[M+H]+计算值1095,实测值1096.[M+Na]+计算值1117,实测值1117.
(44B)乙酸[(2R,3R,4R,5R,6R)-5-乙酰胺-6-[3-[3-[[3-[[3-[3-[(2R,3R,4R,5R,6R)-3-乙酰胺-4,5-二乙酰氧基-6-(乙酰氧基甲基)四氢吡喃-2-基]氧基丙基氨基]-3-侧氧基-丙基]胺甲酰氧基]-2-[2-氰基乙氧基-(二异丙氨基)膦基]氧基-丙氧基]羰基氨基]丙酰基氨基]丙氧基]-3,4-二乙酰氧基-四氢吡喃-2-基]甲酯(化合物44B)的合成
[化194]
Figure BDA0002550837380001422
使用化合物44A(1.53g,1.40mmol)代替步骤(39D)所使用的化合物39C,以与步骤(39D)同样的方式,获得目标物44B(510mg,产率28%)。
1H-NMR(CDCl3)δ:6.60-6.44(4H,m),5.76-5.68(1H,m),5.36(2H,d,J=3.0Hz),5.09-5.05(2H,m),4.50-4.45(2H,m),4.26-3.37(28H,m),3.17(2H,br),2.67(2H,t,J=6.3Hz),2.52-2.42(4H,m),2.17(6H,s),2.05(6H,s),2.02(6H,s),1.99(6H,s),1.81-1.70(4H,m),1.18(12H,d,J=6.7Hz).
(实施例152)
X20-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X18的部分置换为X20,与实施例143同样地进行合成。所使用的序列为所述序列15e_001.5。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6261.98)
(实施例153)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号44)
将X18的部分置换为X20,与实施例144同样地进行合成。所使用的序列为所述序列15e_005.5。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6264.00)
(实施例154)
X20-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号42)
将X18的部分置换为X20,与实施例146同样地进行合成。所使用的序列为所述序列16e_001.5。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第107号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6621.04)
(实施例155)
X20-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号47)
将X18的部分置换为X20,与实施例147同样地进行合成。所使用的序列为所述序列16e_002.5。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6623.05)
(实施例156)
X21-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X18的部分置换为X21,与实施例143同样地进行合成。所使用的序列为所述序列15e_001.5。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6290.02)
(实施例157)
X22-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号40)
将X18的部分置换为X22,与实施例143同样地进行合成。所使用的序列为所述序列15e_001.5。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6175.96)
(实施例158)
X22-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号44)
将X18的部分置换为X22,与实施例144同样地进行合成。所使用的序列为所述序列15e_005.5。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6177.98)
(实施例159)
X22-Am1s-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1t-H(序列编号42)
将X18的部分置换为X22,与实施例146同样地进行合成。所使用的序列为所述序列16e_001.5。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第107号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6535.03)
(实施例160)
X22-Am1s-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号47)
将X18的部分置换为X22,与实施例147同样地进行合成。所使用的序列为所述序列16e_002.5。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6537.05)
(试验例1)使用培养细胞的利用实施例化合物的异常剪接的修复评价
293A细胞(人胚胎肾细胞)的培养
以如下方式进行293A细胞(R705-07invitrogen)的培养。
将293A细胞于维持培养基(DMEM(Dulbecco's Modified Eagle Medium,达尔伯克改良伊格尔培养基)、10%FBS(Fetal Bovine Serum,胎牛血清))中维持培养。实验中以2×105cells/well的密度在6孔板中接种细胞,以1×105cells/well的密度在12孔板中接种细胞,第二天,以下文所述的方式同时导入实施例的化合物、及质粒载体而用于评价。
人G6PC全长质粒载体的制作
以如下方式制作人G6PC全长质粒载体(pcDNA hG6PC,pcDNA hG6PC(c.648G>T)+Int4)。
以人多组织(Human Multiple Tissue)cDNA板作为模板,使用下述G6PC cDNA扩增引物(Amplified primer)将G6PC cDNA扩增后,进而通过G6PC cDNA IF引物进行扩增。通过InFusion系统将经扩增的片段插入至pcDNA3.1的BamHI位点(pcDNA hG6PC)。
G6PC cDNA扩增引物:
正向引物5'-ATAGCAGAGCAATCACCACCAAGCC-3'(序列编号49)
反向引物5'-ATTCCACGACGGCAGAATGGATGGC-3'(序列编号50)
G6PC IF引物:
正向引物5'-TACCGAGCTCGGATCCACCACCAAGCCTGGAATAACTGC-3'(序列编号51)
反向引物5'-CTGGACTAGTGGATCCTGGCATGGTTGTTGACTTTAAAC-3'(序列编号52)
以人基因组DNA作为模板,使用下述G6PC Int4扩增引物将G6PC内含子4与包含一部分外显子5的区域扩增,进而通过G6PC Int4IF引物将G6PC内含子4进行扩增。另外,使用下述hG6PC载体IF引物将STEP1-1制作的pcDNA hG6PC进行扩增。再者,对InFusion引物导入外显子5内的c.648G>T变异。通过InFusion系统将两片段链接,将G6PC内含子4序列插入至pcDNA hG6PC内(pcDNA hG6PC(c.648G>T)+Int4)。
G6PC Int4扩增引物:
正向引物5'-TCTGGGCTGTGCAGCTGAATGTCTG-3'(序列编号53)
反向引物5'-GTAGGGGATGACACTGACGGATGCC-3'(序列编号54)
G6PC Int4IF引物:
正向引物5'-CTGGAGTCCTGTCAGGTATGGGC-3'(序列编号55)
反向引物5'-AGCTGAAAAGGAAGAAGGTAATGAG-3'(序列编号56)
hG6PC载体IF引物:
正向引物5'-TCTTCCTTTTCAGCTTCGCCATCGG-3'(序列编号57)
反向引物5'-CTGACAGGACTCCAGCAACAAC-3'(序列编号58)
实施例的化合物、及质粒载体的共转染
以如下方式将实施例的化合物、及质粒载体进行共转染。
制作下述A液与B液后加以混合。
当通过6孔板实施时,对于每孔,准备250μL的Opti-MEM培养基(gibco)、0.50μL质粒载体(1mg/mL)、4.0μL(最终:20nM)实施例中制造的化合物(12.5μM)作为A液,准备250μL的Opti-MEM培养基(gibco)、6.0μL Lipofectamine 2000(Invitrogen)作为B液,并将A液与B液加以混合。当通过12孔板实施时,对于每孔,准备125μL的Opti-MEM培养基(gibco)、0.25μL质粒载体(1mg/mL)、2.0μL(最终:20nM)实施例中制造的化合物(12.5μM)作为A液,准备125μL的Opti-MEM培养基(gibco)、3.0μL Lipofectamine 2000(Invitrogen)作为B液,并将A液与B液加以混合。
将所述混合液在室温下培养20分钟后,添加到继代第二天的细胞中(共转染)。添加6小时后,更换为新鲜的维持培养基,自所述混合液添加起于CO2培养箱中培养24小时。
RNA萃取(体外)
以如下方式进行RNA的萃取。
通过冷PBS(Phosphate Buffered Saline,磷酸盐缓冲盐水)将共转染后培养24小时的细胞洗净1次。将RNeasy迷你套组或RNeasy 96套组(Qiagen)的细胞溶解液以每孔300μL的方式逐孔添加,在室温下培养5分钟后回收。对于回收液,依照包含DNase处理的套组的操作说明进行RNA精制。DNase处理是使用RNase-Free DNase set(Qiagen 89254)。经精制、溶出的RNA是进行下文所述的反转录反应。
反转录反应
以如下方式进行反转录反应。
将萃取RNA调整为25~100mg/mL后,使用高容量RNA-to-cDNA套组(High CapacityRNA-to-cDNA kit)(Applied biosystems),以每份样品成为10μL缓冲液混合物(Buffermix)、1μL酶混合物(Enzyme mix)、9μL纯化水、+萃取RNA的方式混合,进行反转录反应(37℃下60min、95℃下5min、4℃下保持)。
相对于反转录反应产物20μL,通过纯化水80μL稀释成5倍,于-30℃下保存。
qRT-PCR(SYBR Green)
以下述方式设计qRT PCR引物(SYBR Green)。
修复hG6PC引物(SYBR):
正向引物5'-TTGTGGTTGGGATTCTGGGC-3'(序列编号59)
反向引物5'-ATGCTGTGGATGTGGCTGAA-3'(序列编号60)
hActin引物(SYBR):
正向引物5'-TGGCACCCAGCACAATGAA-3'(序列编号61)
反向引物5'-CTAAGTCATAGTCCGCCTAGAAGCA-3'(序列编号62)
另外,关于PCR反应液,每孔悬浮5μL的2×FAST SYBR Green Master Mix(AppliedBiosystems)、2μL纯化水、1μL的引物混合物(Primer mix)(10μM)、2μL的cDNA(经5倍稀释),通过viia7(Applied Biosystems)进行PCR反应(程序:SYBR Green Regents,FAST,包括熔解曲线)。
qRT-PCR(Taqman分析)
以下述方式设计修复hG6PC引物组、总hG6PC引物组,调整20×引物探针混合物(primer probe mix)(引物浓度:1000nM,探针浓度:250nM)。hActin引物组、mActin引物组直接使用原液。
修复hG6PC引物组(Taqman):
正向引物5'-GCTGCTCATTTTCCTCATCAAGTT-3'(序列编号63)
反向引物5'-TGGATGTGGCTGAAAGTTTCTGTA-3'(序列编号64)
探针5'-TCCTGTCAGGCATTGC-3'FAM(序列编号65)
hActin引物组(Taqman):ABI Hs01060665_g1FAM
mActin引物组(Taqman):ABI Mm02619580_g1FAM
18s引物组(Taqman):ABI Hs99999901_s1FAM
另外,每孔悬浮5μL的2×Taqman Fast Advanced Master Mix(AppliedBiosystems)、2.5μL纯化水、0.5μL的20×引物探针混合物(10μM)、2μL的cDNA(经5倍稀释),调整PCR反应液(相对于每管),通过viia7或Quantstadio7(Applied Biosystems公司)进行PCR反应(程序:Taqman regents,FAST)。
利用LC-MS/MS的正常人G6PC特异性肽的定量
以如下方式进行蛋白质的萃取及正常人G6PC特异性肽的LC-MS/MS定量。
蛋白质溶解物的萃取、调整
通过冷PBS将共转染后培养24小时的细胞洗净1次。将RIPA(Radioimmunoprecipitation Assay,放射免疫沉淀分析)缓冲液(Nacalai Tesque)以每孔100μL的方式逐孔添加,在冰上培养后回收。对于回收液,在冰上培养20分钟后,将10000g于4℃下离心10分钟并将上清液回收。对上清液测定总蛋白质量,以成为0.4mg/mL的方式进行调整而制成蛋白质溶解物。
试剂的调整
DS264_100u:将稳定同位素标记肽GLGVD(L*)LWT(L*)EK(Scrum,L*:L-亮氨酸-13C6,15N)通过50%cn(纯化水/乙腈)调整为100μM。
DS266_100u:将稳定同位素标记肽WCEQPEW(V*)HIDTTPFAS(L*)LK(L*:L-亮氨酸-13C6,15N,V*:L-缬氨酸-13C5,15N)通过50%cn(纯化水/乙腈)调整为100μM。
DS268_100u:将稳定同位素标记肽NLGTLFG(L*)GLA(L*)NSSMYR(Scrum,L*:L-亮氨酸-13C6,15N)通过50%cn(纯化水/乙腈)调整为100μM。
IS溶液-1:悬浮50mL乙腈、0.5mL三氟乙酸(Nacalai)、20μL的DS264_100u、20μL的DS266_100u、20μL的DS268_100u。
IS溶液-2:悬浮50mL乙腈、50mL纯化水、0.5mL三氟乙酸(Nacalai)、20μL的DS264_100u、20μL的DS266_100u、20μL的DS268_100u。
0.1M Tris-HCl:将5mL的1M Tris-HCl缓冲溶液(pH值8.0)添加悬浮于45mL的纯化水中。
脲/EDTA(ethylenediamine tetraacetic acid,四乙酸乙二胺)溶液:将2.4g脲(Nacalai)、100μL的0.5M EDTA(sigma-aldorich)添加、悬浮于4.9mL的0.1M Tris-HCl中。
DTT溶液(20mg/mL):将20mg的DTT(dithiothreitol,二硫苏糖醇)(Wako)添加悬浮于1mL的纯化水中。
IAA溶液(50mg/mL):将50mg的IAA(iodoacetamide,碘乙酰胺)(sigma-aldorich)添加悬浮于1mL纯化水中。
胰蛋白酶/LysC Mix溶液(200μg/mL):将20μg胰蛋白酶/Lys-C Mix(1小瓶)(Promega)添加悬浮于100μL的再悬浮缓冲液(Promega)中。
消化处理
依照下述实施酶消化反应,调整LC-MS注射样品(相对于每份样品)。
悬浮20μL脲/EDTA溶液、10μL蛋白质溶解物、10μL的DTT溶液,在室温下静置60分钟后,添加悬浮2.5μL的IAA溶液并在室温下静置60分钟。其后,对于悬浮液,添加悬浮112.5μL的0.1M Tris-HCl与2.5μL胰蛋白酶/LysC Mix溶液,在37℃下培养一晚后,添加150μL的IS溶液-1、300μL的IS溶液-2制成LC-MS注射样品。
LC-MS分析、试样中浓度测定
使用Ultimate 3000(Thermo Fisher),Q Exactive plus(Thermo Fisher)实施LC-MS注射样品的LC-MS分析。使用内部标准法由质量范围(Mass range)820.0632-820.0782(m/z)算出下述肽(DS265)的试样中浓度。
DS265:WCEQPEWVHIDTTPFASLLK(序列编号66)
G6PC酶活性的测定
以下述方式实施所萃取的各检体的微粒体组分的G6PC的活性测定。
(1)试剂的制备
缓冲液A:100mM BIS-TRIS缓冲液,pH值6.5,37℃
于180mL纯化水中添加4.2g的BIS-TRIS(Sigma-Aldrich)。使用盐酸、纯化水调整为pH值6.5、37℃、200mL。
缓冲液B:HEPES 20mM,EDTA 1mM,蔗糖250mM(4℃保存)
在180mL纯化水中添加4.0mL的1.0M HEPES(Gibco)、0.4mL的0.5M EDTA(USB)、17g蔗糖(Wako)。将纯化水调整为200mL后,进行0.22μm过滤器的透过处理。
底物:200mM葡萄糖6-磷酸(4℃保存)
在88.65mL纯化水中添加5mg的D-葡萄糖6-磷酸钠(Sigma-Aldrich)。
TCA:20%三氯乙酸(室温、遮光保存)
在40mL纯化水中添加10mL三氯乙酸溶液(Sigma-Aldrich)。
标准液:磷标准液(Phosphorus Standard Solution),20μg/ml(Sigma-Aldrich)(4℃保存)
5M硫酸溶液(室温、遮光保存)
在67mL纯化水中添加25mL硫酸(Aldrich 258105)。
TSCR:Taussky-Shorr显色剂(用时制备)
在5M硫酸溶液20mL中添加2.4mg四水合钼酸铵(Ammonium MolybdateTetrahydrate)(Sigma-Aldrich),将溶解液添加于140mL的纯化水中。进而添加10g七水合硫酸亚铁(Ferrous Sulfate Heptahydrate)(Sigma-Aldrich),搅拌至溶解后,通过纯化水定容至200mL。
(2)微粒体组分的精制
依照下述程序对微粒体组分进行精制、调整。
通过冰冷PBS洗净实施例化合物、及已进行质粒载体的共转染的293A细胞(在6孔板中)后,将冰冷却缓冲液B添加到各孔中,并利用细胞刮勺进行回收。使用Dounce均质器在冰上(On ice)将所回收的细胞充分均质化后,将1000g在4℃下离心10min,将上清液回收。将该上清液13000g在4℃下离心60min,去除上清液,将颗粒于缓冲液B中悬浮。以悬浮液的蛋白浓度成为一定(0.3~1.0mg/mL)的方式通过缓冲液B进行调整。
(3)G6PC酶活性测定
通过下述方法测定蛋白浓度经调整的微粒体组分(样品)的G6PC酶活性。试剂的名称依照(1)。
对于各样品制作测试组与空白组。在测试组中悬浮150μL缓冲液A、50uL底物,在37℃下培养5分钟。在其中添加、悬浮5μL的样品,在37℃下准确培养5分钟后,添加45μL的TCA。充分悬浮后,在25℃下培养5分钟。在空白组中悬浮150μL缓冲液A、50uL底物,在37℃下培养5分钟。在其中添加悬浮5μL的样品、45μL的TCA并在25℃下培养者。将4000g的各样品的测试组及空白组在室温下离心10分钟,将该上清液分注于其他管中。对于各上清液100μL,添加100μL的TSCR,在室温下培养5分钟后,通过读板仪(Spectra Max M4Molecular Devices)测定660nm的吸亮度。根据使用标准液的稀释体系算出的校准曲线、各样品的测试组与空白组的吸亮度、样品的蛋白浓度算出G6PC酶活性(U/mg:样品中的总蛋白质1mg在1分钟内分解的G6P量(μmol))。
使用人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)的利用实施例化合物 的G6PC mRNA的异常剪接的修复评价(1)
进行人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)与寡核苷酸(21e_001~012、及21m_001~012)的共转染,通过qRT-PCR(SYBR Green)评价是否修复G6PC(c.648G>T)引起的异常剪接。如图5A及5B所示,21e_002~012、及21m_002~012的化合物中观察到G6PC mRNA的异常剪接的正常化。另外,对利用LC-MS/MS的正常人G6PC特异性肽的产生进行研究,结果如图6A及6B所示,在21e_002~012、及21m_002~012的化合物中观察到正常人G6PC特异性肽的产生。进而,测定G6PC酶活性的结果为如图7A及7B所示,在21e_002~012、及21m_002~012的化合物中观察到G6PC酶活性。
使用人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)的利用实施例化合物 的G6PC mRNA的异常剪接的修复评价(2)
进行人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)与寡核苷酸(21e_001~006、及21e_013~022)的共转染,通过qRT-PCR(SYBR Green)评价是否修复G6PC(c.648G>T)引起的异常剪接。如图9所示,21e_002~006、及21e_015~022的化合物中观察到G6PCmRNA的异常剪接的正常化。另外,对利用LC-MS/MS的正常人G6PC特异性肽的产生进行研究,结果如图10所示,在21e_002~006、及21e_015~022的化合物中,观察到正常人G6PC特异性肽的产生。
使用人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)的利用实施例化合物 的G6PC mRNA的异常剪接的修复评价(3)
进行人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)与寡核苷酸(18e_001~017、及18m_001~017)的共转染,通过qRT-PCR(SYBR Green)评价是否修复G6PC(c.648G>T)引起的异常剪接。如图13A及13B所示,18e_005~017、及18m_005~017的化合物中观察到G6PC mRNA的异常剪接的正常化。另外,对利用LC-MS/MS的正常人G6PC特异性肽的产生进行研究,结果如图14A及14B所示,在18e_005~017、及18m_005~017的化合物中,观察到正常人G6PC特异性肽的产生。
使用人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)的利用实施例化合物 的G6PC mRNA的异常剪接的修复评价(4)
进行人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)与寡核苷酸(18e_018~031)的共转染,通过qRT-PCR(SYBR Green)评价是否修复G6PC(c.648G>T)引起的异常剪接。如图16A所示,18e_022~026、及18e_031的化合物中观察到G6PC mRNA的异常剪接的正常化。另外,对利用LC-MS/MS的正常人G6PC特异性肽的产生进行研究,结果如图16B所示,在18e_022~026、及18e_031的化合物中,观察到正常人G6PC特异性肽的产生。
使用人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)的利用实施例化合物 的G6PC mRNA的异常剪接的修复评价(5)
进行人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)与寡核苷酸(21e_002、18e_005、21m_002、18e_005、18m_022、15e_001、15ed_001、18e_008、18e_025、18m_008、15e_002、15ed_002、及作为对照的国际公开第2004/048570的实施例93的化合物)的共转染,通过qRT-PCR(SYBR Green)评价是否修复G6PC(c.648G>T)引起的异常剪接。如图18所示,21e_002、18e_005、21m_002、18e_005、18m_022、15e_001、15ed_001、18e_008、18e_025、18m_008、15e_002、及15ed_002的化合物中观察到G6PC mRNA的异常剪接的正常化。
(试验例2)使用模型小鼠的利用实施例化合物的异常剪接的修复评价
小鼠的制造
载体的制作
依照下述程序,制作G6PC KI载体。
以小鼠基因组DNA为模板,使用下述mG6PC 5'臂扩增引物,将G6PC 5'臂区域扩增。进而利用mG6PC 5'臂IF引物扩增后,插入pBluescriptII(+/-)的XhoI位点(G6PC 5'臂载体)。
mG6PC 5'臂扩增引物:
正向引物5'-GGGAAACATGCATGAAGCCCTGGGC-3'(序列编号67)
反向引物5'-TCCCTTGGTACCTCAGGAAGCTGCC-3'(序列编号68)
mG6PC 5'臂IF引物:
正向引物5'-CGGGCCCCCCCTCGAAAACTAGGCCTGAAGAGATGGC-3'(序列编号69)
反向引物5'-TACCGTCGACCTCGAGGGTTGGCCTTGATCCCTCTGCTA-3'(序列编号70)
继而,以小鼠基因组DNA为模板,使用下述mG6PC 3'臂扩增引物,将G6PC 3'臂区域扩增。进而,利用mG6PC 3'臂IF引物扩增后,插入G6PC 5'臂载体的NotI位点(G6PC 5'+3'臂载体)。
mG6PC 3'臂扩增引物:
正向引物5'-GGTTGAGTTGATCTTCTACATCTTG-3'(序列编号71)
反向引物5'-GCAAGAGAGCCTTCAGGTAGATCCC-3'(序列编号72)
mG6PC 3'臂IF引物:
正向引物5'-AGTTCTAGAGCGGCCGCCCATGCAAAGGACTAGGAACAAC-3'(序列编号73)
反向引物5'-ACCGCGGTGGCGGCCAATGTTGCCTGTCTTCCTCAATC-3'(序列编号74)
以上文所述的pcDNA hG6PC(c.648G>T)+Int4作为模板,使用下述hG6PC+Int4IF引物将hG6PC(c.648G>T)+内含子4进行扩增。另外,以G6PC 5'+3'臂载体作为模板,使用下述臂载体IF引物进行扩增。使用InFusion系统将两片段链接而制作G6PC KI载体。
hG6PC+Int4IF引物:
正向引物5'-GGCCAACCCTGGAATAACTGCAAGGGCTCTG-3'(序列编号75)
反向引物5'-TTGCATGGTTGTTGACTTTAAACACCGAAGA-3'(序列编号76)
臂载体IF引物:
正向引物5'-TCAACAACCATGCAAAGGACTAGGAACAAC-3'(序列编号77)
反向引物5'-ATTCCAGGGTTGGCCTTGATCCCTCTGCTA-3'(序列编号78)
向pSPgRNA(addgene)的gRNA序列导入区域导入下述KI 5'gRNA、KI 3'gRNA序列,而制作pSPgRNA(KI 5')、pSPgRNA(KI 3')。
KI 5'gRNA:5'-GGGATCAAGGCCAACCGGCTGG-3'(序列编号79)
KI 3'gRNA:5'-TAAAGTCAACCGCCATGCAAAGG-3'(序列编号80)
显微注射
使用杀菌蒸馏水,以最终浓度成为G6PC KI载体10ng/μL、pSPgRNA(KI 5')5ng/μL、pSPgRNA(KI 3')5ng/μL、pSPCas9(addgene)5ng/μL的方式调整各种载体后,注射通过MILLEX-GV针筒过滤器(Millipore)的载体直至C57BL/6J小鼠受精卵的原核充分膨胀的程度为止(约2pL)。将该受精卵移植至受体C57BL/6J小鼠的输卵管,而获得F0小鼠。
基因型鉴定、F1系统化
通过以下的程序实施基因型鉴定(Genotyping)并进行F1系统化。
使用核酸自动提取装置(PI-200Kurabo)及专用套组自F0小鼠的尾组织提取基因组DNA。使用Amplitaq Gold Master mix(Thermo fisher)及使用下述KI筛选引物将提取DNA进行扩增(95℃下10min,将(95℃下30sec、60℃下30sec、72℃下30sec)循环35次,72℃下2min,4℃下保持)。
KI筛选引物:
正向引物5'-TACGTCCTCTTCCCCATCTG-3'(序列编号81)、
反向引物5'-CTGACAGGACTCCAGCAACA-3'(序列编号82)
对所述PCR产物实施凝胶电泳,以在433bp附近观察到频带的个体的基因组DNA作为模板,使用PrimeSTAR GXL(takara)及下述KI基因型鉴定引物进行扩增(98℃下2min,将(95℃下15sec、68℃下5min)循环38次,68℃下7min,15℃下保持)。
KI基因型鉴定引物(5'):
正向引物5'-TTCCTTCCAAAGCAGGGACTCTCTATGT-3'(序列编号83相同(1))
反向引物5'-CTTGCAGAAGGACAAGACGTAGAAGACC-3'(序列编号84相同(2))
KI基因型鉴定引物(3'):
正向引物5'-GAGTCTATATTGAGGGCAGGCTGGAGTC-3'(序列编号85)、
反向引物5'-TAGTCTGCCTGCTCACTCAACCTCTCCT-3'(序列编号86)
对所述PCR产物实施凝胶电泳。使用基因分析仪(Gentetic analyzer)(Lifetechnology)及下述KI定序引物对使用KI基因型鉴定引物(5')及KI基因型鉴定引物(3')均观察到扩增为所期待的序列长度(4705bp、4026bp)的个体的基因组DNA的KI基因型鉴定引物(5')的PCR产物进行直接定序。将可确认到所期待的序列的KI的个体设为KI阳性F0。
KI定序引物(5'):5'-GAGTCTATATTGAGGGCAGGCTGGAGTC-3'(序列编号87)
使KI阳性F0与C57BL/6J交配而获得F1。使用DNeasy 96血液及组织套组(NDeasy96 Blood&Tissue Kit)(Qiagen)自F1的耳廓组织提取基因组DNA,使用PrimeSTAR GXL(takara)及上文所述KI基因型鉴定引物(5')进行扩增(98℃下2min,将(95℃下15sec、68℃下5min)循环38次,68℃下7min,15℃下保持)。
对所述PCR产物实施凝胶电泳,将观察到扩增为所期待的序列长度(4705b)的个体设为KI阳性F1。使自KI阳性F1中筛选的1株进行繁殖,制成hG6PC(c.648G>T)+Int4 KI系统。
hG6PC(c.648G>T)+Int4系统的基因型鉴定
使用DNeasy 96血液及组织套组(Qiagen)自耳廓组织提取基因组DNA,使用KOD FX(TOYOBO)及下述KI基因型鉴定引物、mG6PC WT引物进行复合扩增(98℃下2min,将(95℃下15sec、68℃下5.5min)循环32次,68℃下5min,4℃下保持)。
KI基因型鉴定引物(5'):
正向引物5'-TTCCTTCCAAAGCAGGGACTCTCTATGT-3'(序列编号83相同(1))
反向引物5'-CTTGCAGAAGGACAAGACGTAGAAGACC-3'(序列编号84相同(2))
mG6PC WT引物:
正向引物5'-TAAATTTGACCAATGAGCACTGGAGGTC-3'(序列编号88)
反向引物5'-AAAATCATGTGTATGCGTGCCTTTCCTA-3'(序列编号89)'
对所述PCR产物实施凝胶电泳,以4705b附近的扩增作为KI等位基因,以2536bp附近的扩增作为mG6PC WT等位基因,判断新生小鼠的基因型鉴定(WT、Ht、Homo)。
小鼠的取材
以如下方式进行小鼠的取材。
在取材前一天傍晚设置用来避免食粪的地网,并且开始绝食。第二天,在麻醉导入下开腹,充分放血后,摘下肝脏、肾脏。各器官利用冰冷PBS洗净后,修整为合适的大小,保存到预先装入了均质化珠(NIKKATO)的管中。各器官通过液态氮瞬间冷却后在-80℃下保管。
RNA萃取(体内)
以如下方式进行RNA的萃取。
对于组织保存管,逐支添加600μL的RNeasy迷你套组或Qiacube系统(Qiagen)的细胞溶解液,通过tissue lyserII(Qiagen)以25kHz均质化2min。在冰浴冷却下培养10分钟后,以8000G在室温下离心10分钟并回收上清液。对于上清液,依照包含DNase处理的各套组的操作说明进行RNA精制。DNase处理使用RNase-Free DNase set(Qiagen)。经精制、溶出的RNA进行上文所述的反转录反应,依照上文所述的qRT-PCR(Taqman分析)进行修复G6PCmRNA的定量。
使用hG6PC(c.648G>T)+Int4 Ht KI小鼠的利用实施例化合物的异常剪接的修复 评价(1)
对于hG6PC(c.648G>T)+Int4 Ht KI小鼠,可将实施例116至127的化合物溶解到PBS中,以成为3mg/kg的方式实施尾静脉投予。投予7天后,在绝食一晚的条件下采集小鼠的肝脏组织,可通过qRT-PCR(Taqman)评价是否修复G6PC(c.648G>T)引起的异常剪接。
使用hG6PC(c.648G>T)+Int4 Ht KI小鼠的利用实施例化合物的异常剪接的修复 评价(2)
对于hG6PC(c.648G>T)+Int4 Ht KI小鼠,将实施例91至95的化合物溶解到大冢生食注中,以成为25mg/kg的方式实施皮下投予。投予7天后,在绝食一晚的条件下采集小鼠的肝脏组织,通过qRT-PCR(Taqman)评价是否修复G6PC(c.648G>T)引起的异常剪接,结果如图19所示,通过实施例91至95的化合物,在hG6PC(c.648G>T)+Int4 Ht KI小鼠的肝脏中可观察到mRNA的异常剪接的正常化。
使用hG6PC(c.648G>T)+Int4 Ht KI小鼠的利用实施例化合物的异常剪接的修复 评价(3)
对于hG6PC(c.648G>T)+Int4 Ht KI小鼠,将实施例91、92、及96至103的化合物溶解到大冢生食注中,以成为25mg/kg的方式实施皮下投予。投予7天后,在绝食一晚的条件下采集小鼠的肝脏组织,通过qRT-PCR(Taqman)评价是否修复G6PC(c.648G>T)引起的异常剪接,结果如图20所示,通过实施例91、92、及96至103的化合物,在hG6PC(c.648G>T)+Int4Ht KI小鼠的肝脏中可观察到mRNA的异常剪接的正常化。
使用hG6PC(c.648G>T)+Int4 Ht KI小鼠的利用实施例化合物的异常剪接的修复 评价(4)
对于hG6PC(c.648G>T)+Int4 Ht KI小鼠,将实施例83至91、及104至107的化合物溶解到大冢生食注中,以成为30mg/kg的方式实施皮下投予。投予7天后,在绝食一晚的条件下采集小鼠的肝脏组织,通过qRT-PCR(Taqman)评价是否修复G6PC(c.648G>T)引起的异常剪接,结果如图21所示,通过实施例83至91、及104至107的化合物,在hG6PC(c.648G>T)+Int4 Ht KI小鼠的肝脏中可观察到mRNA的异常剪接的正常化。
使用hG6PC(c.648G>T)+Int4 Ht KI小鼠的利用实施例化合物的异常剪接的修复 评价(5)
对于hG6PC(c.648G>T)+Int4 Ht KI小鼠,将实施例104、及108至115的化合物溶解到大冢生食注中,以成为30mg/kg的方式实施皮下投予。投予7天后,在绝食一晚的条件下采集小鼠的肝脏组织,通过qRT-PCR(Taqman)评价是否修复G6PC(c.648G>T)引起的异常剪接,结果如图22所示,通过实施例83至91、及104至107的化合物,在hG6PC(c.648G>T)+Int4Ht KI小鼠的肝脏中可观察到mRNA的异常剪接的正常化。
使用hG6PC(c.648G>T)+Int4 Ht KI小鼠的利用实施例化合物的异常剪接的修复 评价(6)
对于hG6PC(c.648G>T)+Int4 Ht KI小鼠,将实施例105、113、及131至137的化合物溶解到大冢生食注中,以成为30mg/kg的方式实施皮下投予。投予7天后,在绝食一晚的条件下采集小鼠的肝脏组织,通过qRT-PCR(Taqman)评价是否修复G6PC(c.648G>T)引起的异常剪接,结果如图23所示,通过实施例105、113、及131至137的化合物,在hG6PC(c.648G>T)+Int4 Ht KI小鼠的肝脏中可观察到mRNA的异常剪接的正常化。
(试验例3)异常剪接修复序列的片段解析
PCR反应与片段序列解析
以如下方式进行PCR反应与片段序列解析。
以下述方式设计hG6PC剪接验证引物。
hG6PC剪接验证引物:
正向引物5'-TTGTGGTTGGGATTCTGGGC-3'(序列编号90)
反向引物5'-TCCAGAGTCCACAGGAGGTC-3'(序列编号91)
以如下方式调整PCR反应液,进行PCR反应。
使23μL的PlatinumTM PCR SuperMix High Fidelity(thermo fisher)、2μL引物混合物(10μM)、1μL的cDNA(经5倍稀释)悬浮,进行PCR反应(95℃下5min,将(95℃下30sec、62℃下30sec、68℃下30sec)循环36次,68℃下4min,4℃下保持)。
PCR产物是使用E-Gel(注册商标)琼脂糖凝胶电泳系统,通过E-gel Ex 2%琼脂糖(Invitrogen)进行电泳并解析。各片段通过NucleoSpin(注册商标)Gel and PCR Clean-up(MACHEREY-NAGEL)自凝胶中萃取,添加G6PC定序引物后,使用BigDye v3.1进行定序反应。利用Applied Biosystems 3730xl DNA Analyzer(Life technologies)确认碱基序列(图24)。
G6PC定序引物5'-GCTGTGCAGCTGAATGTCTG-3'(序列编号92)
利用实施例1的化合物(21e_002)的培养细胞中的异常剪接修复序列的片段解析
使用由仅将在使用人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)的利用实施例化合物的G6PC mRNA的异常剪接的修复评价(1)中所制作的人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)转染而成的检体、将人G6PC全长质粒载体(pcDNA hG6PC(c.648G>T)+Int4)与寡核苷酸(21e_002)共转染而成的检体所制作的cDNA作为模板,进行PCR反应与片段序列解析。如图24所示,通过实施例1的化合物(21e_002)可观察到缺损91个碱基的异常剪接的正常化。
(试验例4)使用模型小鼠的利用实施例化合物的异常剪接的修复评价
与试验例2同样地,使用模型小鼠对实施例化合物进行评价。
使用hG6PC(c.648G>T)+Int4 Ht KI小鼠的利用实施例化合物的异常剪接的修复 评价(7)
对于hG6PC(c.648G>T)+Int4 Ht KI小鼠,将实施例133、及143至149的化合物溶解到大冢生食注中,以成为30mg/kg的方式实施皮下投予。投予7天后,在绝食一晚的条件下采集小鼠的肝脏组织,通过qRT-PCR(Taqman)评价是否修复G6PC(c.648G>T)引起的异常剪接,结果如图25所示,通过实施例133、及143至149的化合物,在hG6PC(c.648G>T)+Int4 HtKI小鼠的肝脏中可观察到mRNA的异常剪接的正常化。
使用hG6PC(c.648G>T)+Int4 Ht KI小鼠的利用实施例化合物的异常剪接的修复 评价(8)
对于hG6PC(c.648G>T)+Int4 Ht KI小鼠,将实施例149、及152至160的化合物溶解到大冢生食注中,以成为30mg/kg的方式实施皮下投予。投予7天后,在绝食一晚的条件下采集小鼠的肝脏组织,通过qRT-PCR(Taqman)评价是否修复G6PC(c.648G>T)引起的异常剪接,结果如图26所示,通过实施例149、及152至160的化合物,在hG6PC(c.648G>T)+Int4 HtKI小鼠的肝脏中可观察到mRNA的异常剪接的正常化。
(实施例161)
X20-Am1s-Am1s-Te2s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Am1s-Gm1t-H(序列编号93)
使用所述序列即15e_001.6代替实施例133所使用的序列,将X18的部分置换为X20,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6278.03)
(实施例162)
X20-Am1s-Te2s-Cm1s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Am1s-Gm1s-Ce2t-H(序列编号94)
使用所述序列即15e_005.6代替实施例133所使用的序列,将X18的部分置换为X20,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6280.03)
(实施例163)
X20-Am1s-Am1s-Te2s-Ce2s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Am1s-Gm1t-H(序列编号93)
使用所述序列即15e_001.7代替实施例133所使用的序列,将X18的部分置换为X20,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第92号至第106号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6304.04)
(实施例164)
X20-Am1s-Te2s-Ce2s-Ce2s-Gm1s-Am1s-Te2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Am1s-Gm1s-Ce2t-H(序列编号94)
使用所述序列即15e_005.7代替实施例133所使用的序列,将X18的部分置换为X20,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6306.03)
(实施例165)
X20-Am1s-Um1s-Cm1s-Cm1s-Gm1s-Am1s-Um1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Am1s-Gm1s-Cm1t-H(序列编号95)
使用所述序列即15e_005.8代替实施例133所使用的序列,将X18的部分置换为X20,与实施例133同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6149.93)
(实施例166)
X20-Ae2s-Um1p-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.01代替实施例153所使用的序列,与实施例153同样地进行合成。但在核酸自动合成仪所使用的试剂中,作为表述序列合成所需的部分的氧化剂,以成为OXDIZER 0.05M(Sigma-Aldrich制造,产品编号L560250-04)、或0.02M的方式,使用四氢呋喃(脱水,关东化学制造,产品编号40993-05)、吡啶(脱水,关东化学制造,产品编号11339-05)、蒸馏水78:20:2(v/v/v)溶液溶解碘(关东化学制造,产品编号20035-00)来适当使用。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.00)
(实施例167)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1p-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.02代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.00)
(实施例168)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1p-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.03代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6247.99)
(实施例169)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1p-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.04代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.00)
(实施例170)
X20-Ae2s-Um1p-Cm1s-Ce2s-Gm1s-Ae2s-Um1p-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.05代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.02)
(实施例171)
X20-Ae2s-Um1p-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1p-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.06代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.02)
(实施例172)
X20-Ae2s-Um1p-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1p-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.07代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.02)
(实施例173)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1p-Gm1p-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.08代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.02)
(实施例174)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1p-Gm1s-Gm1s-Ce2s-Gm1p-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.09代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.01)
(实施例175)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1p-Gm1s-Ce2s-Gm1p-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.10代替实施例166所使用的序列,与实施例166同样地进行合成。所使用的序列为所述序列15e_005.5.10。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.01)
(实施例176)
X20-Ae2s-Um1p-Cm1s-Ce2s-Gm1s-Ae2s-Um1p-Gm1p-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.11代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6216.00)
(实施例177)
X20-Ae2s-Um1p-Cm1s-Ce2s-Gm1s-Ae2s-Um1p-Gm1s-Gm1s-Ce2s-Gm1p-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.12代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6216.03)
(实施例178)
X20-Ae2s-Um1p-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1p-Gm1s-Ce2s-Gm1p-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.13代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6216.02)
(实施例179)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1p-Gm1p-Gm1s-Ce2s-Gm1p-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.14代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6216.03)
(实施例180)
X20-Ae2s-Um1p-Cm1s-Ce2s-Gm1s-Ae2s-Um1p-Gm1p-Gm1s-Ce2s-Gm1p-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.15代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6200.06)
(实施例181)
X20-Ae2p-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.16代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6247.99)
(实施例182)
X20-Ae2s-Um1s-Cm1p-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.17代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.01)
(实施例183)
X20-Ae2s-Um1s-Cm1s-Ce2p-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.18代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.00)
(实施例184)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1p-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.19代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.01)
(实施例185)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2p-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.20代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.00)
(实施例186)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1p-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.21代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.01)
(实施例187)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2p-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.22代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.00)
(实施例188)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1p-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.23代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.00)
(实施例189)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2p-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.24代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.00)
(实施例190)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1p-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.25代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6248.00)
(实施例191)
X20-Ae2s-Um1s-Cm1s-Ce2p-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2p-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.26代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.01)
(实施例192)
X20-Ae2s-Um1s-Cm1s-Ce2p-Gm1s-Ae2p-Um1s-Gm1s-Gm1s-Ce2p-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.27代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6216.03)
(实施例193)
X20-Ae2p-Um1s-Cm1s-Ce2s-Gm1s-Ae2p-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2p-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.28代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6216.03)
(实施例194)
X20-Ae2p-Um1s-Cm1s-Ce2p-Gm1s-Ae2p-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2p-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.29代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6200.06)
(实施例195)
X20-Ae2p-Um1s-Cm1s-Ce2s-Gm1s-Ae2p-Um1s-Gm1s-Gm1s-Ce2p-Gm1s-Am1s-Ae2p-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.30代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6200.06)
(实施例196)
X20-Ae2p-Um1s-Cm1s-Ce2p-Gm1s-Ae2p-Um1s-Gm1s-Gm1s-Ce2p-Gm1s-Am1s-Ae2p-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.31代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6184.11)
(实施例197)
X20-Ae2p-Um1p-Cm1p-Ce2p-Gm1p-Ae2p-Um1p-Gm1p-Gm1p-Ce2p-Gm1p-Am1p-Ae2p-Gm1p-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.32代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6040.30)
(实施例198)
X20-Ae2p-Um1s-Cm1s-Ce2p-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.33代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.02)
(实施例199)
X20-Ae2p-Um1s-Cm1s-Ce2s-Gm1s-Ae2p-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.34代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.01)
(实施例200)
X20-Ae2p-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2p-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.35代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.04)
(实施例201)
X20-Ae2p-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2p-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.36代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.03)
(实施例202)
X20-Ae2s-Um1s-Cm1s-Ce2p-Gm1s-Ae2p-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.37代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.02)
(实施例203)
X20-Ae2s-Um1s-Cm1s-Ce2p-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2p-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.38代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.01)
(实施例204)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2p-Um1s-Gm1s-Gm1s-Ce2p-Gm1s-Am1s-Ae2s-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.39代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.02)
(实施例205)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2p-Um1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2p-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.40代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.02)
(实施例206)
X20-Ae2s-Um1s-Cm1s-Ce2s-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2p-Gm1s-Am1s-Ae2p-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.41代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6232.02)
(实施例207)
X20-Ae2s-Um1s-Cm1s-Ce2p-Gm1s-Ae2s-Um1s-Gm1s-Gm1s-Ce2p-Gm1s-Am1s-Ae2p-Gm1s-Ce2t-H(序列编号95)
使用所述序列即15e_005.5.42代替实施例166所使用的序列,与实施例166同样地进行合成。
本化合物的碱基序列是与智人葡萄糖-6-磷酸酶催化亚基(G6PC),转录变体1,mRNA(NCBI-GenBank登录号NM_000151.3)的核苷酸编号728的G变异为T的c.648G>T变异G6PC基因的外显子5的5'末端起第91号至第105号互补的序列。化合物是通过负离子ESI质量分析进行鉴定(实测值:6216.00)
再者,在本说明书中,At、Gt、5meCt、Ct、Tt、Ut、Ap、Gp、5meCp、Cp、Tp、Up、As、Gs、5meCs、Cs、Ts、Us、Am1t、Gm1t、Cm1t、5meCm1t、Um1t、Am1p、Gm1p、Cm1p、5meCm1p、Um1p、Am1s、Gm1s、Cm1s、5meCm1s、Um1s、A2t、G2t、C2t、T2t、Ae2p、Ge2p、Ce2p、Te2p、Ae2s、Ge2s、Ce2s、Te2s、A1t、G1t、C1t、T1t、Ae1p、Ge1p、Ce1p、Te1p、Ae1s、Ge1s、Ce1s、Te1s、Am2t、Gm2t、5meCm2t、Tm2t、Am2p、Gm2p、5meCm2p、Tm2p、Am2s、Gm2s、5meCm2s、Tm2s、X、X1、X2、X3、X4、X5、X6、X7、X8、X9、X10、X11、X12、X13、X14、X15、X16、X17、X18、X19、X20、X21、X22是具有下述所示的结构的基团。
[化195]
Figure BDA0002550837380001731
[化196]
Figure BDA0002550837380001741
[化197]
Figure BDA0002550837380001751
[化198]
Figure BDA0002550837380001761
[化199]
Figure BDA0002550837380001771
[化200]
Figure BDA0002550837380001781
[化201]
Figure BDA0002550837380001791
[化202]
Figure BDA0002550837380001801
[化203]
Figure BDA0002550837380001811
[化204]
Figure BDA0002550837380001812
[化205]
Figure BDA0002550837380001813
[化206]
Figure BDA0002550837380001814
将本说明书所引用的全部刊物、专利及专利申请案直接作为参考而并入本说明书中。
[产业上的可利用性]
本发明可用于糖原病Ia型的治疗。
[序列表非关键文字]
示出<序列编号1~48、93~95>反义寡核苷酸的序列。构成反义寡核苷酸的核苷酸可为天然型DNA、天然型RNA、DNA/RNA的嵌合体、它们的修饰体的任一者,优选至少1个为修饰核苷酸。
示出<序列编号49~65、67~92>引物的序列。
示出<序列编号66>肽的序列。
序列表
<110> 第一三共株式会社(DAIICHI SANKYO COMPANY, LIMITED)
学校法人神戸学院(KOBE GAKUIN UNIVERSITY)
<120> 糖原病Ia型治疗药
<130> FP-251PCT
<150> JP2018-43524
<151> 2018-03-09
<150> JP2018-128015
<151> 2018-07-05
<160> 95
<170> PatentIn第3.5版
<210> 1
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 1
agataaaauc cgauggcgaa g 21
<210> 2
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 2
taaaauccga uggcgaagcu g 21
<210> 3
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> antisense oligonuleotide
<400> 3
aauccgaugg cgaagcugaa a 21
<210> 4
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 4
ccgauggcga agcugaaaag g 21
<210> 5
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 5
auggcgaagc ugaaaaggaa g 21
<210> 6
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 6
gcgaagcuga aaaggaagaa g 21
<210> 7
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 寡核苷酸
<400> 7
aagcugaaaa ggaagaaggu a 21
<210> 8
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 8
cugaaaagga agaagguaau g 21
<210> 9
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 9
aaaaggaaga agguaaugag a 21
<210> 10
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 10
aggaagaagg uaaugagaaa a 21
<210> 11
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 11
aagaagguaa ugagaaaata t 21
<210> 12
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 12
gauaaaaucc gatggcgaag c 21
<210> 13
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 13
auaaaatccg auggcgaagc t 21
<210> 14
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 14
aaaauccgat ggcgaagctg a 21
<210> 15
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 15
aaatccgaug gcgaagcuga a 21
<210> 16
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 16
auccgatggc gaagctgaaa a 21
<210> 17
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 17
tccgauggcg aagcugaaaa g 21
<210> 18
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 18
cgatggcgaa gctgaaaagg a 21
<210> 19
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 19
gauggcgaag cugaaaagga a 21
<210> 20
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 20
uaaaauccga tggcgaag 18
<210> 21
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 21
aaaatccgau ggcgaagc 18
<210> 22
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 22
aaauccgaug gcgaagcu 18
<210> 23
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 23
aauccgatgg cgaagctg 18
<210> 24
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 24
atccgauggc gaagcuga 18
<210> 25
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 25
uccgauggcg aagcugaa 18
<210> 26
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 26
ccgatggcga agctgaaa 18
<210> 27
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 27
cgauggcgaa gcugaaaa 18
<210> 28
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 28
gauggcgaag cugaaaag 18
<210> 29
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 29
atggcgaagc tgaaaagg 18
<210> 30
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 30
uggcgaagcu gaaaagga 18
<210> 31
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 31
ggcgaagcug aaaaggaa 18
<210> 32
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 32
gcgaagctga aaaggaag 18
<210> 33
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 33
agataaaauc cgauggcgaa g 21
<210> 34
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 34
gcagauaaaa uccgatggcg a 21
<210> 35
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 35
cagauaaaat ccgauggcga a 21
<210> 36
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 36
cagataaaau ccgauggc 18
<210> 37
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 37
agauaaaauc cgatggcg 18
<210> 38
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 38
gauaaaatcc gauggcga 18
<210> 39
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 39
ataaaauccg auggcgaa 18
<210> 40
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 40
aauccgatgg cgaag 15
<210> 41
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 41
ccgatggcga agctg 15
<210> 42
<211> 16
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 42
aaauccgatg gcgaag 16
<210> 43
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 43
tcaaauccga tggcgaag 18
<210> 44
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 44
atccgauggc gaagc 15
<210> 45
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 45
uccgauggcg aagcu 15
<210> 46
<211> 17
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 46
aaaauccgat ggcgaag 17
<210> 47
<211> 16
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 47
aauccgatgg cgaagc 16
<210> 48
<211> 16
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 48
auccgatggc gaagcu 16
<210> 49
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 49
atagcagagc aatcaccacc aagcc 25
<210> 50
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 50
attccacgac ggcagaatgg atggc 25
<210> 51
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 51
taccgagctc ggatccacca ccaagcctgg aataactgc 39
<210> 52
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 52
ctggactagt ggatcctggc atggttgttg actttaaac 39
<210> 53
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 53
tctgggctgt gcagctgaat gtctg 25
<210> 54
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 54
gtaggggatg acactgacgg atgcc 25
<210> 55
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 55
ctggagtcct gtcaggtatg ggc 23
<210> 56
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 56
agctgaaaag gaagaaggta atgag 25
<210> 57
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 57
tcttcctttt cagcttcgcc atcgg 25
<210> 58
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 58
ctgacaggac tccagcaaca ac 22
<210> 59
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 59
ttgtggttgg gattctgggc 20
<210> 60
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 60
atgctgtgga tgtggctgaa 20
<210> 61
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 61
tggcacccag cacaatgaa 19
<210> 62
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 62
ctaagtcata gtccgcctag aagca 25
<210> 63
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 63
gctgctcatt ttcctcatca agtt 24
<210> 64
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 64
tggatgtggc tgaaagtttc tgta 24
<210> 65
<211> 16
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 65
tcctgtcagg cattgc 16
<210> 66
<211> 20
<212> PRT
<213> 人工序列
<220>
<223> 肽
<400> 66
Trp Cys Glu Gln Pro Glu Trp Val His Ile Asp Thr Thr Pro Phe Ala
1 5 10 15
Ser Leu Leu Lys
20
<210> 67
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 67
gggaaacatg catgaagccc tgggc 25
<210> 68
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 68
tcccttggta cctcaggaag ctgcc 25
<210> 69
<211> 37
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 69
cgggcccccc ctcgaaaact aggcctgaag agatggc 37
<210> 70
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 70
taccgtcgac ctcgagggtt ggccttgatc cctctgcta 39
<210> 71
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 71
ggttgagttg atcttctaca tcttg 25
<210> 72
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 72
gcaagagagc cttcaggtag atccc 25
<210> 73
<211> 40
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 73
agttctagag cggccgccca tgcaaaggac taggaacaac 40
<210> 74
<211> 38
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 74
accgcggtgg cggccaatgt tgcctgtctt cctcaatc 38
<210> 75
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 75
ggccaaccct ggaataactg caagggctct g 31
<210> 76
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 76
ttgcatggtt gttgacttta aacaccgaag a 31
<210> 77
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 77
tcaacaacca tgcaaaggac taggaacaac 30
<210> 78
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 78
attccagggt tggccttgat ccctctgcta 30
<210> 79
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 79
gggatcaagg ccaaccggct gg 22
<210> 80
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 80
taaagtcaac cgccatgcaa agg 23
<210> 81
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 81
tacgtcctct tccccatctg 20
<210> 82
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 82
ctgacaggac tccagcaaca 20
<210> 83
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 83
ttccttccaa agcagggact ctctatgt 28
<210> 84
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 84
cttgcagaag gacaagacgt agaagacc 28
<210> 85
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 85
gagtctatat tgagggcagg ctggagtc 28
<210> 86
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 86
tagtctgcct gctcactcaa cctctcct 28
<210> 87
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 87
gagtctatat tgagggcagg ctggagtc 28
<210> 88
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 88
taaatttgac caatgagcac tggaggtc 28
<210> 89
<211> 28
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 89
aaaatcatgt gtatgcgtgc ctttccta 28
<210> 90
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 90
ttgtggttgg gattctgggc 20
<210> 91
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 91
tccagagtcc acaggaggtc 20
<210> 92
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引物
<400> 92
gctgtgcagc tgaatgtctg 20
<210> 93
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 93
aatccgatgg cgaag 15
<210> 94
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 94
atccgatggc gaagc 15
<210> 95
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 反义寡核苷酸
<400> 95
auccgauggc gaagc 15

Claims (30)

1.一种寡核苷酸、其药理上容许的盐或溶剂合物,所述寡核苷酸是含有与具有c.648G>T变异的G6PC基因的cDNA互补的核苷酸序列的碱基数为15~30的寡核苷酸,且含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第82号至第92号的任一部位的区域互补的序列。
2.根据权利要求1所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为15~21的寡核苷酸,且含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第86号至第92号的任一部位的区域互补的序列。
3.根据权利要求1所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为15~21的寡核苷酸,且含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
4.根据权利要求1所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为15~18的寡核苷酸,且含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
5.根据权利要求1所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为18的寡核苷酸,且含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
6.根据权利要求1所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为17的寡核苷酸,且含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
7.根据权利要求1所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为16的寡核苷酸,且含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
8.根据权利要求1所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是碱基数为15的寡核苷酸,且含有与具有c.648G>T变异的G6PC基因的包含外显子5的5'末端起第92号的部位的区域互补的序列。
9.根据权利要求1所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸含有序列编号1~32、40~42、44~48的任一序列(其中,序列中的t也可为u,u也可为t)中连续的至少15个核苷酸的序列。
10.根据权利要求1至9中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸进而在5'末端及/或3'末端附加了可在生物体内切断的寡核苷酸。
11.根据权利要求1至10中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中构成寡核苷酸的糖及/或磷酸二酯键的至少1个被修饰。
12.根据权利要求1至10中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中构成寡核苷酸的糖是D-呋喃核糖,糖的修饰是D-呋喃核糖的2'位的羟基的修饰。
13.根据权利要求1至10中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中构成寡核苷酸的糖是D-呋喃核糖,糖的修饰是D-呋喃核糖的2'-O-烷基化及/或2'-,4'-交联化。
14.根据权利要求1至10中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中构成寡核苷酸的糖是D-呋喃核糖,糖的修饰是D-呋喃核糖的2'-O-烷基化及/或2'-O,4'-C-烷撑化。
15.根据权利要求1至14中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中磷酸二酯键的修饰是硫代磷酸酯。
16.根据权利要求1至15中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸在5'末端及/或3'末端结合了GalNAc单元。
17.根据权利要求1至15中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸在5'末端结合了GalNAc单元。
18.根据权利要求16或17所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是式
[化1]
Figure FDA0002550837370000031
[式中,Ra表示式
[化2]
Figure FDA0002550837370000032
所表示的基团,Rb表示式
[化3]
Figure FDA0002550837370000033
所表示的基团或氢原子,XX表示式
[化4]
Figure FDA0002550837370000034
所表示的基团,G表示5-乙酰胺-2-羟基甲基-3,4-二羟基四氢吡喃-6-基(GalNAc),Z表示氧原子或硫原子,L1及L2中一个表示亚甲基(CH2),另一个表示不隔着原子,p、q、r、s、t及u互相独立地表示0或1,n及n'互相独立地表示1~15的整数,m及m'互相独立地表示0~5的整数,当Rb不为氢原子时,v表示1,当Rb为氢原子时,v表示1~7;其中,当n为1时,m为0~5的整数,当n为2~15的整数时,m为0,当n'为1时,m'为1~5的整数,当n'为2~15的整数时,m'为0;可在距磷原子较远的键结键上键结羟基、XX基、或OG基]所表示的基团。
19.根据权利要求16或17所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是式
[化5]
Figure FDA0002550837370000041
[式中,G、Z、L1、L2、n及m表示与所述相同的含义]所表示的基团。
20.根据权利要求16或17所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是式
[化6]
Figure FDA0002550837370000042
[式中,G、Z、L1、L2、q、n及m表示与所述相同的含义,Ra'表示式
[化7]
Figure FDA0002550837370000043
所表示的基团]所表示的基团。
21.根据权利要求16或17所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是式
[化8]
Figure FDA0002550837370000051
[式中,G、Z、L1、L2、s、n、m及v表示与所述相同的含义,Rb'表示式
[化9]
Figure FDA0002550837370000052
(式中,n'及m'表示与所述相同的含义)所表示的基团或氢原子]所表示的基团。
22.根据权利要求16或17所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是或式
[化10]
Figure FDA0002550837370000053
[式中,G、Z、L1、L2、n及m表示与所述相同的含义]所表示的基团。
23.根据权利要求16或17所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中GalNAc单元是式
[化11]
Figure FDA0002550837370000061
[式中,G、Z、L1、L2、n、m及Ra'表示与所述相同的含义]所表示的基团。
24.根据权利要求1所述的寡核苷酸、其药理上容许的盐或溶剂合物,其中所述寡核苷酸是以式
[化12]
RO-Xg-Xf-Xe-Xd-Xc-Xb-Xa-T
[式中,R表示氢原子、XX基、或G基,T表示5'末端不具有羟基的寡核苷酸,Xg表示选自由X1~X6及X9~X17所组成的群中的GalNAc单元,或RO-Xg表示选自由X7、X8、X18、X19、X20、X21及X22所组成的群中的GalNAc单元,Xa、Xb、Xc、Xd、Xe及Xf互相独立地表示选自由X1~X6及X9~X17或它们的光学异构体所组成的群中的GalNAc单元或单键]表示,
[化13]
Figure FDA0002550837370000062
[化14]
Figure FDA0002550837370000071
[化15]
Figure FDA0002550837370000072
[化16]
Figure FDA0002550837370000073
[化17]
Figure FDA0002550837370000074
[化18]
Figure FDA0002550837370000081
[化19]
Figure FDA0002550837370000082
[化20]
Figure FDA0002550837370000083
[化21]
Figure FDA0002550837370000084
[化22]
Figure FDA0002550837370000091
[化23]
Figure FDA0002550837370000092
[化24]
Figure FDA0002550837370000093
[化25]
Figure FDA0002550837370000094
[化26]
Figure FDA0002550837370000101
[化27]
Figure FDA0002550837370000102
[化28]
[化29]
Figure FDA0002550837370000111
[化30]
Figure FDA0002550837370000112
[化31]
Figure FDA0002550837370000113
[化32]
Figure FDA0002550837370000121
[化33]
Figure FDA0002550837370000122
[化34]
Figure FDA0002550837370000123
25.一种医药,其包含根据权利要求1至24中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物。
26.一种糖原病Ia型治疗药,其包含根据权利要求1至24中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物。
27.一种糖原病Ia型的治疗方法,其包括将根据权利要求1至24中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物以医药上有效的量对受验者投予。
28.根据权利要求1至24中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物,其用于糖原病Ia型的治疗方法。
29.一种用于经口或非经口投予的调配物,其包含根据权利要求1至24中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物。
30.根据权利要求1至24中任一项所述的寡核苷酸、其药理上容许的盐或溶剂合物,其作为医药使用。
CN201980006746.4A 2018-03-09 2019-03-05 糖原病Ia型治疗药 Pending CN111511915A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310034281.1A CN115976028A (zh) 2018-03-09 2019-03-05 糖原病Ia型治疗药

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018-043524 2018-03-09
JP2018043524 2018-03-09
JP2018-128015 2018-07-05
JP2018128015 2018-07-05
PCT/JP2019/008713 WO2019172286A1 (ja) 2018-03-09 2019-03-05 糖原病Ia型治療薬

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310034281.1A Division CN115976028A (zh) 2018-03-09 2019-03-05 糖原病Ia型治疗药

Publications (1)

Publication Number Publication Date
CN111511915A true CN111511915A (zh) 2020-08-07

Family

ID=67845726

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310034281.1A Pending CN115976028A (zh) 2018-03-09 2019-03-05 糖原病Ia型治疗药
CN201980006746.4A Pending CN111511915A (zh) 2018-03-09 2019-03-05 糖原病Ia型治疗药

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310034281.1A Pending CN115976028A (zh) 2018-03-09 2019-03-05 糖原病Ia型治疗药

Country Status (6)

Country Link
EP (1) EP3763815A4 (zh)
JP (3) JP6884268B2 (zh)
KR (2) KR20210130854A (zh)
CN (2) CN115976028A (zh)
TW (2) TWI760600B (zh)
WO (1) WO2019172286A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114763367A (zh) * 2021-01-14 2022-07-19 施能康生物科技有限公司 化合物、缀合物及其用途

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021049504A1 (zh) * 2019-09-10 2021-03-18
WO2021075538A1 (ja) 2019-10-18 2021-04-22 第一三共株式会社 二環性ホスホロアミダイトの製造方法
CA3224134A1 (en) * 2021-06-24 2022-12-29 Patrick Joseph ANTONELLIS Novel therapeutic delivery moieties and uses thereof
US11692001B2 (en) 2021-08-30 2023-07-04 Hongene Biotech Corporation Functionalized n-acetylgalactosamine analogs
US20230372508A1 (en) * 2022-05-19 2023-11-23 Olix Us, Inc. Linkers coupling functional ligands to macromolecules

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261233A1 (en) * 2004-04-21 2005-11-24 Sanjay Bhanot Modulation of glucose-6-phosphatase translocase expression
US20140024698A1 (en) * 2011-12-08 2014-01-23 Sarepta Therapeutics, Inc. Methods for treating progeroid laminopathies using oligonucleotide analogues targeting human lmna
US20160289677A1 (en) * 2013-11-14 2016-10-06 Roche Innovation Center Copenhagen A/S APOB Antisense Conjugate Compounds
US20160376585A1 (en) * 2013-07-11 2016-12-29 Alnylam Pharmaceuticals, Inc. Oligonucleotide-ligand conjugates and process for their preparation
WO2017077386A1 (en) * 2015-11-06 2017-05-11 Crispr Therapeutics Ag Materials and methods for treatment of glycogen storage disease type 1a
WO2017106210A1 (en) * 2015-12-14 2017-06-22 Cold Spring Harbor Laboratory Antisense oligomers for treatment of alagille syndrome
CN110536964A (zh) * 2017-03-10 2019-12-03 国立研究开发法人国立成育医疗研究中心 反义寡核苷酸和糖原贮积病Ia型预防或治疗用组合物

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787982A (ja) 1993-01-29 1995-04-04 Sankyo Co Ltd 修飾オリゴデオキシリボヌクレオチド
AU6786594A (en) * 1993-05-11 1994-12-12 University Of North Carolina At Chapel Hill, The Antisense oligonucleotides which combat aberrant splicing and methods of using the same
US6096881A (en) 1997-05-30 2000-08-01 Hybridon, Inc. Sulfur transfer reagents for oligonucleotide synthesis
NZ503765A (en) 1997-09-12 2002-04-26 Exiqon As Bi-cyclic and tri-cyclic nucleotide analogues
BRPI0008131B8 (pt) 1999-02-12 2021-05-25 Daiichi Sankyo Co Ltd composto ou um sal deste, análogo de oligonucleotídeo, composição farmacêutica, sonda para um gene,iniciador para começar a amplificação, uso de um análogo de oligonucleotídeo ou de um sal deste farmacologicamente aceitável, agente antisentido, e, agente antígeno
US6261840B1 (en) 2000-01-18 2001-07-17 Isis Pharmaceuticals, Inc. Antisense modulation of PTP1B expression
ES2566632T3 (es) 2002-11-25 2016-04-14 Masafumi Matsuo Fármacos de ácido nucleico ENA que modifican el corte y empalme en precursores de ARNm
CA2708173C (en) 2007-12-04 2016-02-02 Alnylam Pharmaceuticals, Inc. Targeting lipids
WO2011053614A1 (en) 2009-10-30 2011-05-05 Merck Sharp & Dohme Corp. Crystalline cdm-nag and methods for producing same
US9290760B2 (en) 2010-09-15 2016-03-22 Alnylam Pharmaceuticals, Inc. Modified iRNA agents
PL2718437T3 (pl) * 2011-06-10 2019-01-31 Institut National De La Santé Et De La Recherche Médicale (Inserm) Sposoby leczenia wrodzonej ślepoty Lebera
EP3594361A1 (en) * 2012-03-28 2020-01-15 Longhorn Vaccines and Diagnostics, LLC Compositions and methods for the collection and isolation of nucleic acids from biological specimens suspected of containing mycobacterium tuberculosis
CA2889596C (en) 2012-11-15 2022-08-23 Roche Innovation Center Copenhagen A/S Oligonucleotide conjugates
JP6270742B2 (ja) 2013-01-10 2018-01-31 塩野義製薬株式会社 架橋型核酸誘導体の製造方法
CN105378085B (zh) 2013-05-01 2019-02-15 Ionis制药公司 用于调节hbv和ttr表达的组合物和方法
TW201534578A (zh) 2013-07-08 2015-09-16 Daiichi Sankyo Co Ltd 新穎脂質
JP6482475B2 (ja) 2014-01-07 2019-03-13 レナセラピューティクス株式会社 アンチセンスオリゴヌクレオチド及び糖誘導体を含む二本鎖オリゴヌクレオチド
US20170327524A1 (en) 2014-10-10 2017-11-16 Hoffmann-La Roche, Inc. Galnac phosphoramidites, nucleic acid conjugates thereof and their use
CA2993350C (en) 2015-07-31 2022-04-05 Arcturus Therapeutics, Inc. Multiligand agent for drug delivery
AR106683A1 (es) 2015-11-16 2018-02-07 Hoffmann La Roche FOSFORAMIDITA DE AGRUPACIÓN DE GalNAc
EP3409780B1 (en) 2016-01-29 2021-01-20 Kyowa Kirin Co., Ltd. Nucleic acid complex
US10731546B2 (en) 2017-02-06 2020-08-04 Borgwarner Inc. Diffuser in wastegate turbine housings
JP6591515B2 (ja) 2017-12-07 2019-10-16 東芝テック株式会社 印刷装置、制御方法及びコンピュータプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261233A1 (en) * 2004-04-21 2005-11-24 Sanjay Bhanot Modulation of glucose-6-phosphatase translocase expression
US20140024698A1 (en) * 2011-12-08 2014-01-23 Sarepta Therapeutics, Inc. Methods for treating progeroid laminopathies using oligonucleotide analogues targeting human lmna
US20160376585A1 (en) * 2013-07-11 2016-12-29 Alnylam Pharmaceuticals, Inc. Oligonucleotide-ligand conjugates and process for their preparation
US20160289677A1 (en) * 2013-11-14 2016-10-06 Roche Innovation Center Copenhagen A/S APOB Antisense Conjugate Compounds
WO2017077386A1 (en) * 2015-11-06 2017-05-11 Crispr Therapeutics Ag Materials and methods for treatment of glycogen storage disease type 1a
WO2017106210A1 (en) * 2015-12-14 2017-06-22 Cold Spring Harbor Laboratory Antisense oligomers for treatment of alagille syndrome
CN110536964A (zh) * 2017-03-10 2019-12-03 国立研究开发法人国立成育医疗研究中心 反义寡核苷酸和糖原贮积病Ia型预防或治疗用组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S KAJIHARA等: "Exon redefinition by a point mutation within exon 5 of the glucose-6-phosphatase gene is the major cause of glycogen storage disease type 1a in Japan" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114763367A (zh) * 2021-01-14 2022-07-19 施能康生物科技有限公司 化合物、缀合物及其用途

Also Published As

Publication number Publication date
US20200407394A1 (en) 2020-12-31
EP3763815A4 (en) 2021-12-15
JP2021072800A (ja) 2021-05-13
JP2023159397A (ja) 2023-10-31
TW202003847A (zh) 2020-01-16
TW202202622A (zh) 2022-01-16
KR20210130854A (ko) 2021-11-01
TWI760600B (zh) 2022-04-11
EP3763815A1 (en) 2021-01-13
CN115976028A (zh) 2023-04-18
JPWO2019172286A1 (ja) 2021-03-18
WO2019172286A1 (ja) 2019-09-12
JP6884268B2 (ja) 2021-06-09
KR102398295B1 (ko) 2022-05-17
KR20200128513A (ko) 2020-11-13

Similar Documents

Publication Publication Date Title
TWI760600B (zh) 糖原病Ia型治療藥
JP6867636B1 (ja) アンチセンス核酸
JP5677716B2 (ja) オリゴヌクレオチド類似体を含むキット及び方法並びにオリゴヌクレオチド類似体の使用
WO2004106356A1 (en) Functionalized nucleotide derivatives
TW202237847A (zh) 聚-𠰌啉代寡核苷酸缺口體
EP2961757B1 (en) Cell-penetrating oligonucleotides
TW202237848A (zh) 靶向tau之寡核苷酸缺口體
EP4029520A1 (en) Galnac-oligonucleotide conjugate for liver-targeted delivery use, and method for producing same
US11958878B2 (en) Therapeutic agent for glycogen storage disease type IA
US20210238213A1 (en) SOLID-PHASE SYNTHESIS OF OLIGONUCLEOTIDES CONTAINING N6-(2-DEOXY-ALPHA,BETA-DERYTHROPENTOFURANOSYL)-2,6-DIAMINO-4-HYDROXY-5-FORMAMIDOPYRIMIDINE (Fapy.dG)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination