TW202237847A - 聚-𠰌啉代寡核苷酸缺口體 - Google Patents

聚-𠰌啉代寡核苷酸缺口體 Download PDF

Info

Publication number
TW202237847A
TW202237847A TW110146559A TW110146559A TW202237847A TW 202237847 A TW202237847 A TW 202237847A TW 110146559 A TW110146559 A TW 110146559A TW 110146559 A TW110146559 A TW 110146559A TW 202237847 A TW202237847 A TW 202237847A
Authority
TW
Taiwan
Prior art keywords
gap
solution
pharmaceutically acceptable
mmol
mixture
Prior art date
Application number
TW110146559A
Other languages
English (en)
Inventor
家范 方
金大式
崔亨旭
高橋良典
菊田健司
川嶋光
板野航
黒川利樹
星川環
明德 山
淵 王
Original Assignee
日商衛材R&D企管股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商衛材R&D企管股份有限公司 filed Critical 日商衛材R&D企管股份有限公司
Publication of TW202237847A publication Critical patent/TW202237847A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3233Morpholino-type ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/341Gapmers, i.e. of the type ===---===

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

提供了缺口體或該等缺口體的藥學上可接受的鹽和製造該等缺口體之方法。該等缺口體包括缺口區域,該缺口區域含有藉由硫代磷酸酯鍵彼此連接的去氧核糖核苷;位於該缺口區域的5’末端的5’翼區域,該5’翼區域含有藉由磷二醯胺鍵彼此連接的𠰌啉代單體;以及位於該缺口區域的3’末端的3’翼區域,該3’翼區域含有藉由磷二醯胺鍵彼此連接的𠰌啉代單體。還提供了反義寡核苷酸。該等反義寡核苷酸可用於製備用於抑制Tau mRNA轉錄的缺口體。

Description

聚-𠰌啉代寡核苷酸缺口體
本揭露關於立體無規和立體定義的聚-𠰌啉代寡核苷酸缺口體實施方式及其合成方法。
神經系統變性障礙係以中樞神經系統和周圍神經系統結構和功能衰退為特徵的一組障礙。雖然神經系統變性障礙表現出異質性的症狀,但它們可以具有相似特徵。一種神經系統變性疾病(阿茲海默氏症),係神經系統變性障礙,其特徵在於澱粉樣蛋白β斑塊和神經原纖維纏結之積聚。其也是失智之主要原因。儘管罕見的家族性阿茲海默氏症的一些病例涉及澱粉樣蛋白β先質蛋白的常染色體顯性突變,但大多數病例係遲發型阿茲海默氏症(LOAD),不遵循孟德爾遺傳模式。雖然LOAD的機制尚不完全清楚,但全基因組關聯研究已經鑒定出LOAD的遺傳風險因素。科學家們已經證明了該等基因影響澱粉樣蛋白β斑塊的產生、聚集、或清除的能力。
阿茲海默氏症的一個報導的病理指標係存在由超磷酸化Tau組成的細胞內神經原纖維纏結。參見Chong, 等人, 「Tau Proteins and Tauopathies in Alzheimer’s Disease [阿茲海默氏症中的Tau蛋白和tau蛋白病變],」 Cell Mol. Neurobiol.[細胞和分子神經生物學] 2018年7月; 38(5):965-980。研究已報導,調節Tau mRNA和Tau蛋白表現可能有助於改善Tau相關神經系統變性疾病(包括阿茲海默氏症和原發性tau蛋白病變)之影響。
反義寡核苷酸(ASO)以序列特異性方式用於調節基因表現。它們已被開發用於靶標驗證和治療目的。反義技術具有治癒由有害基因的表現引起的疾病(包括由病毒感染、癌症生長和炎性疾病引起的疾病)之潛力。優化的反義寡核苷酸(ASO)(如缺口體(gapmer))可用於靶向初級基因轉錄物、一種或多種mRNA產物、剪接和未剪接的編碼和非編碼RNA。
ASO藉由兩種廣泛的機制調節RNA功能。空間阻斷機制,其可能導致剪接調節、無義介導的衰變(NMD)、翻譯阻斷,RNA酶 H介導的降解,其藉由製造RNA-ASO異源雙股體而導致靶RNA的切割。
缺口體係嵌合反義寡核苷酸,該嵌合反義寡核苷酸含有側接經修飾的寡核苷酸的翼區域的去氧核苷酸缺口區域。去氧核苷酸單體的缺口區域足夠長以誘導RNA酶 H介導的切割。翼區域係2’-修飾的核糖核苷酸的嵌段或其他人工修飾的核糖核苷酸單體,它們保護內部嵌段免受核酸酶降解,並增加與靶RNA的結合親和力。經修飾的DNA類似物(如2’-MOE、2’-OMe、LNA和cEt),由於它們在生物流體中的穩定性和對RNA的結合親和力的增加,已被考查為翼區域。
磷二醯胺𠰌啉代寡聚物(PMO)係短的單股DNA類似物,該等類似物含有由磷二醯胺鍵連接的𠰌啉環之骨架。PMO通常是不帶電荷的核酸類似物,該等核酸類似物藉由沃森-克裡克(Watson-Crick)鹼基配對與靶RNA的互補序列結合以阻斷蛋白質翻譯。PMO對生物流體中存在的各種酶具有抗性,這一特性使其可用於體內應用。
本揭露之一個方面關於缺口體或該缺口體的藥學上可接受的鹽的實施方式。缺口體或缺口體的藥學上可接受的鹽含有缺口區域和翼區域。在較佳的實施方式中,缺口區域兩側係翼區域。
在一些實施方式中,缺口體或該缺口體的藥學上可接受的鹽具有缺口區域,該缺口區域可含有藉由硫代磷酸酯鍵彼此連接的6至12個去氧核糖核苷。
在其他實施方式中,缺口體或該缺口體的藥學上可接受的鹽具有位於缺口區域5’末端處的5’翼區域,其中該5’末端翼區域含有藉由磷二醯胺鍵彼此連接的3至7個𠰌啉代單體。
在一些實施方式中,缺口體或該缺口體的藥學上可接受的鹽具有位於缺口區域3’末端處的3’翼區域,其中該3’末端翼區域含有藉由磷二醯胺鍵彼此連接的3至7個𠰌啉代單體。
缺口體或該等缺口體的藥學上可接受的鹽的缺口區域的去氧核糖核苷可由以下結構構成:
Figure 02_image003
, 其中P*表示立構中心,該立構中心可以處於R(R p)或S(S p)組態。
缺口體或該等缺口體的藥學上可接受的鹽的翼區域的𠰌啉代單體可由以下結構構成:
Figure 02_image005
, 其中P*表示立構中心,該立構中心可以處於R(R p)或S(S p)組態。
在每個去氧核糖核苷和𠰌啉代寡聚物結構中列舉的每個鹼基部分(B)可以獨立地選自包括在式I中的基團:
Figure 02_image007
, 式I
其中R選自H、C(O)R 1或C(O)OR 1;R 1選自C 1-C 6烷基或芳基;並且該芳基為未經取代的或被選自以下群組的取代基取代,該群組包括鹵素、硝基和甲氧基。
在一些實施方式中,缺口體的硫代磷酸酯鍵和磷二醯胺鍵中的每個磷可以獨立地處於R或S組態。每個R或S組態為至少90%純、至少95%純、或至少99%純。當將組態稱為「純」時,我們打算說明至少給定百分比的缺口體將包括給定的每個位置處的方向。
在其他實施方式中,5’和3’翼區域各自包括藉由磷二醯胺鍵彼此連接的五個𠰌啉代單體。在一些實施方式中,5’和3’翼區域各自包括藉由磷二醯胺鍵彼此連接的4個𠰌啉代單體。
在一些實施方式中,缺口區域包括藉由硫代磷酸酯鍵彼此連接的十個去氧核糖核苷。在其他實施方式中,缺口區域包括藉由硫代磷酸酯鍵彼此連接的八個去氧核糖核苷。
在其他實施方式中,5’和3’翼區域中的每個磷具有S組態。每個S組態為至少90%純、至少95%純、或至少99%純。
在一些實施方式中,缺口區域中的每個磷具有S組態。每個S組態為至少90%純、至少95%純、或至少99%純。
在其他實施方式中,缺口區域中的磷具有R與S組態的混合物。每個磷具有R或S組態,該R或S組態為至少90%純、至少95%純、或至少99%純。
在一些實施方式中,缺口區域中的磷、翼區域中的磷、或兩個區域中的磷皆為立體無規的。
在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽可與脂質軛合。在一些實施方式中,脂質係棕櫚醯脂質或膽固醇。脂質可以在缺口體的3’末端和/或5’末端軛合。脂質可以藉由在缺口體的3’和/或5’末端處使用連接子與該等缺口體軛合。在較佳的實施方式中,連接子可以是PEG或己胺基連接子。
本揭露之另一個方面關於包括缺口體或缺口體的藥學上可接受的鹽的藥物組成物。缺口體或缺口體的藥學上可接受的鹽可以是本申請中討論的任何實施方式。
在其他實施方式中,提供了缺口體,該等缺口體在該缺口體的DNA缺口區域可以包括一個或兩個磷酸二酯鍵。
缺口體可用於治療多種疾病和障礙。例如,它們可用作反義寡核苷酸用於體外靶向人微管相關蛋白tau( MAPT)基因轉錄物以治療Tau相關神經系統變性疾病,包括阿茲海默氏症和原發性tau蛋白病變。
在一些實施方式中,反義寡核苷酸或其藥學上可接受的鹽係長度在12至24個核鹼基之間的缺口體,該缺口體包含選自以下群組的核苷酸序列,該群組由SEQ ID NO: 1至SEQ ID NO: 17組成。在其他實施方式中,缺口體長度可以是12至26個核鹼基,該缺口體包含選自以下群組的核苷酸序列,該群組由SEQ ID NO: 1至SEQ ID NO: 17組成。反義寡核苷酸可以是嵌合寡核苷酸。嵌合寡核苷酸可以設計為本文揭露的缺口體。
在其他實施方式中,本文揭露的缺口體可以由選自以下群組的核苷酸序列組成或包含該核苷酸序列,該群組由SEQ ID NO: 1至SEQ ID NO: 17組成。在另外的實施方式中,缺口體具有至少一個經修飾的核苷間鍵、糖部分、或核鹼基。在又另外的實施方式中,經修飾的核苷間鍵係磷二醯胺𠰌啉代核苷鍵和/或硫代磷酸酯鍵。
本揭露之另一個方面關於在需要Tau抑制的患者中抑制Tau表現之方法,其中該方法包括使該患者的細胞或組織與如本文揭露的反義寡核苷酸、缺口體或反義寡核苷酸和/或缺口體的藥學上可接受的鹽接觸。
所討論的實施方式的其他方面和優點從以下說明書、附圖以及所附申請專利範圍中應當是清楚的。
相關申請之交叉引用
本專利申請要求2020年11月11日提交的美國臨時專利申請案號63/124,471之權益。該申請藉由援引併入,如同在本文完整重寫一樣。
本揭露之一個方面關於缺口體或缺口體的藥學上可接受的鹽的實施方式,該缺口體或該缺口體的藥學上可接受的鹽由缺口區域和翼區域構成。較佳的是,缺口區域兩側係翼區域。
因此,所揭露的缺口體的典型效用係,它們可以針對選擇性基因轉錄物進行功能化,並充當翻譯抑制劑。目的基因轉錄物係那些已被鑒定為有助於有害疾病的發生和發展的基因。
雖然認為本文使用的術語很好地為熟悉該項技術者所理解,本文闡述定義以便於解釋本文所揭露的主題。
除非另外定義,否則本文所用的所有技術和科學術語具有與本文揭露之主題所屬領域的普通技術人員通常所理解的相同含義。儘管與本文所述之那些方法、裝置和材料相似或等效的任何方法、裝置和材料可以用於目前揭露的主題的實踐或測試,但是本文描述代表性之方法、裝置和材料。
除非另外規定或提及組合的上下文相反地清楚暗示,如本文中所使用,方法或過程步驟的所有組合均能以任何順序進行。
本揭露之方法和裝置(包括其元件)可以包含本文所述之實施方式的必要元件和限制以及本文所述之或另外有用的任何另外或視需要組分或限制,由其組成和基本上由其組成。例如,被列為「包含」某些序列的缺口體,在其他實施方式中,可能由該等序列組成,或基本上由該等序列組成。
除非另外指明,本說明書和申請專利範圍中使用的表現成分的物理大小、量、特性(如反應條件)之所有數值應被理解為在所有情況中被術語「約」修飾。因此,除非相反地指出,否則說明書和申請專利範圍中列出的數值參數係近似值,該等近似值可以根據本揭露主題試圖獲得的所需特性而變化。
如本文所用的「缺口體」係指嵌合反義寡核苷酸,該嵌合反義寡核苷酸含有足夠長以誘導RNA酶 H切割的去氧核苷酸單體中心嵌段。「立體無規的缺口體」係在其每個立構中心具有 (R) 或 (S) 組態的混合物的缺口體。在一些實施方式中,立體無規的缺口體係來自與𠰌啉代或去氧核糖核苷單體的延伸反應的產物。「立體定義的缺口體」係在其每個立構中心具有 (R) 或 (S) 立體化學組態的缺口體,其中該等組態係可控的。立體定義的缺口體可以是來自與立體純𠰌啉代或去氧核糖核苷單體的立體特異性延長反應的產物,其中將該缺口體的磷立體化學控制為一系列確定的立體化學 (R) 或 (S) 組態。
「PMO-缺口體」係包括翼區域的缺口體,該等翼區域包含藉由磷二醯胺鍵彼此連接的𠰌啉代單體。
當提及反應時,「立體無規的」意指已經進行了反應而無對得到的立體化學的偏好。
作為描述異構物的術語的「R」和「S」係在不對稱取代的原子上的立體化學組態的描述符,該等原子包括但不限於:碳、硫、磷和季氮。將不對稱取代的原子指定為「R」或「S」係藉由應用Cahn-Ingold-Prelog優先規則完成的,如熟悉該項技術者所熟知的,並描述於有機化學命名法E部分,立體化學的國際純粹與應用化學聯合會(IUPAC)規則中。
如本文所用的「藥學上可接受的鹽」係指本揭露中化合物的酸加成鹽或鹼加成鹽。藥學上可接受的鹽係保留母體化合物的活性並且不會對其投與的受試者和在其投與的情況下產生任何過度有害或不希望的影響的任何鹽。藥學上可接受的鹽包括但不限於金屬錯合物以及無機酸和羧酸的鹽。藥學上可接受的鹽還包括金屬鹽,如鋁鹽、鈣鹽、鐵鹽、鎂鹽、錳鹽、鈉鹽和錯合鹽。此外,藥學上可接受的鹽包括但不限於,酸性鹽如乙酸鹽、天冬胺酸鹽、烷基磺酸鹽、芳基磺酸鹽、醋氧乙(axetil)鹽、苯磺酸鹽、苯甲酸鹽、碳酸氫鹽、雙硫酸(bisulfuric)鹽、雙酒石酸鹽(bitartaric)、丁酸鹽、依地酸鈣鹽、樟腦磺酸鹽、碳酸鹽、氯苯甲酸鹽、檸檬酸鹽、依地酸鹽、乙二磺酸(edisylic)鹽、十二烷基磺酸(estolic)鹽、esyl、乙磺酸(esylic)鹽、甲酸鹽、富馬酸鹽、葡庚糖酸(gluceptic)鹽、葡萄糖酸鹽、麩胺酸鹽、乙醇酸鹽、羥乙醯基對胺苯砷酸(glycolylarsanilic)鹽、環乙磺酸(hexamic)鹽、己基雷鎖辛酸(hexylresorcinoic)鹽、海巴酸(hydrabamic)鹽、氫溴酸鹽、鹽酸鹽、氫碘酸鹽、羥基萘甲酸鹽、羥乙磺酸鹽、乳酸鹽、乳糖酸鹽、馬來酸鹽、蘋果酸鹽、丙二酸鹽、苦杏仁酸鹽、甲磺酸鹽、甲基硝酸鹽、甲基硫酸鹽、黏酸鹽、黏康酸(muconic)鹽、萘磺酸(napsylic)鹽、硝酸鹽、草酸鹽、對硝基甲磺酸鹽、撲酸(pamoic)鹽、泛酸鹽、磷酸鹽、磷酸氫鹽、磷酸二氫鹽、鄰苯二甲酸鹽、多聚半乳糖醛酸鹽、丙酸鹽、水楊酸鹽、硬脂酸鹽、琥珀酸鹽、胺基磺酸鹽、對胺基苯磺酸鹽、磺酸鹽、硫酸鹽、鞣酸鹽、酒石酸鹽、茶氯酸(teoclic)鹽、甲苯磺酸鹽等。
術語「藥物組成物」包括適用於對哺乳動物(例如人)投與的製劑。當本發明化合物作為藥物投與於哺乳動物(例如人)時,它們可以以其自身給予或以含有例如0.1%至99.9%(更較佳的是0.5%至90%)活性成分的藥物組成物和藥學上可接受的載體組合給予。
可以根據常規藥物複合技術將本文所述之化合物與藥學上可接受的載體組合。如本文所用,「藥學上可接受的載體」可以包括適合於所需特定劑型的任何和所有溶劑、稀釋劑、或其他液體媒介物、分散或懸浮助劑、表面活性劑、等滲劑、增稠劑或乳化劑、防腐劑、固體黏合劑、潤滑劑等。Remington's Pharmaceutical Sciences [雷明頓的醫藥科學], 第十六版, E. W. Martin(賓夕法尼亞州伊斯頓市的馬克出版公司(Mack Publishing Co., Easton, Pa.), 1980)揭露了用於配製藥物組成物的各種載體以及用於其製備的已知技術。除非任何常規載體介質與化合物不相容,例如藉由產生任何不希望的生物學效應或在其他方面以有害方式與藥物組成物的一種或多種任何其他組分相互作用,否則其使用被考慮在本發明的範圍內。
可以充當藥學上可接受的載體的材料的一些實例包括但不限於:糖,如乳糖、葡萄糖和蔗糖;澱粉,如玉米澱粉和馬鈴薯澱粉;纖維素及其衍生物,如羧甲基纖維素鈉、乙基纖維素和乙酸纖維素;粉末狀黃茋膠;麥芽;明膠;滑石;賦形劑,如可可脂和栓劑蠟;油,如花生油、棉籽油;紅花籽油、芝麻油;橄欖油;玉米油和大豆油;二醇類;如丙二醇;酯類,如油酸乙酯和月桂酸乙酯;瓊脂;緩衝劑,如氫氧化鎂和氫氧化鋁;海藻酸;基於水的溶液,如PBS或鹽水;無熱原水;等滲鹽水;林格氏溶液;乙醇和磷酸鹽緩衝溶液;以及其他無毒相容性潤滑劑,如月桂基硫酸鈉和硬脂酸鎂;以及著色劑、釋放劑、包衣劑、甜味劑、調味劑和芳香劑;防腐劑和抗氧化劑也可以根據配製者的判斷存在於組成物中。
此外,載體可以根據投與所需的製劑形式來採取各種各樣的形式,該投與例如是經口、經鼻、直腸、陰道、鞘內、腸胃外(包括靜脈內注射或輸注)。在製備用於口服劑型的組成物中,可以採用任何常見的藥物介質。常見的藥物介質包括,例如,在口服液體製劑(例如像,懸浮液、溶液、乳劑和酏劑)的情況下為水、二醇類、油類、醇類、調味劑、防腐劑、著色劑等;氣溶膠;或者在口服固體製劑(例如像,粉末、膠囊和片劑)的情況下的載體,如澱粉、糖、微晶纖維素、稀釋劑、造粒劑、潤滑劑、黏合劑、崩散劑等。
在組成物中也可以存在潤濕劑、乳化劑和潤滑劑如月桂基硫酸鈉和硬脂酸鎂,以及著色劑、釋放劑、包衣劑、甜味劑、調味劑和芳香劑、防腐劑和抗氧化劑。
藥學上可接受的抗氧化劑的實例包括:水溶性抗氧化劑,例如抗壞血酸、鹽酸半胱胺酸、硫酸氫鈉、焦亞硫酸鈉、亞硫酸鈉等;油溶性抗氧化劑,如抗壞血酸棕櫚酸酯、丁基羥基茴香醚(BHA)、丁基羥基甲苯(BHT)、卵磷脂、沒食子酸丙酯、生育酚等;以及金屬螯合劑,例如檸檬酸、乙二胺四乙酸(EDTA)、山梨糖醇、酒石酸、磷酸等。
可以將包含化合物的藥物組成物配製成具有任何所需濃度。在一些實施方式中,配製組成物以使其至少包含治療有效量。在一些實施方式中,配製組成物以使其包含不會引起一種或多種不必要的副作用的量。
藥物組成物包括適合經口、舌下、經鼻、直腸、陰道、局部、口腔、鞘內和/或腸胃外(包括皮下、肌內和靜脈內)投與的那些,儘管最合適的途徑將取決於所治療病症的性質和嚴重程度。組成物可以方便地以單位劑型存在,且可藉由製藥領域領中眾所周知的任何方法製備。在某些實施方式中,藥物組成物配製用於以丸劑、膠囊劑、錠劑或片劑形式口服施用。在其他實施方式中,藥物組成物呈懸浮液的形式。
術語「烷基」包括支鏈、直鏈和環狀的經取代或未經取代的飽和脂族烴基。C 1-C 6烷基基團的實例包括但不限於甲基、乙基、丙基、異丙基、丁基、二級丁基、三級丁基、戊基、異戊基、新戊基、己基、異己基、環己基、環己基甲基、環丙基甲基和新己基基團。
術語「芳基」包括6員至14員單環、雙環或三環芳香族烴環系統。芳基基團的實例包括苯基和萘基。
鹵素可以是F、Cl、Br或I。
本申請詳細描述了對常規的缺口體的改進。常規的缺口體可以藉由下圖表示:
Figure 02_image009
一項改進涉及在翼區域使用磷二醯胺𠰌啉代寡聚物(PMO)。該等PMO具有比DNA更高的RNA結合親和力,並且對核酸酶具有抗性。
第二個改進涉及藉由缺口區域中的硫代磷酸酯鍵將去氧核糖核苷連接在一起。該等硫代磷酸酯鍵使核苷酸間鍵對核酸酶降解具有抗性。
在一些實施方式中,5’和3’翼區域中的每一個藉由硫代磷酸酯或磷二醯胺間鍵中的一種連接到缺口區域。
改進的缺口體的一般結構可以藉由下圖表示:
Figure 02_image011
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有硫代磷酸酯鍵和磷二醯胺鍵,其中該等鍵各自具有獨立地處於R或S組態的磷,並且其中每個R或S組態為至少90%純。
在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有硫代磷酸酯鍵和磷二醯胺鍵,其中該等鍵各自具有獨立地處於R或S組態的磷,並且其中每個R或S組態為至少95%純。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有硫代磷酸酯鍵和磷二醯胺鍵,其中該等鍵各自具有獨立地處於R或S組態的磷,並且其中每個R或S組態為至少99%純。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有缺口區域,該缺口區域含有藉由硫代磷酸酯鍵彼此連接的6-12個去氧核糖核苷。
在較佳的實施方式中,缺口體或該等缺口體的藥學上可接受的鹽進一步具有缺口區域,該缺口區域含有藉由硫代磷酸酯鍵彼此連接的8-10個去氧核糖核苷。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有5’和3’翼區域,其中該等5’和3’翼區域可以各自由藉由磷二醯胺鍵彼此連接的3-7個𠰌啉代單體組成。在較佳的實施方式中,5’和3’翼區域各自由藉由磷二醯胺鍵彼此連接的4或5個𠰌啉代單體組成。
在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有磷二醯胺鍵,其中5’和3’翼區域的所有磷二醯胺鍵都具有磷原子,該磷原子具有S組態,並且其中每個S組態為至少90%純。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有磷二醯胺鍵,其中5’和3’翼區域的所有磷二醯胺鍵都具有磷原子,該磷原子具有S組態,並且其中每個S組態為至少95%純。
在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有磷二醯胺鍵,其中5’和3’翼區域的所有磷二醯胺鍵都具有磷原子,該磷原子具有S組態,並且其中每個S組態為至少99%純。
在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有硫代磷酸酯鍵,其中缺口區域中的該硫代磷酸酯鍵具有R與S磷組態的混合物,並且其中每個R和S組態為至少90%純。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有硫代磷酸酯鍵,其中缺口區域中的該硫代磷酸酯鍵具有R與S磷組態的混合物,並且其中每個R和S組態為至少95%純。
在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有硫代磷酸酯鍵,其中缺口區域中的該硫代磷酸酯鍵具有R與S磷組態的混合物,並且其中每個R和S組態為至少99%純。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽在缺口區域具有硫代磷酸酯鍵,其中該等硫代磷酸酯鍵的至少一個磷具有R組態。在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽在缺口區域具有硫代磷酸酯鍵,其中該等硫代磷酸酯鍵的一個磷具有R組態。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽在缺口區域具有硫代磷酸酯鍵,其中該等硫代磷酸酯鍵的至少兩個磷原子具有R組態。在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽在缺口區域具有硫代磷酸酯鍵,其中該等硫代磷酸酯鍵的兩個磷原子具有R組態。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽在缺口區域具有硫代磷酸酯鍵,其中所有該等硫代磷酸酯鍵都具有S硫代磷酸酯組態。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽在缺口區域具有硫代磷酸酯鍵,其中所有該等硫代磷酸酯鍵都具有R硫代磷酸酯組態。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽具有硫代磷酸酯鍵和磷二醯胺鍵,其中該等鍵中的所有磷原子係立體無規的。
在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽與脂質、細胞穿透肽、或多個N-乙醯基半乳胺糖(GalNAc)軛合。脂質可以是例如,生育酚、膽固醇、棕櫚醯脂質、或二十二碳六烯酸(DHA)脂質。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽與脂質、細胞穿透肽或多個GalNAc軛合,其中該脂質、細胞穿透肽或多個GalNAc藉由連接子與該等缺口體軛合。
在較佳的實施方式中,缺口體或該等缺口體的藥學上可接受的鹽用PEG連接子或己胺基連接子與脂質軛合。
在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽與脂質、細胞穿透肽或多個GalNAc軛合,其中該脂質、細胞穿透肽或多個GalNAc在該等缺口體的3’末端軛合。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽與脂質、細胞穿透肽或多個GalNAc軛合,其中該脂質、細胞穿透肽或多個GalNAc在該等缺口體的5’末端軛合。
在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽與脂質、細胞穿透肽或多個GalNAc軛合,其中硫代磷酸酯鍵和磷二醯胺鍵都具有立體無規的磷原子。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽與脂質、細胞穿透肽或多個GalNAc軛合,其中5’和3’翼區域的所有磷二醯胺鍵都具有磷原子,該磷原子具有S組態,並且其中每個S組態為至少90%純。
在一些實施方式中,缺口體或該等缺口體的藥學上可接受的鹽與脂質、細胞穿透肽或多個GalNAc軛合,其中缺口區域中的硫代磷酸酯鍵具有R與S磷組態的混合物,並且其中每個R和S組態為至少90%純。
在其他實施方式中,缺口體或該等缺口體的藥學上可接受的鹽包含代表寡核苷酸的核苷酸序列,該等寡核苷酸可用於或作為反義寡核苷酸用於調節Tau mRNA和用於Tau蛋白表現。該等序列示於表1中: [表1]
序列 SEQ ID NO:
GGGGACTCGCTGACATGG (SEQ ID NO: 1)
TGGGTGTAGCGAGAATCC (SEQ ID NO: 2)
GGGTGCACTAGTTTATAG (SEQ ID NO: 3)
GGGGTCTTCTAATATCCT (SEQ ID NO: 4)
AGGTTCTCGCTATATCGC (SEQ ID NO: 5)
GAGTTAGAAGCTTTGACT (SEQ ID NO: 6)
GCAGATGACCCTTAGACA (SEQ ID NO: 7)
CAAACCTGTCACACCCGA (SEQ ID NO: 8)
TTAAACCCCATAGACATA (SEQ ID NO: 9)
GAGGCCCAAATGATCACA (SEQ ID NO: 10)
TGGATTTAGCAGTAGGGT (SEQ ID NO: 11)
AGCAGATGACCCTTAGAC (SEQ ID NO: 12)
AGCCGGCATACAGTATAT (SEQ ID NO: 13)
TGTGCTCTTTATGGATGG (SEQ ID NO: 14)
GGATTTAGCAGTAGGGTG (SEQ ID NO: 15)
CCCCATGACTACAGTGTG (SEQ ID NO: 16)
GCTTTTGTGACCAGGGAC (SEQ ID NO: 17)
表1中顯示的序列處於5’到3’方向。
在一些實施方式中,表1中顯示的核苷酸序列可以作為本文揭露的5-8-5缺口體存在,這意味著它們具有8個寡核苷酸反義缺口區域,該8個寡核苷酸反義缺口區域兩側有兩個5個寡核苷酸翼區域。例如,如果SEQ ID NO: 7係5-8-5缺口體,那麼它將具有以下序列:GCAGA TGACCCTTAGACA(SEQ ID NO: 7),其中底線部分代表存在於缺口體的缺口區域內的去氧核糖核苷,該等去氧核糖核苷藉由硫代磷酸酯鍵彼此連接。非底線部分代表存在於翼區域內的𠰌啉代單體,該等𠰌啉代單體藉由磷二醯胺鍵彼此連接。在較佳的實施方式中,5-8-5缺口體係PMO-缺口體。
表1中顯示的核苷酸序列也可以作為立體無規或立體定義的5-8-5缺口體存在。
表1中的缺口體可以是立體定義的5-8-5缺口體。圖3描繪了一般SEQ ID NO. 7的立體定義的5-8-5缺口體。
在其他實施方式中,表1中顯示的核苷酸序列可以作為本文揭露的4-10-4缺口體存在,這意味著它們具有10個寡核苷酸反義缺口區域,該10個寡核苷酸反義缺口區域兩側有兩個4個寡核苷酸翼區域。例如,如果一般SEQ ID NO: 12係4-10-4缺口體,那麼它將具有以下序列:AGCA GATGACCCTTAGAC(SEQ ID NO: 12),其中底線部分代表存在於缺口體的缺口區域內的去氧核糖核苷,該等去氧核糖核苷藉由硫代磷酸酯鍵彼此連接。非底線部分代表存在於翼區域內的𠰌啉代單體,該等𠰌啉代單體藉由磷二醯胺鍵彼此連接。在較佳的實施方式中,4-10-4缺口體係PMO-缺口體。
表1中顯示的核苷酸序列也可以作為立體無規或立體定義的4-10-4缺口體存在。
表1中的缺口體可以是立體定義的4-10-4缺口體。圖4描繪了一般SEQ ID NO. 12的立體定義的4-10-4缺口體。
圖5顯示了5-8-5和4-10-4 PMO-缺口體的一般結構。
在特定的實施方式中,翼區域的𠰌啉代單體藉由磷二醯胺鍵連接,並且缺口區域的去氧核糖核苷藉由硫代磷酸酯鍵連接。在其他實施方式中,缺口區域藉由硫代磷酸酯鍵和/或磷二醯胺鍵與翼區域連接。
表1中顯示的核苷酸序列可以作為本文揭露的缺口體存在,其中該等缺口體的硫代磷酸酯和磷二醯胺鍵中的每個磷可以獨立地處於R或S組態。每個R或S組態為至少90%純、至少95%純、或至少99%純。
熟悉該項技術者將理解可以在缺口體中進行單核苷酸取代,並且在某些情況下這不會影響活性。
因此,所揭露的缺口體的效用係,它們可以針對選擇性基因轉錄物進行功能化,並充當翻譯抑制劑,特別是Tau mRNA的翻譯抑制劑。目的基因轉錄物係那些已被鑒定為有助於有害疾病的發生和發展的基因。在特定實施方式中,那些有害疾病與Tau表現有關。
本揭露還包括用於固相合成所揭露的PMO-缺口體之方法。
在一些實施方式中,藉由固相合成方法合成PMO-缺口體,其中該等固相合成方法進一步包括將𠰌啉代單體附接至固體支持體。在較佳的實施方式中,固體支持體係胺基甲基聚苯乙烯樹脂。
在其他實施方式中,固相合成方法進一步包括藉由將𠰌啉代-或反向DNA-二甲基氯胺基磷酸酯與𠰌啉代單體在固體支持體上偶聯,延長5’-翼區域。
在一些實施方式中,固相合成方法進一步包括藉由將反向DNA-或𠰌啉代-亞磷醯胺與PMO在固體支持體上偶聯,延長DNA缺口區域。
在其他方法中,固相合成方法進一步包括藉由將𠰌啉代-或反向DNA-二甲基氯胺基磷酸酯與PMO-DNA嵌合體在固體支持體上偶聯,延長3’-翼區域。
在一些實施方式中,藉由固相合成方法延長5’ PMO-缺口體翼區域可以進一步包括脫三苯甲基化步驟。脫三苯甲基化步驟可以包括在3 wt/v% TCA在CH 2Cl 2中的混合物中處理延長的5’-翼區域。
在其他實施方式中,藉由固相合成方法延長5’-翼區域進一步包括中和該延長的5’-翼區域。中和可以包括用iPr 2NEt、DMI和CH 2Cl 2(比率為10 : 45 : 45)的混合物洗滌延長的5’-翼區域。
在一些實施方式中,固相合成方法進一步包括藉由將𠰌啉代-或反向DNA-二甲基氯胺基磷酸酯與𠰌啉代單體在DMI中的1,2,2,6,6-五甲基哌啶(PMP)的存在下,延長5’-翼區域。
在一些實施方式中,藉由固相合成方法延長5’-翼區域進一步包括對該延長的5’-翼區域進行封端。封端可進一步包括將延長的5’-翼區域與四氫呋喃(THF)、2,6-二甲基吡啶和Ac 2O的混合物混合。對延長的5’-翼區域進行封端還可進一步包括將該延長的5’-翼區域與16% 1-甲基咪唑和THF的混合物混合。在一些實施方式中,對延長的5’-翼區域進行封端可以包括將該延長的5’-翼區域與以上所述之兩種混合物混合。
在其他實施方式中,藉由固相合成方法延長5’-翼區域進一步包括從該延長的5’-翼區域去除Ac 2O。Ac 2O的去除可進一步包括將延長的5’-翼區域與𠰌啉在DMI中的0.4 M溶液混合。
可重複脫三苯甲基化步驟、中和步驟、偶聯步驟、封端步驟和Ac 2O去除步驟,直到連接了具有所需量的𠰌啉代單體的5’-翼區域。
在其他實施方式中,藉由固相合成方法延長DNA缺口區域可以進一步包括脫三苯甲基化步驟。脫三苯甲基化步驟可以包括在3 wt/v% TCA在CH 2Cl 2中的混合物中處理延長的PMO-缺口體。
在其他實施方式中,固相合成方法進一步包括藉由將反向DNA-或𠰌啉代-亞磷醯胺與5’-PMO翼區域在亞醯胺和5-(乙硫基)-1H-四唑(ETT)在乙腈中的混合物中偶聯,延長DNA缺口區域。
在一些實施方式中,藉由固相合成方法延長DNA缺口區域可以進一步包括硫化步驟。硫化步驟可以包括在((二甲基胺基-亞甲基)胺基)-3H-1,2,4-二噻唑啉-3-硫酮(DDTT)在吡啶和乙腈中的混合物中處理延長的PMO-缺口體,其中吡啶與乙腈的比率可以是2/3。
在其他實施方式中,藉由固相合成方法延長DNA缺口區域進一步包括封端步驟。封端可進一步包括將延長的DNA缺口區域與10 vol%乙酸酐在THF中的混合物混合。對延長的DNA缺口區域進行封端還可進一步包括將該延長的DNA缺口區域與比率為10 : 80 : 10(w/w/w)的1-甲基咪唑-THF-吡啶的混合物混合。在一些實施方式中,對延長的DNA缺口區域進行封端可以包括將該延長的DNA缺口區域與以上所述之兩種混合物混合。
可重複脫三苯甲基化步驟、偶聯步驟、硫化步驟和封端步驟,直到連接了具有所需量的去氧核糖核苷的DNA缺口區域。
在一些實施方式中,藉由固相合成方法延長3’-PMO翼區域可以進一步包括脫三苯甲基化步驟。脫三苯甲基化步驟可以包括在3 wt/v% TCA在CH 2Cl 2中的混合物中洗滌延長的3’ PMO-缺口體翼區域。
在其他實施方式中,藉由固相合成方法延長3’ PMO-缺口體翼區域進一步包括中和該延長的3’ PMO-缺口體翼區域。中和可以包括用DMI和CH 2Cl 2中的iPr 2NEt(比率為10 : 45 : 45)洗滌延長的3’ PMO-缺口體翼區域。
在一些實施方式中,固相合成方法進一步包括藉由將𠰌啉代-或反向DNA-二甲基氯胺基磷酸酯與𠰌啉代單體在DMI中的PMP的存在下,延長3’ PMO-缺口體翼區域。
在一些實施方式中,藉由固相合成方法延長3’ PMO-缺口體翼區域進一步包括對該延長的3’ PMO-缺口體翼區域進行封端。封端可進一步包括將延長的3’ PMO-缺口體翼區域與THF、2,6-二甲基吡啶和Ac 2O的混合物混合。對延長的3’ PMO-缺口體翼區域進行封端還可進一步包括將該延長的3’ PMO-缺口體翼區域與16% 1-甲基咪唑和THF的混合物混合。在一些實施方式中,對延長的3’ PMO-缺口體翼區域進行封端可以包括將該PMO-缺口體與以上所述之兩種混合物混合。
在其他實施方式中,藉由固相合成方法延長3’ PMO-缺口體翼區域進一步包括從該延長的3’ PMO-缺口體翼區域去除Ac 2O。Ac 2O的去除可進一步包括將延長的3’ PMO-缺口體翼區域與𠰌啉在DMI中的0.4 M溶液混合。
在一些實施方式中,藉由固相合成方法延長3’ PMO-缺口體翼區域進一步包括用CH 2Cl 2洗滌該延長的3’ PMO-缺口體翼區域。在Ac 2O去除步驟、脫三苯甲基化步驟、中和步驟、偶聯步驟、和/或封端步驟後,可以將延長的3’ PMO-缺口體翼區域用CH 2Cl 2洗滌。
可重複脫三苯甲基化步驟、中和步驟、偶聯步驟、封端步驟和Ac 2O去除步驟,直到連接了具有所需量的𠰌啉代單體的3’ PMO-缺口體翼區域。
在一些實施方式中,形成所揭露的PMO-缺口體的固相合成方法可進一步包括從固體支持體上切割完全延長的PMO-缺口體。切割步驟可以包括將附接至固體支持體的完全延長的PMO-缺口體與20 vol%二乙胺在CH 3CN中的混合物混合。切割步驟可進一步包括將附接至固體支持體的完全延長的PMO-缺口體與比率為3 : 1的28% NH 4OH和EtOH的混合物混合。
在其他實施方式中,形成所揭露的PMO-缺口體的固相合成方法進一步包括藉由反相液相層析法純化該等PMO-缺口體。在較佳的實施方式中,將PMO-缺口體藉由反相高效液相層析法純化。
在一些實施方式中,形成所揭露的PMO-缺口體的固相合成方法進一步包括藉由脫鹽步驟、陰離子交換步驟、濃縮步驟或三個步驟中的任何組合純化該等PMO-缺口體。
本揭露之另一個方面關於溶液相合成方法以產生立體定義的PMO-缺口體。
在一些實施方式中,藉由以溶液相合成方法偶聯立體定義的5’-片段與立體定義的3’-片段產生立體定義的PMO-缺口體。
Figure 02_image013
在其他實施方式中,溶液相合成方法的偶聯步驟包括12-mer立體定義的3’-片段與6-mer立體定義的5’-片段之間的偶聯。
在一些實施方式中,溶液相合成方法的偶聯步驟包括13-mer立體定義的3’-片段與5-mer立體定義的5’-片段之間的偶聯。
在一些實施方式中,溶液相合成方法的偶聯步驟包括14-mer立體定義的3’-片段與6-mer立體定義的5’-片段之間的偶聯。
12-mer、13-mer或14-mer立體定義的3’-片段可以進一步包括磷二醯胺連接的𠰌啉代單體和/或硫代磷酸酯連接的去氧核糖核苷。
5-mer和6-mer立體定義的5’-片段可以含有磷二醯胺連接的𠰌啉代單體和/或硫代磷酸酯連接的去氧核糖核苷。
在一些實施方式中,立體定義的PMO-缺口體的合成需要去保護步驟。去保護步驟可以包括將立體定義的PMO-缺口體中間體在甲醇、28%氫氧化銨和/或DL-二硫蘇糖醇的溶液中混合。可以向該溶液中進一步添加乙腈和EtOAc的混合物。
在其他實施方式中,立體定義的PMO-缺口體的合成需要純化步驟。純化步驟可以包括過濾沈澱物,洗滌沈澱物,乾燥沈澱物,將溶液用矽膠層析法純化,過濾漿料,將漿料或溶液離心,將溶液用RP-HPLC純化,將溶液用IEX-HPLC純化,將溶液脫鹽,將溶液冷凍乾燥,和/或其組合。
在一些實施方式中,5’-片段的合成包括偶聯步驟、Tr去保護步驟、活化步驟或其組合。溶液相合成方法可進一步包括一系列該等步驟,可以重複該等步驟直到合成所需長度的立體定義的5’-片段。
溶液相合成方法的偶聯步驟可進一步包括將𠰌啉代-或反向DNA-二甲基氯胺基磷酸酯與PMO偶聯。其他實施方式可以包括將𠰌啉代-或反向DNA-二甲基氯胺基磷酸酯與1-mer𠰌啉代偶聯。
在其他實施方式中,溶液相合成方法的偶聯步驟可進一步包括在1,3-二甲基-2-咪唑啉酮中並且在1,2,2,6,6-五甲基哌啶(PMP)的存在下混合𠰌啉代-或反向DNA-二甲基氯胺基磷酸酯。
在一些實施方式中,溶液相合成方法的偶聯步驟可進一步包括在偶聯完成後向偶聯反應混合物中添加EtOAc、甲基三級丁基醚和/或正庚烷,直到沈澱出目標產物。
在其他實施方式中,溶液相合成方法的偶聯步驟可進一步包括在偶聯完成後添加𠰌啉。
在一些實施方式中,5’-片段合成的Tr去保護步驟可以包括將立體定義的PMO在DCM、乙醇和三氟乙酸(TFA)的溶液中混合。另外的實施方式可以包括4-氰基吡啶/TFA在DCM/TFA/乙醇中的溶液的用途。去保護步驟可進一步包括向混合物中添加EtOAc、甲基三級丁基醚、和/或正庚烷,直到沈澱出目標產物。可以收集沈澱物,並且將其用EtOAc、DCM、甲基三級丁基醚、乙醇、甲醇和/或其組合進一步洗滌。
該過程中的沈澱物將是所需的產物的TFA鹽。產物的游離鹼可以藉由將TFA鹽溶解於DCM中,視需要用MeOH,並用PMP處理而形成。隨後,添加EtOAc、MTBE、和/或正庚烷以沈澱出產物。
在一些實施方式中,5’-片段合成的活化步驟可以包括將5-mer或6-mer立體定義的PMO-缺口體中間體(包含PMO和去氧核糖核苷)與(2 S,3a S,6R,7a S)-3a-甲基-2-((全氟苯基)硫代)-6-(丙-1-烯-2-基)六氫苯并[d][1,3,2]氧雜硫雜磷雜茂 2-硫化物((-)-PSI試劑)或(2 R,3a R,6S,7a R)-3a-甲基-2-((全氟苯基)硫代)-6-(丙-1-烯-2-基)六氫苯并[d][1,3,2]氧雜硫雜磷雜茂 2-硫化物((+)-PSI試劑)混合。反應混合物可進一步包括4Å分子篩、DBU、DMI、DCM和/或THF。可以將溶液進一步用氮氣沖洗,然後添加DBU。也可以向溶液中添加EtOAc、甲基三級丁基醚和/或正庚烷,直到沈澱出目標產物。將沈澱物用EtOAc和/或甲基三級丁基醚洗滌。
在一些實施方式中,用2-氯-「螺環」-4,4-五亞甲基-1,3,2-氧雜硫雜磷雜環戊烷進行5’-片段的活化。活化過程可進一步包含反應混合物中的二異丙基乙胺、THF和DCM,以及添加的元素硫。
在一些實施方式中,3’-片段的合成包括立體定義的PMO的合成、鹼基保護基團的去保護、N-保護步驟、5’-O-保護基團的去保護、偶聯步驟、DMT去保護步驟或其組合。溶液相合成方法可進一步包括一系列該等步驟,可以重複該等步驟直到合成所需長度的立體定義的3’-片段。
在其他實施方式中,用於3’-片段合成的鹼基保護基團的去保護步驟可以包括將立體定義的PMO在甲醇和/或28%氫氧化銨的溶液中混合。去保護步驟可進一步包括向溶液中添加EtOAc、MeCN、和/或甲基三級丁基醚,直到沈澱出目標產物。可以將沈澱物用EtOAc、DCM、甲基三級丁基醚、乙醇、甲醇和/或其組合洗滌。
在其他實施方式中,溶液相合成方法的N-保護步驟可以包括將去保護立體定義的PMO在THF、水和甲醇的溶液中混合。可以向溶液中進一步添加1,2,2,6,6-五甲基哌啶和3,5-雙(三氟甲基)苯甲醯氯。N-保護步驟可進一步包括添加EtOAc、DCM、甲醇和/或其組合,直到沈澱出目標產物。可以將沈澱物用EtOAc、DCM和/或其組合洗滌。
在一些實施方式中,溶液相合成方法的5’-OTBDPS去保護步驟可以包括將立體定義的PMO在1,3-二甲基-2-咪唑啉酮、甲氧基三甲基矽烷、吡啶、TEA、甲醇和/或TEA-3HF的溶液中混合。去保護步驟可進一步包括向溶液中添加EtOAc,直到沈澱出目標產物。可以收集沈澱物,並且將其用EtOAc、DCM、甲基三級丁基醚、乙醇、甲醇和/或其組合進一步洗滌。
在其他實施方式中,3’-片段的合成包括將手性P(V)活化的核苷與包含立體定義的硫代磷酸酯鍵的去氧核糖核苷酸或立體定義的PMO中的一種偶聯。
Figure 02_image015
手性P(V)活化的核苷
在其他實施方式中,溶液相合成方法的偶聯步驟可進一步包括將 (+)-或 (-)-PSI-軛合的核苷與包含立體定義的硫代磷酸酯鍵的立體定義的PMO-缺口體中間體或立體定義的PMO偶聯。(+)-或 (-)-PSI-軛合的核苷與立體定義的PMO或立體定義的PMO-缺口體中間體的一個的偶聯可以發生在1,3-二甲基-2-咪唑啉酮的溶液中。反應混合物可進一步包含4Å分子篩和/或1,8-二氮雜雙環[5.4.0]十一碳-7-烯(DBU)。還可以將溶液與甲苯共沸一次至三次,然後添加4Å分子篩和/或DBU。還可以將溶液用氮氣或氬氣沖洗一次或三次,並且放置在惰性氣氛下,然後添加DBU。
在一些實施方式中,溶液相合成方法的偶聯步驟在室溫下進行。
該說明書包括必需的序列表,並且各種化合物表明了該化合物中使用的核苷酸序列。熟悉該項技術者將理解,當序列被稱為「5-8-5 PMO-缺口體」或「5-8-5」序列時,在確定的化合物中,在5’到3’的方向上,序列表中所示的核苷酸被連接,使得核苷酸1至6藉由磷二醯胺鍵連接,核苷酸6至14藉由硫代磷酸酯鍵連接,並且核苷酸14至18藉由磷二醯胺鍵連接。同樣地,在4-10-4 PMO-缺口體中,在確定的化合物中,在5’到3’的方向上,序列表中所示的核苷酸被連接,使得核苷酸1至5藉由磷二醯胺鍵連接,核苷酸5至15藉由硫代磷酸酯鍵連接,並且核苷酸15至18藉由磷二醯胺鍵連接。此外,此類化合物的立體化學如本申請的主體所報導。
在其他實施方式中,溶液相合成方法的DMT去保護步驟可進一步包括在1,1,1,3,3,3-六氟-2-丙醇、2,2,2-三氟乙醇、DCM和/或三乙基矽烷的混合物中混合立體定義的PMO-缺口體中間體。去保護步驟可進一步包括向溶液中添加EtOAc、甲基三級丁基醚和/或正庚烷,直到沈澱出目標產物。可以收集沈澱物,並且將其用EtOAc、DCM、甲基三級丁基醚、乙醇、甲醇和/或其組合進一步洗滌。 實例 縮寫
在整個實例中可以使用以下縮寫。 Bz:苯甲醯基 iBu:異丁醯基 CE:氰基乙基 (
Figure 02_image017
) DBU:1,8-二氮雜雙環[5.4.0]十一碳-7-烯 DCM:二氯甲烷 DIPEA:N,N-二異丙基乙胺 DMAP:4-(二甲基胺基)吡啶 DMF:N,N-二甲基甲醯胺 DMI:1,3-二甲基-2-咪唑啉酮 DMSO:二甲基亞碸 DMT: 4,4'-二甲氧基三苯甲基 (
Figure 02_image019
) EtOAc:乙酸乙酯 HATU:1-[雙(二甲基胺基)亞甲基]-1H-1,2,3-三唑并[4,5-b]吡啶鎓 3-氧化物六氟磷酸鹽 MeCN:乙腈 MMT:4-甲氧基三苯基甲基 MTBE:甲基三級丁基醚 PMP:1,2,2,6,6-五甲基哌啶 tert-:三級 TEA:三乙胺 TFA:三氟乙酸 THF:四氫呋喃 TBDPS:三級丁基二苯基矽基 Tr:三苯基甲基
以下實例中的化合物的化學名稱係使用「E-手冊(E-Notebook)2014」第13版或E-手冊第18.1.1.0073版(鉑金埃爾默有限公司(PerkinElmer Co., Ltd.)),基於化學結構創建的。
在實例中,使用SNAP柱(Biotage®)或Hi-FlashTM柱矽膠或胺基(YAMAZENE公司)進行快速層析法分離。
質子核磁共振(NMR)譜在JEOL JNM-ECZ 400S/L1或JEOL JNM-ECZ 500R/S1或Varian Inova 500 MHz或Varian Inova 400 MHz、或Bruker 400 MHz光譜儀上記錄。化學位移以(ppm)為單位報告,並且偶合常數以赫茲(Hz)為單位報告。裂分形式的縮寫如下:s:單峰;d:雙峰;t:三重峰;m:多重峰;以及brs:寬單峰。
31P核磁共振(NMR)譜在Varian Inova 400 MHz或Bruker 400 MHz光譜儀上記錄。化學位移以(ppm)為單位報告。裂分形式的縮寫如下:s:單峰。
使用Acquity UPLC和SQD2(沃特世(Waters))、或Acquity UPLC和Synapt G2(沃特世)、或Nexera X3 UHPLC(島津公司(Shimadzu))和Q Exactive Plus(賽默飛世爾科技公司(ThermoFisherScientific))進行質譜法。
在實例中,將可商購的產品適當地用作可商購化合物。 實例1:單體的合成和𠰌啉代單體在固體支持體上的負載 ((2R,3S,5R)-3-(雙(4-甲氧基苯基)(苯基)甲氧基)-5-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)四氫呋喃-2-基)甲基 二甲基氯胺基磷酸酯的合成
Figure 02_image021
方法-1
向3'-O-[雙(4-甲氧基苯基)(苯基)甲基]胸苷(CAS 76054-81-4)(3.00 g,5.51 mmol)在DCM(20 mL)中的溶液中添加1-甲基咪唑(0.524 mL,6.61 mmol)、2,6-二甲基吡啶(1.60 mL,13.8 mmol),隨後伴隨冰冷卻一次性添加(二甲基胺基)膦醯二氯(1.63 mL,13.8 mmol)。將所得溶液在室溫下攪拌6 h。伴隨冰冷卻,向5%檸檬酸水溶液(60 mL)中添加反應混合物。將混合物分離,並且將水層用DCM萃取。將有機層用鹽水洗滌,經Na 2SO 4乾燥,過濾,並在真空中濃縮以給出粗品。將殘餘物使用50%至80% EtOAc/庚烷進行矽膠柱層析法以得到目標材料(2.71 g)。 方法-2
在0°C下,向3'-O-[雙(4-甲氧基苯基)(苯基)甲基]胸苷(3.00 g,5.51 mmol)在CH 3CN(55 mL)和DCM(55 mL)中的溶液中添加溴化鋰(1.58 g,18.2 mmol)和DBU(2.74 mL,18.2 mmol),隨後一次性添加(二甲基胺基)膦醯二氯(0.853 mL,7.16 mmol),並且在相同溫度下攪拌15 min。將所得溶液在室溫下攪拌1 h。在0°C下,向反應混合物中添加在水(95 mL)中的檸檬酸一水合物(5.0 g,23.8 mmol)。向混合物中添加DCM(50 mL),並將混合物藉由ISOLUTE TM相分離器(拜泰齊公司(Biotage))分離,並且將有機層在真空中濃縮以給出粗品。將殘餘物使用50%至100% EtOAc/庚烷進行矽膠柱層析法以得到目標材料(1.18 g)。
1HNMR (396 MHz, 氯仿-d) δ 7.28-7.36 (m, 7 H), 7.94 (br s, 1 H), 7.42-7.46 (m, 2 H), 6.80-6.88 (m, 4 H), 6.34-6.45 (m, 1 H), 4.26-4.35 (m, 1 H), 3.86-4.03 (m, 2 H), 3.79 (s, 6 H), 3.45-3.57 (m, 1 H), 2.59-2.67 (m, 7 H), 2.04-2.20 (m, 1 H), 1.84-1.91 (m, 3 H), 1.61-1.73 (m, 1 H)。 ((2R,3S,5R)-5-(4-苯甲醯胺基-2-側氧基嘧啶-1(2H)-基)-3-(雙(4-甲氧基苯基)(苯基)甲氧基)四氫呋喃-2-基)甲基 二甲基氯胺基磷酸酯的合成
Figure 02_image023
在-10°C下,向N-苯甲醯基-3'-O-[雙(4-甲氧基苯基)(苯基)甲基]-2'-去氧胞苷(CAS 140712-80-7)(2.00 g,3.16 mmol)在CH 3CN(20 mL)和DCM(28 mL)中的溶液中添加溴化鋰(0.850 g,9.78 mmol)和DBU(1.46 mL,9.78 mmol),隨後一次性添加(二甲基胺基)膦醯二氯(0.560 mL,4.73 mmol)。將所得溶液在-10°C下攪拌4 h。向反應混合物中添加5%檸檬酸水溶液(220 mL)。將混合物在-10°C下攪拌5 min。向混合物中添加DCM,然後將其分離。將水層用DCM萃取,並且將合併的有機層用水洗滌,然後用鹽水洗滌,經Na 2SO 4乾燥,過濾,並在真空中濃縮以給出粗品。將殘餘物使用60%至80% EtOAc/庚烷進行矽膠柱層析法以得到目標材料(1.49 g)。
1H NMR (氯仿-d, 396 MHz) δ 8.02-8.05 (m, 1H), 7.87 (br d, 2H, J= 7.7 Hz), 7.60 (t, 1H, J= 7.7 Hz), 7.44-7.52 (m, 5H), 7.28-7.36 (m, 6H), 7.21-7.26 (m, 1H), 6.83-6.85 (m, 4H), 6.38-6.42 (m, 1H), 4.29-4.32 (m, 1H), 3.99-4.04 (m, 0.5H), 3.92-3.93 (m, 0.5H), 3.83-3.87 (m, 1H), 3.79 (s, 6H), 3.44-3.52 (m, 1H), 2.63 (s, 1.5H), 2.63 (s, 1.5H), 2.60 (s, 1.5H), 2.59 (s, 1.5H), 1.63-1.73 (m, 2H)。MS (ESI) m/z:[M+H] +針對C 39H 41ClN 4O 8P的計算值:759.235;實測值:759.372。 ((2R,3S,5R)-5-(6-苯甲醯胺基-9H-嘌呤-9-基)-3-(雙(4-甲氧基苯基)(苯基)甲氧基)四氫呋喃-2-基)甲基 二甲基氯胺基磷酸酯的合成
Figure 02_image025
在0°C下,向N-苯甲醯基-3'-O-[雙(4-甲氧基苯基)(苯基)甲基]-2'-去氧腺苷(CAS 140712-79-4)(3.00 g,4.56 mmol)、1-甲基咪唑(0.434 mL,5.47 mmol)、和2,6-二甲基吡啶(1.32 mL,11.4 mmol)在DCM(22.6 mL,351.2 mmol)中的溶液中添加(二甲基胺基)膦醯二氯(1.35 mL,11.4 mmol)。將混合物逐漸加溫至室溫並在室溫下攪拌5 h。將反應混合物倒入冰冷的5%檸檬酸水溶液中,然後用EtOAc萃取(2次)。將合併的有機層用鹽水洗滌,經Na 2SO 4乾燥,過濾,並且在真空中濃縮。將殘餘物使用20%至40%至80% EtOAc/庚烷進行矽膠柱層析法以得到目標材料(2.10 g)。1H NMR (396 MHz, 氯仿-d) δ ppm 8.84-8.95 (m, 1H), 8.78 (s, 1H), 8.13 (m, 1H), 8.00 (m, 2H), 7.58-7.64 (m, 1H), 7.47-7.53 (m, 4H), 7.28-7.42 (m, 6H), 6.79-6.92 (m, 4H), 6.54 (m, 1H), 4.48-4.57 (m, 1H), 4.06-4.17 (m, 2H), 3.94-4.05 (m, 1H), 3.80 (m, 1H), 3.79 (s, 6H), 2.59-2.60 (m, 3H), 2.55-2.56 (m, 3H), 2.33-2.46 (m, 1H), 2.11-2.30 (m, 1H)。
MS (ESI) m/z:[M+H]+針對C 40H 41ClN 6O 7P的計算值:783.246;實測值:783.368。 ((2R,3S,5R)-3-(雙(4-甲氧基苯基)(苯基)甲氧基)-5-(2-異丁醯胺基-6-側氧基-1,6-二氫-9H-嘌呤-9-基)四氫呋喃-2-基)甲基二甲基氯胺基磷酸酯的合成
Figure 02_image027
(1) N-(9-((2R,4S,5R)-4-(雙(4-甲氧基苯基)(苯基)甲氧基)-5-(((三級丁基二甲基矽基)氧基)甲基)四氫呋喃-2-基)-6-側氧基-6,9-二氫-1H-嘌呤-2-基)異丁醯胺
向N-(9-((2R,4S,5R)-4-羥基-5-(羥基甲基)四氫呋喃-2-基)-6-側氧基-6,9-二氫-1H-嘌呤-2-基)異丁醯胺(CAS 68892-42-2)(5.00 g,14.8 mmol)在吡啶(33.5 mL,0.414 mol)中的溶液中伴隨冰冷卻添加三級丁基氯二甲基矽烷(3.35 g,22.2 mmol)。將所得溶液在室溫下攪拌190 min。向溶液中添加4,4'-(氯(苯基)亞甲基)雙(甲氧基苯)(8.54 g,25.2 mmol)。將所得溶液在50°C下攪拌2 h。向反應混合物中添加飽和NaHCO 3水溶液(150 mL),然後將其分離。將水層用DCM萃取兩次,並且將合併的有機層用水和鹽水洗滌,然後經Na 2SO 4乾燥,過濾,並且在真空中濃縮以給出粗品。將殘餘物使用33%至66% EtOAc/庚烷進行矽膠柱層析法以得到目標材料(8.78 g)。
1H NMR (氯仿-d, 396 MHz) δ 11.87 (s, 1H), 7.98 (s, 1H), 7.80 (s, 1H), 7.45-7.47 (m, 2H), 7.28-7.36 (m, 6H), 7.21-7.24 (m, 1H), 6.82-6.84 (m, 4H), 6.20-6.24 (m, 1H), 4.36-4.38 (m, 1H), 4.05-4.07 (m, 1H), 3.78 (s, 6H), 3.58-3.62 (m, 1H), 3.31-3.35 (m, 1H), 2.54-2.61 (m, 1H), 1.94-2.01 (m, 1H), 1.83-1.88 (m, 1H), 1.27-1.29 (m, 6H), 0.77 (s, 9H), -0.07 (s, 3H), -0.09 (s, 3H)。MS (ESI) m/z:[M+H] +針對C 41H 52N 5O 7Si的計算值:754.363;實測值:754.387。 (2) N-(9-((2R,4S,5R)-4-(雙(4-甲氧基苯基)(苯基)甲氧基)-5-(羥基甲基)四氫呋喃-2-基)-6-側氧基-6,9-二氫-1H-嘌呤-2-基)異丁醯胺
向N-(9-((2R,4S,5R)-4-(雙(4-甲氧基苯基)(苯基)甲氧基)-5-(((三級丁基二甲基矽基)氧基)甲基)四氫呋喃-2-基)-6-側氧基-6,9-二氫-1H-嘌呤-2-基)異丁醯胺(4.50 g,5.97 mmol)在THF(41 mL)中的溶液中添加四正丁基氟化銨(1 M THF溶液,6.57 mL,6.57 mmol)。將所得溶液在室溫下攪拌18 h。將反應混合物用EtOAc(400 mL)稀釋,並且用飽和NH 4Cl水溶液(200 mL)、飽和NaHCO 3水溶液(200 mL)和鹽水(200 mL)洗滌。將有機層經Na 2SO 4乾燥,過濾,並且在真空中濃縮以給出粗品。將殘餘物使用0%至20% MeOH/DCM進行矽膠柱層析法以得到含有目標材料的混合物。將混合物使用1%至5% MeOH/DCM進行進一步矽膠柱層析法以得到目標材料(3.03 g)。
1H NMR (氯仿-d, 396 MHz) δ 12.00 (br s, 1H), 8.24 (br s, 1H), 7.65 (s, 1H), 7.43-7.46 (m, 2H), 7.28-7.35 (m, 6H), 7.21-7.23 (m, 1H), 6.81-6.85 (m, 4H), 6.15 (dd, 1H, J= 5.3, 9.7 Hz), 5.14 (br d, 1H, J= 11.0 Hz), 4.50 (d, 1H, J= 5.7 Hz), 4.05 (s, 1H), 3.78 (s, 3H), 3.78 (s, 3H), 3.68-3.71 (m, 1H), 3.27 (t, 1H, J= 11.0 Hz), 2.55-2.62 (m, 1H), 2.41 (ddd, 1H, J= 5.7, 9.7, 13.6 Hz), 1.70 (dd, 1H, J= 5.3, 13.6 Hz), 1.22-1.23 (m, 6H)。MS (ESI) m/z:[M+H] +針對C 35H 38N 5O 7的計算值:640.277;實測值:640.615。 (3) ((2R,3S,5R)-3-(雙(4-甲氧基苯基)(苯基)甲氧基)-5-(2-異丁醯胺基-6-側氧基-1,6-二氫-9H-嘌呤-9-基)四氫呋喃-2-基)甲基 二甲基氯胺基磷酸酯
Figure 02_image029
向N-(9-((2R,4S,5R)-4-(雙(4-甲氧基苯基)(苯基)甲氧基)-5-(羥基甲基)四氫呋喃-2-基)-6-側氧基-6,9-二氫-1H-嘌呤-2-基)異丁醯胺(2.38 g,3.73 mmol)在CH 3CN(32 mL)和DCM(32 mL)中的溶液中添加溴化鋰(1.29 g,14.9 mmol)和DBU(2.25 mL,14.9 mmol),隨後伴隨冰冷卻一次性添加(二甲基胺基)膦醯二氯(0.887 mL,7.45 mmol)。將所得溶液伴隨冰冷卻攪拌45 min。向反應混合物中添加5%檸檬酸水溶液(300 mL)。將混合物伴隨冰冷卻攪拌5 min。向混合物中添加DCM(270 mL),然後將其分離。將水層用DCM萃取兩次,並且將合併的有機層用水洗滌。將水層用DCM萃取兩次,並將合併的有機層經Na 2SO 4乾燥,過濾,並且在真空中濃縮以給出粗品。將殘餘物使用0%至16% THF/DCM進行矽膠柱層析法以得到目標材料(2.08 g)。
1H NMR (氯仿-d, 396 MHz) δ 12.15 (s, 0.5H), 12.11 (s, 0.5H), 10.01 (s, 0.5H), 9.93 (s, 0.5H), 7.64 (s, 0.5H), 7.61 (s, 0.5H), 7.44-7.47 (m, 2H), 7.30-7.36 (m, 6H), 7.21-7.24 (m, 1H), 6.83-6.86 (m, 4H), 6.27-6.31 (m, 0.5H), 6.16-6.20 (m, 0.5H), 4.70-4.76 (m, 0.5H), 4.48-4.49 (m, 0.5H), 4.32-4.38 (m, 1H), 4.20-4.25 (m, 1H), 3.99-4.03 (m, 0.5H), 3.85-3.88 (m, 0.5H), 3.78 (s, 3H), 3.78 (s, 3H), 2.65-2.76 (m, 2H), 2.62 (s, 1.5H), 2.61 (s, 1.5H), 2.59 (s, 1.5H), 2.58 (s, 1.5H), 1.94-1.99 (m, 0.5H), 1.67-1.72 (m, 0.5H), 1.16-1.21 (m, 6H)。MS (ESI) m/z:[M+H] +針對C 37H 43ClN 6O 8P的計算值:765.256;實測值:765.383。 ((2S,6R)-6-(2-異丁醯胺基-6-側氧基-1,6-二氫-9H-嘌呤-9-基)-4-三苯甲基𠰌啉-2-基)甲基 二甲基氯胺基磷酸酯的合成
Figure 02_image031
向N-(9-((2R,6S)-6-(羥基甲基)-4-三苯甲基𠰌啉-2-基)-6-側氧基-6,9-二氫-1H-嘌呤-2-基)異丁醯胺(4.00 g,6.91 mmol)在CH 3CN(59 mL)和DCM(59 mL)中的溶液中添加溴化鋰(2.40 g,27.6 mmol)和DBU(4.17 mL,27.6 mmol),隨後伴隨冰冷卻一次性添加(二甲基胺基)膦醯二氯(1.65 mL,13.8 mmol)。將所得溶液伴隨冰浴攪拌35 min。向反應混合物中添加5%檸檬酸水溶液(220 mL)。將混合物伴隨冰浴攪拌5 min。向混合物中添加DCM(180 mL),然後將其分離。將水層用DCM萃取兩次,並將合併的有機層經Na 2SO 4乾燥,過濾,並且在真空中濃縮以給出粗品。將殘餘物使用0%至16% THF/DCM進行矽膠柱層析法以得到目標材料(2.70 g)。
1H NMR (氯仿-d, 396 MHz) δ 11.98 (br s, 0.5H), 11.97 (br s, 0.5H), 8.62 (s, 0.5H), 8.46 (s, 0.5H), 7.58 (s, 0.5H), 7.57 (s, 0.5H), 7.44 (br s, 6H), 7.28-7.31 (m, 6H), 7.17-7.21 (m, 3H), 5.96-6.01 (m, 1H), 4.42-4.47 (m, 1H), 4.02-4.18 (m, 2H), 3.41-3.44 (m, 1H), 3.19-3.23 (m, 1H), 2.66-2.71 (m, 1H), 2.64 (s, 1.5H), 2.63 (s, 1.5H), 2.61 (s, 1.5H), 2.59 (s, 1.5H), 1.69-1.75 (m, 1H), 1.50-1.57 (m, 1H), 1.26-1.31 (m, 6H)。MS (ESI) m/z:[M+H] +針對C 35H 40ClN 7O 5P的計算值:704.251;實測值:704.380。 ((2S,6R)-6-(6-(2-氰基乙氧基)-2-異丁醯胺基-9H-嘌呤-9-基)-4-三苯甲基𠰌啉-2-基)甲基 (2-氰基乙基) 二異丙基亞磷醯胺的合成
Figure 02_image033
在0°C下,向N-(6-(2-氰基乙氧基)-9-((2R,6S)-6-(羥基甲基)-4-三苯甲基𠰌啉-2-基)-9H-嘌呤-2-基)異丁醯胺(3.00 g,4.75 mmol)在DCM(30 mL)中的溶液中添加DIPEA(1.82 mL,10.5 mmol),隨後添加2-氰基乙基 N,N-二異丙基氯亞磷醯胺(1.17 mL,5.22 mmol),並且將反應混合物在室溫下攪拌1 h。在0°C下,向混合物中添加飽和NaHCO 3水溶液。將有機層藉由ISOLUTE TM相分離器(拜泰齊公司)分離,並且將有機層在真空中濃縮以給出粗品。將殘餘物使用50%至100% EtOAc/庚烷進行矽膠柱層析法以得到目標材料(1.50 g)。
1H NMR (400 MHz, 氯仿-d) δ 7.76-7.82 (m, 2 H), 7.43-7.53 (m, 5 H), 7.26-7.32 (m, 6 H), 7.15-7.22 (m, 3 H), 6.18-6.25 (m, 1 H), 4.69-4.83 (m, 2 H), 4.32-4.41 (m, 1 H), 3.43-3.76 (m, 8 H), 3.21-3.33 (m, 1 H), 2.93-3.09 (m, 3 H), 2.45-2.57 (m, 2 H), 1.68-1.81 (m, 1 H), 1.32-1.36 (m, 6 H), 1.10-1.14 (m, 6 H), 0.99-1.06 (m, 6 H)。 負載到胺基甲基聚苯乙烯樹脂上的4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基𠰌啉-2-基)甲氧基)-4-側氧基丁酸的合成
Figure 02_image035
將4-(((2S,6R)-6-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)-4-三苯甲基𠰌啉-2-基)甲氧基)-4-側氧基丁酸(CAS 1362664-41-2)(360 mg,0.617 mmol)溶解於DMF(15.4 mL)中。添加HATU(793 mg,2.09 mmol)和DIPEA(0.539 mL,3.08 mmol),然後將胺基甲基聚苯乙烯樹脂(Primer Support TM5G Amino,29-0999-92,由GE醫療集團(GE Healthcare)製造)(2.00 g,胺含量:400 μmol/g)添加至反應混合物中,並且在室溫下在生物振盪器(110 rpm)上輕輕振盪12 h。將樹脂過濾,依次用DCM、在CHCl 3中的50% MeOH、DCM和醚洗滌。將樹脂在真空下乾燥1 h。將樹脂上未反應的胺藉由與封端劑B溶液-1(THF/1-Me-咪唑/吡啶(8 : 1 : 1))(97 mL)和封端劑A溶液-1(10 vol% Ac2O/THF)(65 mL)在生物振盪器(110 rpm)上在室溫下反應1 h進行封端。將樹脂過濾,依次用DCM、在DCM中的20% MeOH、DCM和醚洗滌。將樹脂在高真空下乾燥以得到目標材料(1.80 g,載量:229 μmol/g)。 負載到胺基甲基聚苯乙烯樹脂上的4-(((2S,6R)-6-(4-苯甲醯胺基-2-側氧基嘧啶-1(2H)-基)-4-三苯甲基𠰌啉-2-基)甲氧基)-4-側氧基丁酸的合成
Figure 02_image037
將4-(((2S,6R)-6-(4-苯甲醯胺基-2-側氧基嘧啶-1(2H)-基)-4-三苯甲基𠰌啉-2-基)甲氧基)-4-側氧基丁酸(CAS 1362664-31-0)(540 mg,0.803 mmol)溶解於DMF(22 mL)中。添加HATU(1.03 g,2.71 mmol)和DIPEA(0.701 mL,4.01 mmol),然後將胺基甲基聚苯乙烯樹脂(Primer Support TM5G Amino,29-0999-92,由GE醫療集團製造)(2.32 g,胺含量:450 μmol/g)添加至反應混合物中,並且在室溫下在生物振盪器(110 rpm)上輕輕振盪12 h。將樹脂過濾,依次用DCM、在CHCl 3中的50% MeOH、DCM和醚洗滌。將樹脂在真空下乾燥1 h。將樹脂上未反應的胺藉由與封端劑B溶液-1(THF/1-Me-咪唑/吡啶(8 : 1 : 1))(127 mL)和封端劑A溶液-1(10 vol% Ac2O/THF)(84 mL)在生物振盪器(110 rpm)上在室溫下反應2 h進行封端。將樹脂過濾,依次用DCM、在DCM中的20% MeOH、DCM和醚洗滌。將樹脂在高真空下乾燥以得到目標材料(2 g,載量:194 μmol/g)。 負載到胺基甲基聚苯乙烯樹脂上的4-(((2S,6R)-6-(6-苯甲醯胺基-9H-嘌呤-9-基)-4-三苯甲基𠰌啉-2-基)甲氧基)-4-側氧基丁酸的合成
Figure 02_image039
將4-(((2S,6R)-6-(6-苯甲醯胺基-9H-嘌呤-9-基)-4-三苯甲基𠰌啉-2-基)甲氧基)-4-側氧基丁酸(CAS 446206-67-2)(174 mg,0.250 mmol)溶解於DMF(6.3 mL)中。添加HATU(321 mg,0.845 mmol)和DIPEA(0.218 mL,1.25 mmol),然後將胺基甲基聚苯乙烯樹脂(Primer Support TM5G Amino,29-0999-92,由GE醫療集團製造)(813 mg,胺含量:400 μmol/g)添加至反應混合物中,並且在室溫下在生物振盪器(110 rpm)上輕輕振盪12 h。將樹脂過濾,依次用DCM、在CHCl 3中的50% MeOH、DCM和醚洗滌。將樹脂在真空下乾燥1 h。將樹脂上未反應的胺藉由與封端劑B溶液-1(THF/1-Me-咪唑/吡啶(8 : 1 : 1))(39.4 mL)和封端劑A溶液-1(10vol% Ac2O/THF)(26.2 mL)在生物振盪器(110 rpm)上在室溫下反應1 h進行封端。將樹脂過濾,依次用DCM、在DCM中的20% MeOH、DCM和醚洗滌。將樹脂在高真空下乾燥以得到目標材料(827 mg,載量:196 μmol/g)。 負載到胺基甲基聚苯乙烯樹脂上的4-(((2S,6R)-6-(6-(2-氰基乙氧基)-2-異丁醯胺基-9H-嘌呤-9-基)-4-三苯甲基𠰌啉-2-基)甲氧基)-4-側氧基丁酸的合成
Figure 02_image041
Figure 02_image043
(1) 4-(((2S,6R)-6-(6-(2-氰基乙氧基)-2-異丁醯胺基-9H-嘌呤-9-基)-4-三苯甲基𠰌啉-2-基)甲氧基)-4-側氧基丁酸
在室溫下,向N-(6-(2-氰基乙氧基)-9-((2R,6S)-6-(羥基甲基)-4-三苯甲基𠰌啉-2-基)-9H-嘌呤-2-基)異丁醯胺(1.50 g,2.37 mmol)和DMAP(0.87 g,7.12 mmol)在1,2-二氯乙烷(15 mL)中的溶液中添加琥珀酸酐(0.475 g,4.75 mmol),並且在45°C下攪拌1.5 h。將混合物冷卻至室溫。添加MeOH(5 mL),並且將混合物蒸發。將EtOAc和0.5 M KH 2PO 4水溶液(pH約7)添加至殘餘物中,並且將有機層分離。將水層用EtOAc萃取。將合併的有機層用0.5 M KH 2PO 4水溶液(酸性)、水、然後鹽水洗滌,經MgSO 4乾燥,過濾,並且在真空中濃縮以給出4-(((2S,6R)-6-(6-(2-氰基乙氧基)-2-異丁醯胺基-9H-嘌呤-9-基)-4-三苯甲基𠰌啉-2-基)甲氧基)-4-側氧基丁酸(1.51 g)。
1H NMR (396 MHz, 氯仿-d) δ 9.22-9.36 (m, 1 H), 7.73-7.79 (m, 1 H), 7.43-7.54 (m, 5 H), 7.28-7.35 (m, 6 H), 7.15-7.23 (m, 4 H), 5.95-6.05 (m, 1 H), 4.71-4.88 (m, 2 H), 4.45-4.56 (m, 1 H), 4.30-4.39 (m, 1 H), 3.77-3.89 (m, 1 H), 3.38-3.46 (m, 1 H), 3.13-3.21 (m, 1 H), 2.97-3.09 (m, 2 H), 2.80-2.92 (m, 2 H), 2.47-2.67 (m, 4 H), 2.05-2.11 (m, 1 H), 1.23-1.30 (m, 6 H)。MS (ESI) m/z:[M+H] +針對C 40H 42N 7O 7的計算值:732.314;實測值:732.493。 (2) 負載到胺基甲基聚苯乙烯樹脂上的4-(((2S,6R)-6-(6-(2-氰基乙氧基)-2-異丁醯胺基-9H-嘌呤-9-基)-4-三苯甲基𠰌啉-2-基)甲氧基)-4-側氧基丁酸
將4-(((2S,6R)-6-(6-(2-氰基乙氧基)-2-異丁醯胺基-9H-嘌呤-9-基)-4-三苯甲基𠰌啉-2-基)甲氧基)-4-側氧基丁酸(183 mg,0.25 mmol)溶解於DMF(7.5 mL)中。添加HATU(321 mg,0.845 mmol)和DIPEA(0.218 mL,1.25 mmol),然後將胺基甲基聚苯乙烯樹脂(Primer Support TM5G Amino,29-0999-92,由GE醫療集團製造)(813 mg,胺含量:400 μmol/g)添加至反應混合物中,並且在室溫下在生物振盪器(110 rpm)上輕輕振盪18 h。將樹脂過濾,依次用DCM、在CHCl 3中的50% MeOH、DCM和醚洗滌。將樹脂在真空下乾燥1 h。將樹脂上未反應的胺藉由與封端劑B溶液-1(THF/1-Me-咪唑/吡啶(8 : 1 : 1))(39.4 mL)和封端劑A溶液-1(10 vol% Ac 2O/THF)(26.2 mL)在生物振盪器(110 rpm)上在室溫下反應1 h進行封端。將樹脂過濾,依次用DCM、在DCM中的20% MeOH、DCM和醚洗滌。將樹脂在高真空下乾燥以得到目標材料(750 mg,載量:208 mol/g)。 1H-NMR:質子核磁共振光譜法
質子核磁共振光譜法的化學位移以來自四甲基矽烷的 δ 單位(ppm)記錄。圖譜中的縮寫如下所示: s:單峰,d:雙峰,t:三重峰,q:四重峰,quin:五重峰,m:多重峰,br:寬峰。 矽膠柱層析法
使用山善集團(YAMAZEN Corporation)生產的Parallel Prep{Hi-快速柱填充普通矽膠),大小:S(16 x 60 mm),M(20 x 75 mm),L(26 x 100 mm),2L(26 x 150 mm),由山善集團生產}。 實例2:立體無規的PMO-缺口體固相合成的總體合成方案
在NTS DNA/RNA合成儀(NIHON技術服務公司(NIHON TECHNO SERVICE))和nS-8II合成儀(基因設計公司(GeneDesign))上合成寡核苷酸。所有合成均使用1.0 µmol規模的空合成柱(Empty Synthesis Columns-TWIST,Glen研究公司(Glen Research))進行,該柱填充有負載有PrimerSupport(Primer Support TM5G Amino,GE醫療集團,琥珀酸鹽連接子)的N-Tr-𠰌啉代單體。
藉由NTS DNA/RNA合成儀進行N-Tr-𠰌啉代 (PMO)-二甲基氯胺基磷酸酯或3’-DMT-DNA-5’-二甲基氯胺基磷酸酯的偶聯。將二甲基氯胺基磷酸酯試劑製備成在1,3-二甲基-2-咪唑啉酮(DMI)中的0.20 M溶液,並且將1,2,2,6,6-五甲基哌啶(PMP)在DMI中的0.3 M溶液用作偶聯活化劑。使用在DCM(CH 2Cl 2)中的3%三氯乙酸(TCA)進行脫三苯甲基化,並且用封端混合物A(THF/2,6-二甲基吡啶/Ac 2O,Glen研究公司)和封端混合物B(16% 1-Me-咪唑/THF,Glen研究公司)完成封端。使用在DMI和DCM中的DIPEA進行中和。將固體支持體中剩餘的Ac 2O藉由DMI中的0.4 M𠰌啉溶液除去。表2中描述了合成循環的逐步描述。 [表2]:PMO-或DNA-二甲基氯胺基磷酸酯偶聯的合成循環。
步驟 反應 試劑 時間
1 Ac 2O去除 DMI中的𠰌啉(0.4 M) 540秒
2 洗滌 DCM   
3 脫三苯甲基化 DCM中的3wt/v% TCA 40秒
4 洗滌 DCM   
5 中和 DMI和DCM中的DIPEA(10 : 45 : 45) 120秒
6 洗滌 DCM   
7 偶聯 DMI中的二甲基氯胺基磷酸酯(0.2 M) DMI中的PMP(0.3 M) (二甲基氯胺基磷酸酯的最終濃度為0.1 M) 8 h
8 洗滌 DCM   
9 封端 封端混合物A(THF/2,6-二甲基吡啶/Ac 2O) 封端混合物B(16% 1-Me-咪唑/THF) 60秒
10 洗滌 DCM   
藉由NTS DNA/RNA合成儀(Nihon技術服務公司(Nihon-techno service))進行
藉由nS-8II合成儀進行3’-DMT-DNA-5’-氰基乙基亞磷醯胺和N-Tr-𠰌啉代氰基乙基亞磷醯胺的偶聯。如表2所示,將亞磷醯胺製備成CH 3CN中的0.20 M或0.30 M溶液。將5-(乙硫基)-1H-四唑(ETT)在CH 3CN中的0.40 M溶液用作偶聯活化劑。使用在DCM中的3%三氯乙酸進行脫三苯甲基化,並且用封端劑A溶液-1(10 vol% Ac2O/THF,和光純藥工業株式會社(WAKO))和封端劑B溶液-1(THF/1-Me-咪唑/吡啶,(8 : 1 : 1,和光純藥工業株式會社))完成封端。用((二甲基胺基-亞甲基)胺基)-3H-1,2,4-二噻唑啉-3-硫酮(DDTT)在吡啶和CH 3CN(3 : 2)中的0.05 M溶液進行硫化。表3中描述了合成循環的逐步描述。 [表3]:DNA-或PMO-亞磷醯胺偶聯的合成循環。
步驟 反應 試劑 時間
1 脫三苯甲基化 DCM中的3wt/v% TCA 20秒
2 偶聯 CH 3CN中的DNA-亞醯胺(0.20 M) CH 3CN中的PMO-亞醯胺(A、T、C為0.20 M,並且G為0.3 M) CH 3CN中的ETT(0.4 M) (除0.15 M的PMO-G外,亞醯胺的最終濃度為0.1 M) 5 min
3 硫化 吡啶和CH 3CN(3 : 2)中的DDTT(0.05 M) 10 min
4 封端 封端劑A(在THF中的10 vol%乙酸酐) 封端劑B(1-Me-咪唑/THF/吡啶) 30秒
藉由nS-8II合成儀(基因設計公司)進行
寡核苷酸的切割和去保護:自動合成完成後,將固體支持體用在CH 3CN中的20vol%二乙胺處理,然後靜置1 h。將支持體用無水CH 3CN洗滌,並且用氬氣乾燥。將支持體轉移到空螺口管中,並在60°C下用28% NH 4OH和EtOH(3 : 1,1 mL)的溶液處理過夜。將支持體用Disc針頭過濾器(親水PTEE,0.45 μm,島津公司)過濾。將濾液在N 2流下乾燥。將所得殘餘物溶解於水中。(當溶液中出現懸浮物時,進行進一步過濾。)藉由反相高效液相層析法(RP-HPLC)和液相層析法質譜法(LCMS)分析粗材料。
圖1A和圖1B係寡核苷酸的固相合成和該實例中詳述的偶聯反應的合成循環的示意圖。5'-活化的DNA單體用於克服由於合成方向相反(即PMO為5’至3’,DNA為3’至5’)而帶來的合成挑戰。
N-Tr的純化:將粗材料藉由RP-HPLC用純化條件-1(小規模)或條件-2(中等規模)進行純化。收集獲得的級分,並將其用N 2流乾燥。
純化條件-1: 柱:XBridge BEH C18 OBD prep(10 x 150 mm,粒徑5 μm,沃特世) 檢測:260 nm 柱溫:55°C 洗脫液A:100 mM HFIP,8.6 mM TEA/水 洗脫液B:100% MeOH 梯度B:25 min內25%至56% 流速:3.5 mL/min
純化條件-2: 柱:XBridge BEH Prep C18 OBD(19 x 150 mm,粒徑5 μm,沃特世) 檢測:260 nm 柱溫:55°C 洗脫液A:100 mM HFIP,8.6 mM TEA/水 洗脫液B:100% MeOH 梯度B:20 min內10%至70% 流速:20 mL/min
脫三苯甲基化和純化(用於體外/體內):藉由混合TFA(0.17 mL)、Et 3N(0.16 mL)、EtOH(0.25 mL)、2,2,2-三氟乙醇(2.5 mL)和DCM(22.25 mL),製備用於脫三苯甲基化的溶液。在0°C下向純化的N-Tr的殘餘物中添加上述溶液(過量)。幾個小時後,在0°C下,將在DCM中的5% DIPEA添加至混合物中用於中和。然後將混合物藉由N 2流乾燥。將殘餘物用水溶解,並用純化條件-1,使用梯度B:25 min內25%至35%,藉由RP-HPLC純化。收集獲得的級分,並將其用N 2流乾燥。
寡核苷酸的脫鹽(用於體外):脫三苯甲基化後,將純化的寡核苷酸用水稀釋至總體積為2.5 mL,然後使用水作為平衡緩衝液,根據製造商的方案,藉由Illustra™ NAP™-25柱(GE醫療集團)脫鹽。將獲得的溶液用N 2流乾燥。
寡核苷酸的離子交換(用於體內-1):脫三苯甲基化後,將純化的寡核苷酸用起始緩衝液(0.02 M磷酸Na緩衝液(pH 8.0),20% CH3CN)稀釋,直到總體積變為1 mL。按照製造商的方案,使用起始緩衝液和洗脫緩衝液(含有1.5 M NaCl的起始緩衝液),藉由HiTrapQ HP(1 mL,GE醫療集團)進行陰離子交換。收集獲得的級分,並將其用N2流乾燥。將殘餘物用水稀釋至總體積為2.5 mL,然後使用水作為平衡緩衝液,根據製造商的方案,藉由Illustra™ NAP™-25柱(GE醫療集團)脫鹽。將獲得的溶液用N2流乾燥。
寡核苷酸的離子交換(用於體內-2):藉由使用離心旋轉過濾器(Vivaspin 20,3,000分子量截留,GE醫療集團)進行陰離子交換。脫三苯甲基化後,將純化的寡核苷酸用NaOAc(0.1 M)溶解至總體積高達14 mL,然後將溶液應用於旋轉過濾器。將樣本用離心機濃縮至小於5 mL。將濃縮的溶液用水稀釋至總體積高達14 mL,並且濃縮至小於5 mL。將該稀釋和濃縮過程重複兩次。將殘餘物轉移到空管中,並用真空濃縮器濃縮。
分析:將獲得的殘餘物用水溶解,並且藉由260 nm處的吸光度(用Nanodrop測量)和因子值(ng・cm/uL)確定濃度。 實例3:PMO中磷立體化學的確定
藉由TA PMO二核苷酸的X射線結構(美國專利10,457,698)和 31P NMR化學位移確定活化的𠰌啉代單體的絕對立體化學。A2單體給出具有 Sp組態的TA2二聚體,這係由X射線結晶學確定的。根據立體特異性偶聯反應過程中立體化學的反轉,將A2的立體化學確定為 Rp。
A2、T1、C1和G2單體在 31P NMR中顯示相同的趨勢(化學位移比其他相應異構物低),表明A2、T1、C1和G2具有相同的P組態,該P組態根據A2的立體化學被指定為 Rp,並給出具有 Sp組態的偶聯產物。
來自A2、T1、C1和G2的二聚體在 31P NMR中顯示出相同的趨勢:分別高於來自A1、T2、G1和C2的二聚體的化學位移。
表4描繪了各種𠰌啉代單體和二聚體的 31P NMR化學位移和指定的P立體化學。 [表4] - 各種𠰌啉代單體和二聚體的 31P NMR化學位移和指定的P立體化學。
Figure 02_image045
*A1和A2意指活化的A單體在手性HPLC條件下的早期洗脫A異構物(A1)和後期洗脫A異構物(A2)。同樣地,「1」和「2」命名表示其他活化的單體的早期和後期洗脫手性HPLC條件。 實例4:立體定義的5-8-5 PMO-缺口體的溶液相合成
作為實例4中方案的替代方案,立體定義的PMO-缺口體的溶液相合成的總體合成方案如下所示:
Figure 02_image047
PMO-缺口體的去氧核糖核苷之間的硫代磷酸酯鍵中磷原子的立體化學藉由使用如由以下揭露的類似方法來控制:Knouse和deGruyter等人(參見Knouse, K.和deGrutyer, J.等人, 「Unlocking P(V): Reagents for chiral phosphorothioate synthesis [解鎖P(V):手性硫代磷酸酯合成試劑]」, Science[科學], 2018, 361(6408): 1234-1238)以及Stec等人(參見Stec等人, 「Deoxyribonucleoside 3¢-O-(2-Thio-and 2-Oxo-「spiro」-4,4-pentamethylene-1,3,2-oxathiaphospholane)s: Monomers for Stereocontrolled Synthesis of Oligo(deoxyribonucleoside phosphorothioate)s and Chimeric PS/PO Oligonucleotides [去氧核糖核苷3¢- O-(2-硫代和2-側氧基-「螺環」-4,4-五亞甲基-1,3,2-氧雜硫雜磷雜環戊烷):用於立體控制合成寡聚(去氧核糖核苷硫代磷酸酯)和嵌合體PS/PO寡核苷酸的單體]」, J. Am. Chem. Soc. [美國化學會誌] 1998, 120, 7156-7167;Karwowski和Stec等人, 「Stereocontrolled synthesis of LNA Dinucleoside phosphorothioate by the oxathiaphospholane approach [藉由氧雜硫雜磷雜環戊烷法立體控制合成LNA二核苷硫代磷酸酯]」, Bioorg. Med. Chem. Lett.[生物有機與藥物化學快報], 11 (2001) 1001-1003;以及Karwowski和Stec等人, 「Nucleoside 3′- O-(2-Oxo-「 Spiro」-4.4-Pentamethylene-1.3.2-Oxathiaphospholane)S: Monomers For Stereocontrolled Synthesis Of Oligo(Nucleoside Phosphorothioate/Phosphate)S [核苷 3′-O-(2-側氧基-「螺環」-4,4-五亞甲基-1,3,2-氧雜硫雜磷雜環戊烷):用於立體控制合成寡聚(核苷硫代磷酸酯/磷酸鹽)的單體]」, Nucleosides & Nucleotides[核苷與核苷酸], 17(9-1l), 1747-1759 (1998)),它們全部藉由援引併入本文。
本實例中呈現的立體定義的PMO-缺口體的溶液相合成與以前的反義寡核苷酸的溶液相合成的不同在於本合成採用了12 + 6的偶聯步驟。之前的溶液相合成典型地一次偶聯一個核苷酸,直到形成最終產物;然而,該等偶聯方法導致最終產物被不同長度的其他種類的寡核苷酸污染的機會增加。這種增加的污染機會係由於並非所有的寡核苷酸都有足夠的時間與添加到溶液中的下一個核苷酸相互作用。因此,不僅最終產物含有不同長度的核苷酸的機會增加,而且含有不同核苷酸序列的核苷酸的機會也增加。
進行6 + 12偶聯的優點係,它減少了在形成最終產物之前一次加入一個核苷酸的步驟數,因此有可能使最終產物的純度和產量提高。
圖2A和圖2B描繪了根據該實例中詳述的溶液相合成方法的PMO-缺口體的代表性合成。 實例4.1:5’-PMO翼的製備 5’-PMO翼的2-mer:偶聯
Figure 02_image049
在室溫下,向起始材料 1(0.500 g,1.15 mmol)在1,3-二甲基-2-咪唑啉酮(8.76 mL)中的溶液中添加1,2,2,6,6-五甲基哌啶(0.63 mL),隨後添加 C1(0.803 g,1.15 mmol)。攪拌溶液直至反應完成。緩慢添加甲基三級丁基醚(MTBE)(45 mL),隨後添加正庚烷(40 mL)。將上清液溶液除去。將固體溶解於DCM中,並且使用在DCM中的0-25%的甲醇梯度作為洗脫液藉由矽膠柱層析法純化,以得到目標化合物 2(0.98 g)。MS (ESI) m/z:[M+H] +針對C 60H 59N 9O 10P的計算值1096.41;實測值1096.13。 5’-PMO翼的2-mer:去保護
Figure 02_image051
在室溫下,向起始材料 2(1.2 g,1.1 mmol)在DCM(12.00 mL)和乙醇(0.64 mL,11 mmol)中的溶液中逐滴添加TFA(0.548 mL,7.12 mmol)。將反應攪拌過夜。將MTBE(45 mL)緩慢添加至反應中,形成白色沈澱物(TFA鹽)。將漿料混合物攪拌10-15 min,然後過濾。將餅狀物用MTBE(2 x 10 mL)洗滌。將TFA鹽溶解於DCM(12 mL)中,並且用1,2,2,6,6-五甲基哌啶(0.991 mL,5.47 mmol)處理以形成游離鹼。將溶液攪拌10-15 min後,將MTBE(50 mL)緩慢添加至反應中,導致白色沈澱物。將混合物攪拌10-15 min並過濾。將餅狀物用MTBE(2 x 10 mL)洗滌。獲得0.74 g的目標產物 3。MS (ESI) m/z:[M+H] +針對C 41H 45N 9O 10P的計算值854.29;實測值854.20。 5’-PMO翼的3-mer:偶聯
Figure 02_image053
將起始材料 3(0.74 g,0.87 mmol)溶解於1,3-二甲基-2-咪唑啉酮(8 mL)中。在室溫下,添加1,2,2,6,6-五甲基哌啶(0.475 mL,2.60 mmol),隨後添加 G’2(0.732 g,1.04 mmol)。將混合物在室溫下攪拌3-4 h,並且用EtOAc(約10 mL)然後MTBE(50 mL)處理。將沈澱物藉由過濾收集,並且用MTBE(2 x 10 mL)洗滌。獲得1.3 g的目標產物 4
MS (ESI) m/z:[M+H] +針對C 76H 84N 16O 15P 2的計算值1522.56;實測值1522.25。 5’-PMO翼的3-mer:去保護
Figure 02_image055
將起始材料 4(1.3 g,0.85 mmol)溶解於DCM(16.8 mL)和乙醇(0.499 mL,8.54 mmol)中。在室溫下添加TFA(0.329 mL,4.27 mmol)。2 h後,緩慢添加MTBE(55 mL),導致沈澱。攪拌5-10 min後,將固體過濾並用MTBE(2 x 10 mL)洗滌。在室溫下,將所得固體再溶解於10 mL DCM中,並且用1,2,2,6,6-五甲基哌啶(0.780 mL,4.27 mmol)處理。將溶液攪拌10分鐘後,緩慢添加MTBE(50 mL),導致沈澱。攪拌10-15 min後,將混合物過濾,用MTBE(2 x 10 mL)洗滌,並乾燥。獲得1.05 g的目標產物 5
MS (ESI) m/z:[M+H] +針對C 57H 69N 16O 15P 2的計算值1279.46;實測值1279.14。 5’-PMO翼的4-mer:偶聯
Figure 02_image057
將起始材料 5(1.05 g,0.821 mmol)溶解於1,3-二甲基-2-咪唑啉酮(10.7 mL)中。在室溫下,添加1,2,2,6,6-五甲基哌啶(0.450 mL,2.46 mmol),隨後添加 T1(0.600 g,0.985 mmol)。將混合物在室溫下攪拌2-4 h。緩慢添加10 mL的EtOAc。添加MTBE(50 mL)直到白色懸浮液持續存在。將所得漿料攪拌10-15 min,然後過濾。將餅狀物用MTBE(2 x 10 mL)洗滌,並且乾燥。獲得1.52 g的目標產物6。
MS (ESI) m/z:[M+H] +針對C 88H 102N 20O 20P 3的計算值1851.68;實測值1852.17。 5’-PMO翼的4-mer:去保護
Figure 02_image059
Figure 02_image061
將起始材料 6(1.5 g,81 mmol)溶解於DCM(15.9 mL)和乙醇(0.946 mL,16.2 mmol)中。逐滴添加TFA(0.478 mL,6.20 mmol),並且將所得混合物在室溫下攪拌2-4 h。添加EtOAc(10 mL),隨後添加MTBE(30-40 mL)。形成白色沈澱物。將漿料攪拌10-15 min並過濾。將餅狀物用MTBE(2 x 10 mL)洗滌。將沈澱物再溶解於10 mL DCM中,並且用1,2,2,6,6-五甲基哌啶(1.18 mL,6.48 mmol)處理。攪拌10 min後,添加EtOAc(30 mL),隨後添加MTBE(30 mL)。將所得混合物攪拌10-15 min,並且將沈澱物藉由過濾收集,用MTBE(2 x 10 mL)洗滌,並乾燥。獲得0.96 g的目標產物7。
MS (ESI) m/z:[M+H] +針對C 69H 88N 20O 20P 3的計算值1609.57;實測值1610.21。 5’-PMO翼的5-mer:偶聯
Figure 02_image063
將起始材料 7(0.96 g,0.60 mmol)溶解於1,3-二甲基-2-咪唑啉酮(9.73 mL)中。在室溫下,添加1,2,2,6,6-五甲基哌啶(0.327 mL,1.789 mmol),隨後添加 T1(0.436 g,0.716 mmol)。將混合物攪拌12-16 h。添加EtOAc(20 mL),隨後添加MTBE(40 mL)。將所得混合物攪拌10-15 min並過濾。將餅狀物用EtOAc(2 x 10 mL)洗滌,並且乾燥。獲得1.3 g的目標產物 8
MS (ESI) m/z:[M+2H] 2+針對C 100H 121N 24O 25P 4的計算值1090.89;實測值1091.55。 5’-PMO翼的5-mer:去保護
Figure 02_image065
將起始材料 8(1.3 g,0.60 mmol)溶解於DCM(11.7 mL)中。在室溫下,逐滴添加乙醇(0.696 mL,11.9 mmol),隨後添加TFA(0.275 mL,3.57 mmol)。將所得混合物在室溫下攪拌2-3小時。添加EtOAc(40 mL)直到形成沈澱物。將漿料攪拌5-10 min並過濾。將餅狀物用EtOAc(2 x 5 mL)洗滌。將沈澱物再溶解於DCM 8 mL中,並且添加1,2,2,6,6-五甲基哌啶(0.871 mL,4.77 mmol)。將所得溶液在室溫下攪拌10-15分鐘,並且用EtOAc(10 mL)隨後MTBE(40 mL)處理。將所得混合物攪拌5-10 min並過濾。將餅狀物用MTBE(2 x 5 mL)洗滌,並且乾燥。1.1 g的目標產物 9。MS (ESI) m/z:[M+H] +針對C 81H 107N 24O 25P 4的計算值1939.68;實測值1939.98。 5’-PMO翼的6-mer:偶聯
Figure 02_image067
將起始材料 9(1.1 g,0.567 mmol)溶解於1,3-二甲基-2-咪唑啉酮(12 mL)中。在室溫下添加1,2,2,6,6-五甲基哌啶(0.411 mL,2.27 mmol),隨後添加((2R,3S,5R)-3-(雙(4-甲氧基苯基)(苯基)甲氧基)-5-(5-甲基-2,4-二側氧基-3,4-二氫嘧啶-1(2H)-基)四氫呋喃-2-基)甲基 二甲基氯胺基磷酸酯 10(0.532 g,0.794 mmol)。將混合物在室溫下攪拌過夜。添加10 mL EtOAc和20-30 mL MTBE。將所得漿料攪拌10-15分鐘並過濾。將餅狀物用EA(2 x 10 mL)洗滌,並且乾燥。獲得1.45 g的目標產物 11
MS (ESI) m/z:[M+2H] 2+針對C 114H 144N 27O 33P 5的計算值1286.96;實測值1287.22。 5’-PMO翼的6-mer:去保護
Figure 02_image069
將起始材料 11(1.45 g,0.563 mmol)溶解於DCM(27.2 mL)和乙醇(1.65 mL,28.2 mmol)中。在室溫下添加二氯乙酸(1.86 mL,22.5 mmol)。3 h後,反應完成。添加EtOAc(10 mL),隨後添加MTBE(40-50 mL),直到沈澱物持續存在。將混合物攪拌5 min並過濾。將餅狀物用MTBE(2 x 10 mL)洗滌,並且乾燥。獲得1.28 g的目標產物 12
MS (ESI) m/z:[M+2H] 2+針對C 93H 126N 27O 31P 5的計算值1135.89;實測值1135.95。 用(-)-PSI激活5’ 6-mer
Figure 02_image071
將起始材料 12(1.28 g,0.564 mmol)和(-)-PSI試劑(奧德里奇公司(Aldrich),CAS:2245335-70-8,0.352 g,0.789 mmol)添加至反應燒瓶中。添加3.8 g 4Å分子篩,將反應混合物用氮氣沖洗10-20 min。添加DCM(30 mL)和THF(20 mL)。將所得混合物在室溫下攪拌,並且用N 2沖洗30 min。逐滴添加DBU(0.119 mL,0.789 mmol)。將反應混合物攪拌1-2 h。完成後,將反應混合物過濾至含有MTBE(120 mL)的燒瓶中。形成白色沈澱物。將沈澱物攪拌10-15 min。將沈澱物過濾,用MTBE(2 x 10 mL)洗滌,並且乾燥。將沈澱物回收並乾燥,以給出1.3 g的目標產物 13a
MS (ESI) m/z:[M+2H] 2+針對C 103H 141N 27O 32P 6S 2的計算值1258.91;實測值1259.17。 替代路徑:用2-氯-「螺環」-4,4-五亞甲基-1,3,2-氧雜硫雜磷雜環戊烷激活6-mer
Figure 02_image073
在室溫下,向 12(2.3 g,1.0 mmol)和0.19 mL的二異丙基乙胺(1.1 mmol)在THF和DCM中的磁力攪拌的溶液中逐滴添加2-氯-「螺環」-4,4-五亞甲基-1,3,2-氧雜硫雜磷雜環戊烷(1.1 mmol)。反應完成後,添加元素硫(1.5 mmol)。攪拌持續12 h。完成後,將反應混合物過濾至含有MTBE的燒瓶中。將所得沈澱物過濾,用MTBE洗滌,並且在真空中乾燥。將沈澱物回收並進一步乾燥,以給出目標產物 13b。 實例4.2:3’-PMO翼的製備 3’-PMO的2-mer:偶聯
Figure 02_image075
將起始材料 14(100 mg,0.169 mmol)用MeCN追洗一次,然後溶解於DCM(2 mL)中,隨後添加1,2,2,6,6-五甲基哌啶(92 µL,0.506 mmol)。在室溫下,向混合物中添加反應物 C1(144 mg,0.206 mmol)。將反應混合物在室溫下攪拌過夜。然後使其直接經受矽膠柱層析法。用在DCM中的8% MeOH洗脫,以得到216 mg的目標產物 15
MS (ESI) m/z:[M+H] +針對C 70H 73N 11O 8PSi的計算值1254.51;實測值1254.43。 3’-PMO的2-mer:去保護
Figure 02_image077
向裝有起始材料 15(212 mg,0.169 mmol)的燒瓶中添加TFA(85 µL,1.1 mmol)在DCM(2.8 mL)中的溶液,隨後添加乙醇(99 µL,1.7 mmol)。將反應混合物在室溫下攪拌1 h。將該混合物用飽和NaHCO 3水溶液處理,並且用DCM萃取兩次。將DCM層合併,並且用半飽和的鹽水洗滌,經Na 2SO 4乾燥,濃縮。將所得殘餘物用矽膠柱層析法純化,以給出137 mg的目標產物 16
MS (ESI) m/z:[M+H] +針對C 51H 59N 11O 8PSi的計算值1012.41;實測值1012.30。 3’-PMO的3-mer:偶聯
Figure 02_image079
在室溫下,向起始材料 16(137 mg,0.135 mmol)在1,3-二甲基-2-咪唑啉酮(2 mL)中的溶液中添加1,2,2,6,6-五甲基哌啶(73.5 µL,0.406 mmol),隨後添加反應物 C1(123 mg,0.176 mmol)。將反應混合物在室溫下攪拌2 h。向反應混合物中添加MTBE(20 mL),隨後添加正庚烷(10 mL)。將沈澱物藉由過濾收集,並且用MTBE/正庚烷(9 mL,2 : 1 v/v)沖洗。在室溫下,將沈澱物再溶解於DCM(15 mL)中,並且用𠰌啉(12 µL,0.14 mmol)處理。將混合物在室溫下攪拌過週末,然後濃縮並用MeCN追洗。材料(17)不經進一步純化即可直接用於下一步。
MS (ESI) m/z:[M+H] +針對C 88H 95N 16O 13P 2Si的計算值1673.65;實測值1673.45。 3’-PMO的3-mer:去保護
Figure 02_image081
向裝有起始材料 17(227 mg,0.136 mmol)的燒瓶中添加TFA(67.9 µL,0.881 mmol)在DCM(2.3 mL)中的溶液,隨後添加乙醇(79 µL,1.4 mmol)。將反應混合物在室溫下攪拌40 min,然後在室溫下添加另外的在DCM(1.2 mL)中的TFA(130 µL,1.68 mmol)。將其在室溫下攪拌6 h。向混合物中添加MTBE(21 mL)和正庚烷(7 mL)。將沈澱物藉由過濾收集,並且用MTBE沖洗。獲得238 mg沈澱物。在室溫下,將沈澱物再溶解於DCM(2 mL)中,向其中添加1,2,2,6,6-五甲基哌啶(198 µL,1.08 mmol)。將混合物在室溫下攪拌1 h,然後添加MTBE(20 mL),並且將所得懸浮液在室溫下攪拌過夜。將沈澱物藉由過濾收集,並且用MTBE沖洗。獲得205 mg的目標產物 18
MS (ESI) m/z:[M+H] +針對C 69H 81N 16O 13P 2Si的計算值1431.54;實測值1431.26。 3’-PMO的4-mer:偶聯
Figure 02_image083
Figure 02_image085
在室溫下,向起始材料 18(205 mg,0.143 mmol)在1,3-二甲基-2-咪唑啉酮(3.0 mL)中的溶液中添加1,2,2,6,6-五甲基哌啶(78 µL,0.43 mmol),隨後添加反應物 C1(125 mg,0.179 mmol)。將反應混合物在室溫下攪拌1.5 h,然後添加𠰌啉(12.5 µL,0.143 mmol)。將混合物在室溫下攪拌過夜,然後向其中添加MTBE直到藉由LCMS檢測到上清液中無產物。將沈澱物藉由過濾收集,並且用MTBE沖洗。然後將該沈澱物用在DCM中的12%至15% MeOH藉由矽膠柱層析法純化,以給出194 mg的目標產物19。
MS (ESI) m/z:[M+2H] 2+針對C 106H 118N 21O 18P 3Si的計算值1046.90;實測值1047.16。 3’-PMO的4-mer:去保護
Figure 02_image087
向裝有起始材料 19(194 mg,0.093 mmol)的燒瓶中添加TFA(60 µL,0.78 mmol)在DCM(2.0 mL)中的溶液,隨後添加乙醇(54.1 µL,0.93 mmol)。將反應混合物在室溫下攪拌5 h,然後添加MTBE(20 mL)。將沈澱物藉由過濾收集,並且用MTBE沖洗。將沈澱物再溶解於DCM(2.0 mL)中,向其中添加1,2,2,6,6-五甲基哌啶(102 µL,0.556 mmol)。將混合物在室溫下攪拌20 min,然後添加MTBE(20 mL)。將沈澱物藉由過濾收集,並且用MTBE沖洗。獲得167 mg的目標產物 20
MS (ESI) m/z:[M+H] +針對C 87H 103N 21O 18P 3Si的計算值1850.68;實測值1850.56。 3’-PMO的5-mer:偶聯
Figure 02_image089
在室溫下,向起始材料20(167 mg,0.09 mmol)在1,3-二甲基-2-咪唑啉酮(2.0 mL)中的溶液中添加1,2,2,6,6-五甲基哌啶(49.4 µL,0.271 mmol),隨後添加反應物 T1(71 mg,0.12 mmol)。將反應混合物在室溫下攪拌過週末,然後添加MTBE(20 mL)。將上清液藉由傾析除去。將殘餘物用矽膠柱層析法純化。用在DCM中的10%至30% MeOH洗脫,以得到202 mg的目標產物21。
MS (ESI) m/z:[M+2H] 2+針對C 118H 137N 25O 23P 4Si的計算值1211.95;實測值1212.46。 3’-PMO的5-mer:去保護
Figure 02_image091
向起始材料 21(1.65 g,0.647 mmol)在DCM(15.7 mL)中的溶液中添加乙醇(0.38 mL,6.5 mmol),然後添加TFA(0.470 mL,6.10 mmol)。1.5 h後,在室溫下添加MTBE(60 mL)。將所得漿料通過燒結玻璃過濾器過濾。將餅狀物用MTBE/DCM(10 mL/3 mL)的混合物沖洗,並且在真空中乾燥2 h,導致1.44 g的目標產物 22
MS (ESI) m/z:[M+2H] 2+針對C 99H 123N 25O 23P 4Si的計算值1090.90;實測值1091.03。 3’-PMO的5-mer:Bz基團的去保護
Figure 02_image093
在室溫下,將起始材料 22(0.44 g,0.19 mmol)溶解於甲醇(6 mL)和28%氫氧化銨(6 mL)的混合物中。將所得混合物在50°C-52°C下加熱12 h,並且冷卻至室溫。將大多數的溶劑藉由氮氣吹掃除去。將殘餘物溶解於DCM/MeOH(6/2 mL)中,並且用40 mL EtOAc處理。添加EtOAc後,出現沈澱。將所得沈澱物藉由過濾收集,並且用EtOAc/DCM/MeOH(20 mL/3 mL/1 mL)的混合物沖洗。在真空中乾燥過夜,以得到330 mg的目標產物 23
MS (ESI) m/z:[M+H] +針對C 71H 106N 25O 19P 4Si的計算值1764.68;實測值1764.99。 3’-PMO的5-mer:𠰌啉保護
Figure 02_image095
向起始材料 23(526 mg,0.298 mmol)在THF/水/MeOH(9 mL/1.6 mL/1 mL)的混合物中的溶液中添加1,2,2,6,6-五甲基哌啶(162 µL,0.894 mmol)和3,5-雙(三氟甲基)苯甲醯氯(64.8 µL,0.358 mmol)。將所得混合物在室溫下攪拌,同時藉由LCMS監測反應進程。1 h後,分兩批添加另外的30 µL的雙(三氟甲基)苯甲醯氯。反應完成後,將反應混合物在真空中濃縮。將所得殘餘物溶解於DCM/MeOH(12 mL/3 mL)的混合物中,然後用EtOAc(80 mL)處理。添加EtOAc後,出現沈澱。將所得沈澱物藉由過濾收集,並且用EtOAc/DCM(4 mL/1 mL)和EtOAc(10 mL)沖洗。在真空中乾燥2 h,以得到547 mg的目標產物 24。在所得濾液中產生了另外的沈澱。獲得24 mg的第2批產物。
MS (ESI) m/z:[M+2H] 2+針對C 80H 109F 6N 25O 20P 4Si的計算值1002.84;實測值1002.91。 3’-PMO的5-mer:TBDPS的去保護
Figure 02_image097
在室溫下,向起始材料 24(571 mg,0.285 mmol)在1,3-二甲基-2-咪唑啉酮(5.7 mL)中的溶液中添加吡啶(8.6 mL)和TEA(8.6 mL)。將所得溶液用TEA-3HF(371 µL,2.278 mmol)處理,然後攪拌過夜。藉由LCMS監測完成後,將反應混合物用甲氧基三甲基矽烷(3.4 mL,25 mmol)處理並在室溫下攪拌1 h。然後添加MeOH(3 mL)和1,3-二甲基-2-咪唑啉酮(6 mL)以製備澄清溶液。將所得溶液添加至EtOAc(60 mL)中,用約10 mL EtOAc沖洗。添加後,出現白色沈澱。將漿料通過燒結玻璃過濾器過濾並用EtOAc(10 mL)沖洗。在室溫下,將所得沈澱物溶解於DCM(20 mL)/1,3-二甲基-2-咪唑啉酮(20 mL)的混合物中,並且用EtOAc(50 mL)處理。添加EtOAc後,出現沈澱。將所得沈澱物藉由過濾收集並用EtOAc(15 mL)沖洗。在氮氣吹掃下在真空中乾燥,以提供523 mg的目標產物25。
MS (ESI) m/z:[M+H] +針對C 64H 90F 6N 25O 20P 4的計算值1766.56;實測值1766.61。 實例4.3:DNA的延長 6-mer:偶聯
Figure 02_image099
將起始材料 25(125 mg,0.071 mmol)和反應物 H1(158 mg,0.177 mmol)溶解於1,3-二甲基-2-咪唑啉酮(3 mL)中,並且將所得混合物在30°C-32°C下與甲苯共沸三次(每次2 mL)。向所得溶液中添加4Å分子篩(350 mg)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。向所得混合物中添加DBU(0.064 mL,0.42 mmol),並且將反應混合物在室溫下攪拌過夜(16 h),同時藉由LCMS監測反應進程。完成後,將反應混合物通過注射器過濾器過濾,並且將濾液添加至EtOAc(15 mL)中,用1,3-二甲基-2-咪唑啉酮(2 mL)沖洗。向所得漿料中添加另外的7.5 mL的EtOAc。將所得沈澱物藉由過濾收集,並且用EtOAc/1,3-二甲基-2-咪唑啉酮(5 mL/1 mL)和EtOAc(10 mL)的混合物沖洗。在真空中乾燥40 min,以提供228 mg的目標產物 26
HRMS (ESI) m/z:[M+H] +針對C 102H 126F 6N 28O 28P 5S的計算值2492.7643;實測值2492.7361。 6-mer:去保護
Figure 02_image101
將起始材料 26(228 mg,0.0710 mmol)溶解於1,1,1,3,3,3-六氟-2-丙醇(1.5 mL)、2,2,2-三氟乙醇(0.75 mL)、DCM(3.7 mL)和三乙基矽烷(2.2 mL)的混合物中,並且將所得溶液在室溫下攪拌。4 h後,添加另外的2 mL的1,1,1,3,3,3-六氟-2-丙醇。反應完成(藉由LCMS監測)後,添加25 mL EtOAc和33 mL MTBE。將所得沈澱物藉由過濾收集,並且用EtOAc/DCM(8 mL/2 mL)的混合物沖洗。在真空中乾燥過夜,以提供150 mg的目標產物27。
HRMS (ESI) m/z:[M+H] +針對C 74H 104F 6N 28O 25P 5S的計算值2086.6074;實測值2086.5801。 7-mer:偶聯
Figure 02_image103
向起始材料 27(150 mg,0.064 mmol)和反應物 H1(172 mg,0.192 mmol)的混合物中添加1,3-二甲基-2-咪唑啉酮(3.6 mL)。將所得混合物在30°C-33°C下與甲苯共沸三次(每次2 mL)。向所得溶液中添加4Å分子篩(350 mg)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。向所得混合物中添加DBU(0.058 mL,0.38 mmol),並且將反應混合物在室溫下攪拌過夜(13 h),同時藉由LCMS監測反應進程。完成後,將反應混合物通過注射器過濾器過濾,並且將濾液添加至EtOAc(15 mL)中,用2 mL 1,3-二甲基-2-咪唑啉酮沖洗。向所得漿料中添加另外的5 mL的EtOAc。將所得沈澱物藉由過濾收集,並且用EtOAc/1,3-二甲基-2-咪唑啉酮(5 mL/1 mL)和EtOAc(10 mL)的混合物沖洗。在真空中乾燥30 min,以提供218 mg的目標產物 28
HRMS (ESI) m/z:[M-DMT+2H] +針對C 91H 122F 6N 31O 31P 6S 2的計算值2509.6728;實測值2509.6360。 7-mer:去保護
Figure 02_image105
向起始材料 28(218 mg,0.064 mmol)中添加1,1,1,3,3,3-六氟-2-丙醇(2 mL)、2,2,2-三氟乙醇(0.5 mL)、三乙基矽烷(1.5 mL)和DCM(2.5 mL)的混合物。將所得溶液在室溫下攪拌,同時藉由LCMS監測進程。反應完成後(3 h),添加40 mL EtOAc。將所得沈澱物藉由過濾收集,並且用EtOAc/DCM(8 mL/2 mL)的混合物沖洗。在真空中乾燥過夜,以提供150 mg的目標產物 29
HRMS (ESI) m/z:[M+2H] 2+針對C 84H 119F 6N 31O 30P 6S 2的計算值1203.3272;實測值1203.3145。 8-mer:偶聯
Figure 02_image107
將起始材料 29(150 mg,0.055 mmol)和反應物 30a(150 mg,0.166 mmol)溶解於1,3-二甲基-2-咪唑啉酮(5.5 mL)中。將所得溶液在30°C-33°C下與甲苯共沸三次(每次2 mL)。向所得溶液中添加4Å分子篩(350 mg)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。向所得混合物中添加DBU(0.067 mL,0.44 mmol),並且將反應混合物在室溫下攪拌,同時藉由LCMS監測反應進程。完成後(2.5 d),將反應混合物通過注射器過濾器過濾,並且將濾液添加至EtOAc(24 mL)中,用2.5 mL 1,3-二甲基-2-咪唑啉酮沖洗。將所得沈澱物藉由過濾收集,並且用EtOAc/1,3-二甲基-2-咪唑啉酮(8 mL/2 mL)和EtOAc(10 mL)的混合物沖洗。在室溫下在真空中乾燥過夜,以提供214 mg的目標產物 31
HRMS (ESI) m/z:[M-DMT+2H] +針對C 101H 134F 6N 36O 35P 7S 3的計算值2838.7075;實測值2838.6948。 8-mer:去保護
Figure 02_image109
向起始材料 31(214 mg,0.055 mmol)中添加1,1,1,3,3,3-六氟-2-丙醇(2 mL)、2,2,2-三氟乙醇(0.5 mL)、三乙基矽烷(1.5 mL)和DCM(2.5 mL)的混合物。將所得溶液在室溫下攪拌,同時藉由LCMS監測進程。反應完成後(3 h),添加35 mL EtOAc。將所得沈澱物藉由過濾收集,並且用EtOAc/DCM(8 mL/2 mL)的混合物沖洗。在真空中乾燥過夜,以提供146 mg的目標產物 32
MS (ESI) m/z:[M-2H] 2-針對C 101H 131F 6N 36O 35P 7S 3的計算值1418.34;實測值1418.52。 9-mer: 偶聯
Figure 02_image111
向起始材料 32(146 mg,0.044 mmol)在1,3-二甲基-2-咪唑啉酮(5.0 mL)中的溶液中添加反應物 H2(105 mg,0.133 mmol)。將所得混合物在30°C-33°C下與甲苯共沸三次(每次2 mL)。向所得溶液中添加4Å分子篩(400 mg)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。向所得混合物中添加DBU(0.060 mL,0.40 mmol),並且將反應混合物在室溫下攪拌,同時藉由LCMS監測反應進程。完成後(2 d),將反應混合物通過注射器過濾器過濾,並且將所得濾液添加至EtOAc(25 mL)中,用3 mL 1,3-二甲基-2-咪唑啉酮沖洗。將所得沈澱物藉由過濾收集,並且用EtOAc/1,3-二甲基-2-咪唑啉酮(6 mL/2 mL)和EtOAc(10 mL)的混合物沖洗。在室溫下在真空中乾燥2 h,以提供238 mg的目標產物 33
MS (ESI) m/z:[M-2H] 2-針對C 132H 162F 6N 38O 43P 8S 4的計算值1729.42;實測值1729.95。 9-mer: 去保護
Figure 02_image113
向起始材料 33(238 mg,0.058 mmol)中添加1,1,1,3,3,3-六氟-2-丙醇(2 mL)、2,2,2-三氟乙醇(0.5 mL)、三乙基矽烷(1.5 mL)和DCM(2.5 mL)的混合物。將所得溶液在室溫下攪拌,同時藉由LCMS監測進程。反應完成後(18 h),添加40 mL EtOAc。將所得沈澱物藉由過濾收集,並且用EtOAc/DCM(6 mL/2 mL)的混合物沖洗。在真空中乾燥3 h,以提供目標產物 34(理論上為170 mg)。
MS (ESI) m/z:[M-2H] 2-針對C 111H 144F 6N 38O 41P 8S 4的計算值1578.36;實測值1578.94。 10-mer: 偶聯
Figure 02_image115
向起始材料 34(理論上為170 mg,0.045 mmol)在1,3-二甲基-2-咪唑啉酮(5 mL)中的溶液中添加反應物 H2(107 mg,0.135 mmol)。將所得混合物在30°C-33°C下與甲苯共沸三次(每次2 mL)。向所得溶液中添加4Å分子篩(400 mg)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。向所得混合物中添加DBU(0.068 mL,0.45 mmol),並且將反應混合物在室溫下攪拌,同時藉由LCMS監測反應進程。完成後(3 d),將反應混合物通過注射器過濾器過濾,並且將所得濾液添加至EtOAc(24 mL)中,用1,3-二甲基-2-咪唑啉酮(4 mL)沖洗。將所得沈澱物藉由過濾收集,並且用EtOAc/1,3-二甲基-2-咪唑啉酮(6 mL/2 mL)和EtOAc(10 mL)的混合物沖洗。在室溫下在真空中乾燥,以提供目標產物 35(理論上為205 mg)。
MS (ESI) m/z:[M-2H] 2-針對C 142H 175F 6N 40O 49P 9S 5的計算值1890.43;實測值1890.37。 10-mer: 去保護
Figure 02_image117
向起始材料 35(理論上為205 mg,0.045 mmol)中添加1,1,1,3,3,3-六氟-2-丙醇(3 mL)、2,2,2-三氟乙醇(0.75 mL)、三乙基矽烷(2.25 mL)和DCM(3.75 mL)的混合物,並且將所得溶液在室溫下攪拌,同時藉由LCMS監測進程。反應完成後(5.5 h),添加45 mL EtOAc。將所得沈澱物藉由過濾收集,並且用EtOAc/DCM(6 mL/2 mL)的混合物沖洗。在真空中乾燥3 h,以提供165 mg的目標產物 36
MS (ESI) m/z:[M-2H] 2-針對C 121H 157F 6N 40O 47P 9S 5的計算值1737.86;實測值1738.55。 11-mer:偶聯
Figure 02_image119
向起始材料 36(165 mg,0.039 mmol)在1,3-二甲基-2-咪唑啉酮(5 mL)中的溶液中添加反應物 37(104 mg,0.117 mmol)。將所得混合物在30°C-33°C下與甲苯共沸三次(每次2 mL)。向所得溶液中添加4Å分子篩(400 mg)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。向所得混合物中添加DBU(0.070 mL,0.47 mmol),並且將反應混合物在室溫下攪拌,同時藉由LCMS監測反應進程。完成後(2 d),將反應混合物通過注射器過濾器過濾,並且將所得濾液添加至EtOAc(30 mL)中,用1,3-二甲基-2-咪唑啉酮(5 mL)沖洗。將所得漿料混合物離心(2000 rpm,15 min)。將所得沈澱物藉由過濾收集,並且用EtOAc/1,3-二甲基-2-咪唑啉酮(6 mL/2 mL)和EtOAc(10 mL)的混合物沖洗。在室溫下在真空中乾燥,以提供目標產物 38(理論上為199 mg)。
MS (ESI) m/z:[M-DMT-2H] 3-針對C 138H 174F 6N 43O 53P 10S 6的計算值1299.26;實測值1299.95。 11-mer:去保護
Figure 02_image121
Figure 02_image123
向起始材料 38(理論上為199 mg,0.039 mmol)中添加1,1,1,3,3,3-六氟-2-丙醇(3 mL)、2,2,2-三氟乙醇(0.75 mL)、三乙基矽烷(2.25 mL)和DCM(3.75 mL)的混合物。將所得溶液在室溫下攪拌過夜,然後用40 mL EtOAc處理。將所得沈澱物藉由過濾收集,並且用EtOAc/DCM(6 mL/2 mL)的混合物沖洗。在真空中乾燥2 h,以提供170 mg的目標產物 39
MS (ESI) m/z:[M-3H] 3-針對C 138H 174F 6N 43O 53P 10S 6的計算值1299.26;實測值1300.75。 12-mer:偶聯
Figure 02_image125
Figure 02_image127
向起始材料 39(171 mg,0.036 mmol)在1,3-二甲基-2-咪唑啉酮(5 mL)中的溶液中添加反應物 H2(84 mg,0.107 mmol)。將所得混合物在30°C-33°C下與甲苯共沸三次(每次2 mL)。向所得溶液中添加4Å分子篩(500 mg)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。向所得混合物中添加DBU(0.070 mL,0.47 mmol),並且將反應混合物在室溫下攪拌,同時藉由LCMS監測反應進程。完成後(3 d),將反應混合物通過注射器過濾器過濾,並且將所得濾液添加至EtOAc(30 mL)中,用5 mL 1,3-二甲基-2-咪唑啉酮沖洗。將所得漿料混合物離心(2000 rpm,15 min)。將所得沈澱物藉由過濾收集,並且用EtOAc/1,3-二甲基-2-咪唑啉酮(6 mL/2 mL)和EtOAc(10 mL)的混合物沖洗。在室溫下在真空中乾燥,以提供目標產物 40(理論上為199 mg;在LCMS條件下未觀察到MS,但該產物產生了其他測試產物)。 12-mer:去保護
Figure 02_image129
Figure 02_image131
將起始材料 40(199 mg,0.036 mmol)溶解於1,1,1,3,3,3-六氟-2-丙醇(4 mL)、2,2,2-三氟乙醇(1 mL)、三乙基矽烷(3 mL)和DCM(5 mL)的混合物中。將所得溶液在室溫下攪拌,同時藉由LCMS監測進程。反應完成後(15 h),將反應混合物用40 mL EtOAc和15 mL MTBE處理。將所得沈澱物藉由過濾收集,並且用EtOAc/DCM(6 mL/2 mL)的混合物沖洗。在真空中乾燥過夜,以提供174 mg的目標產物 41
MS (ESI) m/z:[M-3H] 3-針對C 141H 183F 6N 45O 58P 11S 7的計算值1371.26;實測值1371.87。 實例4.4:12 + 6偶聯
Figure 02_image133
Figure 02_image135
向起始材料 41(163 mg,0.0310 mmol)和反應物 13a(170 mg,0.068 mmol)的混合物中添加1,3-二甲基-2-咪唑啉酮(6 mL)。將所得混合物在30°C-33°C下與甲苯共沸四次(每次2.5 mL)。向所得溶液中添加4Å分子篩(450 mg)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。向所得混合物中添加DBU(0.071 mL,0.47 mmol),並且將反應混合物在室溫下攪拌,同時藉由LCMS監測反應進程。完成後(24 h),將反應混合物通過注射器過濾器過濾,並且將濾液添加至EtOAc(12 mL)中,用3 mL 1,3-二甲基-2-咪唑啉酮沖洗。將所得漿料混合物離心(3000 rpm,30 min)。將所得沈澱物藉由傾析收集,並且溶解於DCM/EtOH(14 mL/7 mL)的混合物中。向所得溶液中添加EtOAc(20 mL)。將所得沈澱物藉由過濾收集,並且用EtOAc/DCM/EtOH(3 mL/2 mL/1 mL)的混合物沖洗。在室溫下在真空中乾燥1 h,以提供0.20 g的目標產物 42a。該材料無需進一步純化即用於下一步。
MS (ESI) m/z:[M+5H] 5+針對C 234H 314F 6N 72O 90P 17S 8的計算值1294.11;實測值1294.25。 與13b的替代性12 + 6偶聯
Figure 02_image137
Figure 02_image139
將起始材料 41(0.53 g,0.10 mmol)和反應物 13b(0.74 g,0.30 mmol)的混合物溶解於1,3-二甲基-2-咪唑啉酮中,並且與甲苯共沸三次。向所得溶液中添加4A MS和1,4-二氮雜雙環[5.4.0]十一碳-7-烯(DBU,1.5 mmol)。將所得溶液在室溫下攪拌過夜,過濾,並且添加至EtOAc中。將所得沈澱物藉由過濾收集,並且用EtOAc/DCM/EtOH(3/2/1)的混合物沖洗。在真空中乾燥,以提供目標產物 42b。 實例4.5:最終的去保護
Figure 02_image141
Figure 02_image143
向起始材料 42a(0.20 g)在甲醇(5 mL)和28%氫氧化銨(5 mL)的混合物中的溶液中添加DL-二硫蘇糖醇(0.026 g,0.17 mmol)。將所得混合物在53°C-55°C下攪拌20 h,並且冷卻至室溫。添加另外的MeOH(2 mL)和28%氫氧化銨(2 mL)。將所得混合物在50°C-55°C下再攪拌10 h,並且在室溫下持續2天。添加MeCN/EtOAc(60 mL/20 mL)的混合物,並且將所得漿料進行離心(4000 rpm,30 min)。將所得沈澱物分離並溶解於水(約20 mL)中。將水溶液進行四次超濾(Amicon Ultra-15,ultracel 3K,3500 rpm,45 min)。將所得溶液用5 mL水稀釋,並且在表5中描述的以下條件下藉由IEX-HPLC純化。 [表5]:IEX-HPLC條件
Figure 02_image145
用Amicon Ultra-15、Ultracel-3K(3500 rpm,45 min)對純化產物進行脫鹽。將所得溶液(10 mL)冷凍乾燥3天,以提供20 mg的目標產物 43
MS (ESI) m/z:[M+5H] 5+針對C 193H 290N 72O 84P 17S 8的計算值1148.9;實測值1149.2。 實例5:立體定義的4-10-4 PMO-缺口體的溶液相合成
實例5.1至5.5報告了具有SEQ ID NO: 12的立體特異性4-10-4缺口體的製備。
化合物編號(SEQ ID NO: ) 序列(5'-3')
132(SEQ ID NO: 12) AGCAGATGA*C*C*CTTAGAC *C:5-MeC
合成的缺口體具有本文如下表示的手性: SSSSSSSRSSSSSSSSS(化合物 132m)、SSSRSSSRSSSSSSSSS(化合物 132n)或SSSMSSSRSSSSSSSSS(化合物 132f
「M」意指R組態與S組態的混合物。
受益於本說明書,包括本文所述之其他實例,熟悉該項技術者將認識到,可以參考偶聯步驟中添加試劑的手性來製備具有相同序列但不同手性的缺口體。 實例5.1 5’-PMO翼的製備 5’-PMO的2-mer:偶聯
Figure 02_image147
在環境溫度下,向起始材料 44(1.00 g,1.42 mmol)在1,3-二甲基-2-咪唑啉酮(10 mL)中的溶液中添加反應物 G’2(0.854 g,1.491 mmol)和1,2,2,6,6-五甲基哌啶(1.03 mL,5.68 mmol)。將反應溶液攪拌過夜,並且用THF(10 mL)、隨後用MTBE(100 mL)和正庚烷(100 mL)處理。將上清液傾析/過濾,並且將黏性物質用THF/MTBE/正庚烷(20 mL/100 mL/100 mL)的混合物沖洗。將剩餘材料溶解於CH 2Cl 2中,並且藉由矽膠柱層析法(梯度為在EtOAc中的0%至20% MeOH)純化,以得到目標化合物 46(1.33 g)。
MS (ESI) m/z:[M+H] +針對C 59H 61N 13O 9P的計算值1126.44;實測值1126.29。 5’-PMO的2-mer:去保護
Figure 02_image149
在環境溫度下,向裝有起始材料 46(1.33 g,1.18 mmol)的燒瓶中添加乙醇(0.690 mL,11.8 mmol),隨後添加TFA(0.364 mL,4.72 mmol)在CH 2Cl 2(20 mL)中的溶液。將反應溶液攪拌25 min,並且用EtOAc(7.5 mL)、隨後正庚烷(40 mL)處理。將漿料過濾,並且將餅狀物用CH 2Cl 2(15 mL)、EtOAc(7.5 mL)和正庚烷(40 mL)的混合物沖洗。然後在環境溫度下,將TFA鹽再溶解於CH 2Cl 2(20 mL)中,並且添加1,2,2,6,6-五甲基哌啶(2.14 mL,11.8 mmol)。將反應混合物攪拌5-10 min,然後添加正庚烷(100 mL)。將漿料進行超音波處理以分解任何聚集的塊,然後過濾。將餅狀物用CH 2Cl 2(20 mL)和正庚烷(100 mL)的混合物沖洗,以得到目標化合物 47(0.93 g)。
MS (ESI) m/z:[M+H] +針對C 40H 47N 13O 9P的計算值884.34;實測值884.26。 5’-PMO的3-mer:偶聯
Figure 02_image151
在環境溫度下,向起始材料 47(0.930 g,1.05 mmol)在1,3-二甲基-2-咪唑啉酮(9.24 mL)中的溶液中添加1,2,2,6,6-五甲基哌啶(0.571 mL,3.16 mmol),隨後添加反應物 C1(0.918 g,1.32 mmol)。將反應溶液攪拌過夜,並且用EtOAc(10 mL)、隨後MTBE(150 mL)和正庚烷(50 mL)處理。將漿料過濾,並且將餅狀物用EtOAc(10 mL)、MTBE(75 mL)和正庚烷(25 mL)的混合物沖洗,以得到目標化合物 48(1.70 g)。
MS (ESI) m/z:[M+H] +針對C 77H 83N 18O 14P 2的計算值1545.58;實測值1545.58。 5’-PMO的3-mer:去保護
Figure 02_image153
在環境溫度下,向裝有起始材料 48(1.70 g,1.10 mmol)的溶液的燒瓶中添加乙醇(0.642 mL,11.0 mmol),隨後添加TFA(0.339 mL,4.40 mmol)在CH 2Cl 2(25.5 mL)中的溶液。將反應溶液攪拌1 h,並且用EtOAc(12.5 mL)、隨後正庚烷(45 mL)處理。將漿料過濾,並且將餅狀物用CH 2Cl 2(25 mL)、EtOAc(12.5 mL)和正庚烷(40 mL)的混合物沖洗。然後在環境溫度下,將TFA鹽溶解於CH 2Cl 2(25.5 mL)中,並且添加1,2,2,6,6-五甲基哌啶(1.99 mL,11.0 mmol)。將反應溶液攪拌約10 min,並且用EtOAc(12.5 mL)、隨後MTBE(70 mL)處理。然後將漿料過濾,並且將餅狀物用CH 2Cl 2(25.5 mL)、EtOAc(12.5 mL)、和MTBE(70 mL)的混合物沖洗,以得到目標化合物 49(1.19 g)。
MS (ESI) m/z:[M+H] +針對C 58H 69N 18O 14P 2的計算值1303.47;實測值1303.45。 5’-PMO的4-mer:偶聯
Figure 02_image155
Figure 02_image157
在環境溫度下,向起始材料 49(1.19 g,0.913 mmol)在1,3-二甲基-2-咪唑啉酮(8.0 mL)中的溶液中添加1,2,2,6,6-五甲基哌啶(0.496 mL,2.74 mmol),隨後添加反應物 A2(0.824 g,1.14 mmol)。將反應溶液攪拌過夜,並且用EtOAc(8 mL)、隨後MTBE(100 mL)處理。將漿料過濾,並且用EtOAc(16 mL)和MTBE(100 mL)的混合物沖洗,以得到目標化合物 50(2.04 g)。
MS (ESI) m/z:[M+H] +針對C 96H 105N 25O 18P 3的計算值1988.73;實測值1988.67。 5’-PMO的4-mer:去保護
Figure 02_image159
Figure 02_image161
在環境溫度下,向裝有起始材料 50(2.04 g,1.03 mmol)的燒瓶中添加乙醇(0.599 mL,10.3 mmol),隨後添加TFA(0.474 mL,6.15 mmol)在CH 2Cl 2(24 mL)中的溶液。將反應溶液攪拌1.5 h,並且用EtOAc(12 mL)、隨後正庚烷(40 mL)處理。將漿料過濾,並且將餅狀物用CH 2Cl 2(24 mL)、EtOAc(12 mL)和正庚烷(40 mL)的混合物沖洗。然後將TFA鹽溶解於CH 2Cl 2(23.8 mL)中,並且用1,2,2,6,6-五甲基哌啶(1.856 mL,10.26 mmol)處理約10 min,然後添加EtOAc(48 mL),隨後添加MTBE(48 mL)。將漿料過濾,並且用CH 2Cl 2(24 mL)、EtOAc(48 mL)、和MTBE(48 mL)的混合物沖洗,以得到目標化合物 51(1.50 g)。
MS (ESI) m/z:[M+H] +針對C 77H 91N 25O 18P 3的計算值1746.62;實測值1746.51。 5’ PMO的5-mer:偶聯
Figure 02_image163
Figure 02_image165
在環境溫度下,向起始材料 51(500 mg,0.286 mmol)在1,3-二甲基-2-咪唑啉酮(7.5 mL)中的溶液中添加1,2,2,6,6-五甲基哌啶(0.16 mL,0.86 mmol),隨後添加反應物 52a(206 mg,0.358 mmol)(根據以下報導的過程合成)。將反應溶液攪拌過夜,並且用EtOAc(7.5 mL)、隨後MTBE(100 mL)處理。將漿料過濾,並且用EtOAc(15 mL)和MTBE(100 mL)的混合物沖洗,以給出目標化合物 53(710 mg)。
31P NMR (162 MHz, 甲醇-d4) δ ppm 17.42 (s, 1 P), 17.07 (s, 1 P), 17.02 (s, 1 P), 16.82 (s, 1 P)。
MS (ESI) m/z:[M+2H] 2+針對C 99H 129N 31O 24P 4Si的計算值1143.93;實測值1144.03。 5’ PMO的5-mer:去保護
Figure 02_image167
Figure 02_image169
在環境溫度下,向裝有起始材料 53(710 mg,0.31 mmol)的燒瓶中添加吡啶(5.90 mL,73.0 mmol)、三乙胺(5.93 mL,42.5 mmol)和CH 2Cl 2(5.9 mL)。然後將溶液用三乙胺三氫氟酸鹽(759 µL,4.66 mmol)處理。將反應溶液攪拌過夜,在冰浴中冷卻,然後用甲氧基三甲基矽烷(2.95 ml,21.4 mmol)處理。將混合物在冰浴中攪拌1 h,並且用1,3-二甲基-2-咪唑啉酮(5.9 mL)、隨後EtOAc(100 mL)和MTBE(50 mL)處理。將漿料過濾,並且用CH 2Cl 2(5.9 mL)、EtOAc(118 mL)、和MTBE(50 mL)的混合物沖洗,以得到目標化合物 54(627 mg)。
31P NMR (162 MHz, 氯仿-d) δ ppm 17.37 (s, 1P), 17.08 (s, 1P), 17.03 (s, 1P), 16.82 (s, 1P)。
MS (ESI) m/z:[M+2H] 2+針對C 93H 115N 31O 24P 4的計算值1087.39;實測值1087.17。 5’ PMO的5-mer:用 (-)-PSI激活
Figure 02_image171
Figure 02_image173
在環境溫度下,向起始材料 54(510 mg,0.235 mmol)在CH 2Cl 2(21.9 mL)、THF(7.1 mL)和1,3-二甲基-2-咪唑啉酮(1.7 mL)的混合物中的溶液中添加 (-)-PSI(奧德里奇公司,CAS:2245335-70-8,194 mg,0.434 mmol),隨後添加激活的4Å分子篩(2.5 g)。將混合物攪拌50 min,並且用DBU(49.5 µL,0.329 mmol)在CH 2Cl 2(0.872 mL)中的溶液逐滴處理。然後將反應混合物攪拌30 min。將沈澱物過濾,並且將餅狀物用CH 2Cl 2(43.6 mL)、THF(14.2 mL)和1,3-二甲基-2-咪唑啉酮(3.5 mL)的混合物沖洗。將濾液用MTBE(218 mL)處理,將所得沈澱物過濾,並且將餅狀物用CH 2Cl 2(31.8 mL)、THF(10.6 mL)和MTBE(100 mL)的混合物沖洗,以得到目標產物 55(548 mg)。
31P NMR (162 MHz, CD 2Cl 2) δ ppm 101.46 (s, 1P), 16.74 (s, 1P), 16.46 (s, 1P), 16.32 (s, 1P), 16.13 (s, 1P)。
MS (ESI) m/z:[M+2H] 2+針對C 103H 130N 31O 25P 5S 2的計算值1210.40;實測值1210.09。 化合物52a和52b的合成
Figure 02_image175
在0ºC下,向N-(9-((2R,4S,5R)-4-((三級丁基二甲基矽基)氧基)-5-(羥基甲基)四氫呋喃-2-基)-6-側氧基-6,9-二氫-1H-嘌呤-2-基)異丁醯胺 56(2.76 g,6.11 mmol)在乙腈(40 mL)和CH 2Cl 2(40 mL)中的溶液中添加DBU(3.04 mL,20.2 mmol)和LiBr(1.75 g,20.2 mmol),隨後添加二甲基磷胺基二氯化物(1.16 mL,9.78 mmol)。將反應溶液在0°C下攪拌1 h,然後用10%檸檬酸水溶液(77 mL)淬滅。將混合物用CH 2Cl 2萃取兩次(每次200 mL)。將合併的有機層隨後用水和15 we% NaCl水溶液洗滌兩次,經Na 2SO 4乾燥,並且在真空中濃縮。用梯度為正庚烷中的90%至100% EtOAc進行Biotage純化,以得到作為兩種非鏡像異構物 52a52b的混合物的目標產物 52(1.91 g)。將兩種非鏡像異構物的混合物進行製備型HPLC分離,以得到 52b(444 mg)和 52a(304 mg)。 HPLC分離條件 柱:Chiralpak IA,21 x 250 mm,5 µ 流速:20 mL/min 流動相:100% EtOAc 梯度:等度 執行時間:20分鐘 注射體積:500 uL 150 mg/ml濃度 檢測:254 nm 峰1(Rt 9.3 min)
((2R,3S,5R)-3-((三級丁基二甲基矽基)氧基)-5-(2-異丁醯胺基-6-側氧基-1,6-二氫-9H-嘌呤-9-基)四氫呋喃-2-基)甲基 (S)-二甲基氯胺基磷酸酯( 52b):
1H NMR (400 MHz, 氯仿-d) δ = 12.19 (br s, 1H), 9.93 (br s, 1H), 7.76 (br s, 1H), 6.25 (br t, J= 7.3 Hz, 1H), 4.98 - 4.90 (m, 1H), 4.67 (br d, J= 4.3 Hz, 1H), 4.39 - 4.26 (m, 2H), 3.08 - 2.99 (m, 1H), 2.82 - 2.73 (m, 1H), 2.73 (s, 3H), 2.69 (s, 3H), 2.28 (br dd, J= 5.9, 13.5 Hz, 1H), 1.26 (d, J= 6.9 Hz, 3H), 1.22 (d, J= 6.8 Hz, 3H), 0.93 (s, 9H), 0.14 (s, 3H), 0.14 (s, 3H)。
31P NMR (162 MHz, 氯仿-d) δ ppm 20.39 (s, 1P)。
MS (ESI) m/z:[M+H] +針對C 22H 39ClN 6O 6PSi的計算值577.21;實測值577.07。 峰2(Rt 15.3 min)
((2R,3S,5R)-3-((三級丁基二甲基矽基)氧基)-5-(2-異丁醯胺基-6-側氧基-1,6-二氫-9H-嘌呤-9-基)四氫呋喃-2-基)甲基 (R)-二甲基氯胺基磷酸酯( 52a)。
1H NMR (400 MHz, 氯仿-d) δ = 12.24 (br s, 1H), 10.34 (br s, 1H), 7.88 (br s, 1H), 6.27 (br t, J= 6.8 Hz, 1H), 5.27 - 5.13 (m, 1H), 4.91 - 4.85 (m, 1H), 4.37 - 4.26 (m, 1H), 4.15 - 4.07 (m, 1H), 3.24 - 3.16 (m, 1H), 2.80 (s, 3H), 2.76 (s, 3H), 2.75 - 2.71 (m, 1H), 2.37 (br dd, J= 6.9, 12.1 Hz, 1H), 1.25 (d, J= 6.8 Hz, 3H), 1.24 (d, J= 6.8 Hz, 3H), 0.92 (s, 9H), 0.12 (s, 3H), 0.12 (s, 3H)
31P NMR (162 MHz, 氯仿-d) δ ppm 19.67 (s, 1P)。
MS (ESI) m/z:[M+H] +針對C 22H 39ClN 6O 6PSi的計算值577.21;實測值577.07。 實例5.2:3’-PMO翼的製備 3’-PMO的2-mer:偶聯
Figure 02_image177
向起始材料 57(1.33 g,2.32 mmol)在THF(16 mL)中的溶液中添加1,2,2,6,6-五甲基哌啶(1.15 mL,6.34 mmol)。將所得溶液冷卻至0°C,並且用反應物 G2(1.60 g,2.11 mmol)處理。將反應混合物加溫至環境溫度並攪拌過夜。添加飽和NaHCO 3溶液(25 mL)和水(10 mL),並且將所得混合物用CH 2Cl 2萃取三次(每次40 mL)。將合併的有機層用30 wt% NaCl水溶液(20 mL)洗滌,經MgSO 4乾燥,過濾,並且在真空中濃縮。將殘餘物藉由矽膠柱層析法純化。用在EtOAc中的3%-15% MeOH洗脫,以得到2.316 g的目標產物 58
MS (ESI) m/z:[M+H] +針對C 62H 64N 14O 9P的計算值1179.47;實測值1179.41。 3’-PMO的2-mer:去保護
Figure 02_image179
在環境溫度下,向起始材料 58(2.316 g,1.964 mmol)在CH 2Cl 2(35 mL)中的溶液中添加乙醇(1.2 mL,20 mmol),隨後添加TFA(0.91 mL,12 mmol)。在環境溫度下,將反應混合物攪拌1 h,然後用1,2,2,6,6-五甲基哌啶(2.7 mL,15 mmol)處理。將所得混合物在真空中濃縮。將殘餘物用EtOAc(25 mL)、隨後MTBE(50 mL)處理。將所得漿料通過玻璃過濾器過濾,並且用MTBE和EtOAc(15 mL/5 mL)的混合物沖洗。將濾餅在真空中乾燥2 h以提供1.75 g的目標產物 59
MS (ESI) m/z:[M+H] +針對C 43H 50N 14O 9P的計算值937.36;實測值937.10。 3’-PMO的3-mer:偶聯
Figure 02_image181
在0°C下,向起始材料 59(1.75 g,1.87 mmol)在1,3-二甲基-2-咪唑啉酮(20 mL)中的溶液中添加1,2,2,6,6-五甲基哌啶(0.68 mL,3.7 mmol),隨後添加反應物 A2(1.42 g,1.96 mmol)。將反應混合物加溫至環境溫度並攪拌過夜。向反應混合物中添加EtOAc(20 mL),隨後添加MTBE(60 mL)和正庚烷(80 mL)。將沈澱物藉由傾析收集。將分離的產物( 60)不經進一步純化而直接用於下一步驟。
MS (ESI) m/z:[M+H] +針對C 81H 86N 21O 13P 2的計算值1622.62;實測值1622.59。 3’-PMO的3-mer:去保護
Figure 02_image183
在環境溫度下,向起始材料 60(理論上為3.03 g,1.87 mmol)在CH 2Cl 2(24 mL)中的溶液中添加乙醇(1.1 mL,19 mmol)和TFA(0.86 mL,11.2 mmol)。將反應混合物攪拌30 min,然後添加另外的TFA(0.43 mL,5.6 mmol)。攪拌2 h後,將反應混合物用EtOAc(75 mL)、隨後MTBE(50 mL)處理。將沈澱物藉由過濾收集,並且用EtOAc/MTBE(10 mL/10 mL)沖洗。在環境溫度下,將所得固體溶解於CH 2Cl 2(25 mL)中,並且用1,2,2,6,6-五甲基哌啶(1.02 mL,5.60 mmol)處理。將混合物攪拌10 min,然後添加EtOAc(75 mL)和MTBE(50 mL)。將所得沈澱物藉由過濾收集,並且用EtOAc/MTBE(15 mL/15 mL)沖洗。將濾餅在真空中乾燥,以提供2.25 g的目標產物 61
MS (ESI) m/z:[M+H] +針對C 62H 72N 21O 13P 2的計算值1380.51;實測值1380.31。 3’-PMO的4-mer:偶聯
Figure 02_image185
Figure 02_image187
在環境溫度下,向起始材料 61(2.20 g,1.59 mmol)在1,3-二甲基-2-咪唑啉酮(20 mL)中的溶液中添加1,2,2,6,6-五甲基哌啶(0.73 mL,4.0 mmol),隨後添加反應物 C1(1.22 g,1.75 mmol)。將反應混合物攪拌過夜,然後添加另外的 C1(0.20 g,0.29 mmol)。再攪拌4 h後,將反應混合物用𠰌啉(42 µL,0.48 mmol)處理。20 min後,添加EtOAc(20 mL)和MTBE(150 mL)。將所得沈澱物藉由過濾收集,用EtOAc/MTBE(10 mL/20 mL)的混合物沖洗,並且在真空中乾燥過夜。將所得固體(3.74 g)溶解於CH 2Cl 2(25 mL)中。向溶液中添加EtOAc(25 mL),隨後添加MTBE(100 mL)。將所得沈澱物藉由過濾收集,用EtOAc/MTBE(10 mL/30 mL)的混合物沖洗,並且在真空中乾燥過夜。獲得3.20 g的目標產物 62
MS (ESI) m/z:[M-Tr+2H] +針對C 80H 94N 26O 18P 3的計算值1800.65;實測值1800.05。 3’-PMO的4-mer:去保護
Figure 02_image189
在環境溫度下,向起始材料 62(194 mg,1.57 mmol)在CH 2Cl 2(42 mL)中的溶液中添加EtOH(0.92 mL)和TFA(0.96 mL,12 mmol)。將反應混合物攪拌2 h,並且用EtOAc(4 mL)、隨後MTBE(80 mL)處理。將所得沈澱物藉由過濾收集,並且用EtOAc/MTBE(10 mL/20 mL)的混合物沖洗。將所得固體溶解於CH 2Cl 2(42 mL)中,並且用1,2,2,6,6-五甲基哌啶(0.85 mL,4.7 mmol)處理。將所得溶液在環境溫度下攪拌10 min,然後添加EtOAc(40 ml)和MTBE(100 mL)。將沈澱物藉由過濾收集,用EtOAc/MTBE(20 mL/40 mL)的混合物沖洗,並且在真空中乾燥2 h。將固體溶解於CH 2Cl 2(40 mL)中。向溶液中添加EtOAc(40 mL),隨後添加MTBE(60 mL)。將所得沈澱物藉由過濾收集,並且用EtOAc/MTBE(20 mL/20 mL)的混合物沖洗。將固體溶解於CH 2Cl 2(40 mL)中,並且用EtOAc(80 mL)處理。將所得沈澱物藉由過濾收集並用EtOAc(約30 mL)沖洗。將濾餅在真空中乾燥,以提供2.05 g的目標產物 63
MS (ESI) m/z:[M+H] +針對C 80H 94N 26O 18P 3的計算值1800.65;實測值1800.68。 3’-PMO的4-mer:整體去保護
Figure 02_image191
在環境溫度下,將起始材料 63(1.25 g,0.695 mmol)溶解於甲醇(20 mL)和28%氫氧化銨(20 mL)的混合物中。向溶液中添加𠰌啉(0.73 mL,8.3 mmol)。將所得混合物在50°C-52°C下加熱15 h,並且冷卻至環境溫度。在真空中濃縮後,將殘餘物溶解於CH 2Cl 2/MeOH(12.5 mL/5 mL)中,並且用EtOAc(60 mL)處理。將所得沈澱物藉由過濾收集,並且用EtOAc/CH 2Cl 2/MeOH(20 mL/2.5 mL/1 mL)的混合物沖洗。將濾餅在真空中乾燥過夜,以得到928 mg的目標產物 64
MS (ESI) m/z:[M+H] +針對C 45H 69N 25O 13P 3的計算值1260.47;實測值1260.98。 3’-PMO的4-mer:𠰌啉保護
Figure 02_image193
向起始材料 64(理論上為928 mg,0.405 mmol)在THF/水/MeOH(15 mL/2.5 mL/4.5 mL)的混合物中的溶液中添加1,2,2,6,6-五甲基哌啶(0.367 mL,2.02 mmol)和3,5-雙(三氟甲基)苯甲醯氯(0.11 mL,0.61 mmol)。3 h後,添加另外的0.025 mL的雙(三氟甲基)苯甲醯氯。攪拌過夜後,將反應混合物用EtOAc(60 mL)處理。將所得膠狀固體藉由傾析分離,並且溶解於MeOH/ CH 2Cl 2(2 mL/8 mL)的混合物中。向溶液中添加EtOAc(50 mL)。將所得沈澱物藉由過濾分離,用EtOAc沖洗,並且在真空中乾燥20 min。將所得固體用MeCN/EtOAc(7.5 mL/7.5 mL)的混合物處理。將漿料通過玻璃過濾器過濾,並且用MeCN/EtOAc(2.5 mL/2.5 mL)的混合物沖洗。將濾餅在真空中乾燥1 h,以得到550 mg的目標產物 65
31P NMR (162 MHz, 甲醇-d4) δ = 17.16 (s, 1P), 17.11 (s, 1P), 16.97 (s, 1P)
MS (ESI) m/z:[M+H] +針對C 54H 71F 6N 25O 14P 3的計算值1500.47;實測值1500.22。 實例5.3:DNA的延長 5-mer:偶聯
Figure 02_image195
將起始材料 65(550 mg,0.367 mmol)和反應物 H2(783 mg,0.99 mmol)溶解於1,3-二甲基-2-咪唑啉酮(19 mL)中。向所得溶液中添加4Å分子篩(1.7 g)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。攪拌30 min後,將所得混合物用DBU(0.22 mL,1.47 mmol)處理。將反應混合物在環境溫度下攪拌1小時,然後通過注射器過濾器過濾。將濾液添加至EtOAc(30 mL)中,用1,3-二甲基-2-咪唑啉酮(6 mL)沖洗。向所得漿料中添加另外的EtOAc(50 mL)。將所得沈澱物藉由過濾收集,並且用EtOAc/MeCN(10 mL/10 mL)的混合物沖洗。將濾餅用MeCN(20 mL)、隨後EtOAc(20 mL)處理。10 min後,將所得漿料通過玻璃過濾器過濾,並且用EtOAc/MeCN(5 mL/5 mL)沖洗。將濾餅在真空中乾燥3天,以得到790 mg的目標產物 67
31P NMR (162 MHz, 甲醇-d4) δ = 57.76 (s, 1P), 17.10 (s, 1P), 17.02 (s, 1P), 16.90 (s, 1P)。
MS (ESI) m/z:[M-DMT+2H] +針對C 64H 84F 6N 27O 20P 4S的計算值1820.50;實測值1820.18。 5-mer:去保護
Figure 02_image197
將起始材料 67(0.790 g,0.347 mmol)溶解於1,1,1,3,3,3-六氟-2-丙醇(8 mL)、2,2,2-三氟乙醇(2 mL)、CH 2Cl 2(10 mL)和三乙基矽烷(6 mL)的混合物中。將反應混合物在環境溫度下攪拌3 h,並且添加另外的1,1,1,3,3,3-六氟-2-丙醇(2 mL)、2,2,2-三氟乙醇(0.5 mL)、CH 2Cl 2(2.5 mL)和三乙基矽烷(1.5 mL)的混合物。再攪拌1 h後,將反應混合物用EtOAc(150 mL)、隨後MTBE(75 mL)處理。將所得沈澱物藉由離心(3500 rpm,35 min)收集,並且用EtOAc/MeCN(10 mL/10 mL)的混合物沖洗。將沈澱物用MeCN(25 mL)處理以製備漿料。攪拌5 min後,添加EtOAc(25 mL)。將所得漿料通過玻璃過濾器過濾,並且用MeCN/EtOAc(10 mL/10 mL)沖洗。將濾餅在真空中乾燥過夜,以提供646 mg的目標產物 68
MS (ESI) m/z:[M-H] -針對C 64H 82F 6N 27O 20P 4S的計算值1818.48;實測值1818.37。 6-mer:偶聯
Figure 02_image199
將起始材料 68(646 mg,0.327 mmol)和反應物 H2(777 mg,0.982 mmol)溶解於1,3-二甲基-2-咪唑啉酮(16 mL)中。向所得溶液中添加4Å分子篩(2 g)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。攪拌30 min後,將所得混合物用DBU(0.25 mL,1.64 mmol)處理。將反應混合物在環境溫度下攪拌2 h,然後通過注射器過濾器過濾。將濾液添加至EtOAc(35 mL)中,用1,3-二甲基-2-咪唑啉酮(4 mL)沖洗。向所得漿料中添加另外的EtOAc(40 mL)。將沈澱物藉由過濾分離,並且用MeCN/EtOAc(5 mL/5 mL)沖洗。將所得固體用MeCN(20 mL)、隨後EtOAc(20 mL)處理。將所得漿料通過玻璃過濾器過濾,並且用EtOAc/MeCN(5 mL/5 mL)沖洗。將濾餅在真空中乾燥過夜,以提供0.90 g的目標產物69。
MS (ESI) m/z:[M-2H] 2-針對C 95H 113F 6N 29O 28P 5S 2的計算值1220.32;實測值1220.47。 6-mer:去保護
Figure 02_image201
向起始材料 69(0.90 g,0.328 mmol)中添加1,1,1,3,3,3-六氟-2-丙醇(10.8 mL)、2,2,2-三氟乙醇(2.7 mL)、三乙基矽烷(8.1 mL)和CH 2Cl 2(13.5 mL)的混合物。在環境溫度下攪拌過夜後,將反應混合物用EtOAc(150 mL)、隨後MTBE(100 mL)處理。將所得沈澱物藉由過濾分離,並且用EtOAc/MeCN(10 mL/10 mL)的混合物沖洗。將濾餅用MeCN(25 mL)處理以製備漿料。攪拌5 min後,添加EtOAc(25 mL)。將所得漿料通過玻璃過濾器過濾,並且用MeCN/EtOAc(10 mL/10 mL)沖洗。將濾餅在真空中乾燥1 h,以提供800 mg的目標產物70。
MS (ESI) m/z:[M+2H] 2+針對C 74H 98F 6N 29O 26P 5S 2的計算值1070.76;實測值1070.66。 7-mer:偶聯
Figure 02_image203
將起始材料 70(950 mg,0.389 mmol)和反應物 H1(1042 mg,1.17 mmol)溶解於1,3-二甲基-2-咪唑啉酮(23.8 mL)中。向所得溶液中添加4Å分子篩(1 g)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。攪拌30 min後,將所得混合物用DBU(0.35 mL,2.33 mmol)處理。將反應混合物在環境溫度下攪拌16 h,然後通過注射器過濾器過濾。將濾液添加至EtOAc(40 mL)中,用1,3-二甲基-2-咪唑啉酮(5 mL)沖洗。向所得漿料中添加另外的EtOAc(35 mL)。將沈澱物藉由過濾分離,並且用MeCN/EtOAc(10 mL/10 mL)沖洗。將所得固體用MeCN(20 mL)、隨後EtOAc(20 mL)處理。將所得漿料通過玻璃過濾器過濾,並且用EtOAc/MeCN(7.5 mL/7.5 mL)沖洗。將濾餅在真空中乾燥4 h,以提供1.20 g的目標產物 71
31P NMR (162 MHz, 甲醇-d4) δ = 57.13 (s, 1P), 56.94 (s, 2P), 17.05 (s, 1P), 16.98 (s, 1P), 16.79 (s, 1P)。
MS (ESI) m/z:[M-2H] 2-針對C 112H 130F 6N 32O 34P 6S 3的計算值1431.35;實測值1431.26。 7-mer:去保護
Figure 02_image205
向起始材料 71(1.20 g,0.361 mmol)中添加1,1,1,3,3,3-六氟-2-丙醇(14.4 mL)、2,2,2-三氟乙醇(3.6 mL)、三乙基矽烷(10.8 mL)和CH 2Cl 2(18 mL)的混合物。在環境溫度下攪拌過夜後,將所得溶液用EtOAc(100 mL)、隨後MTBE(50 mL)處理。將所得沈澱物藉由過濾收集,並且用EtOAc/MeCN(10 mL/10 mL)的混合物沖洗。將濾餅用MeCN(25 mL)、隨後EtOAc(25 mL)處理。將所得漿料通過玻璃過濾器過濾,並且用MeCN/EtOAc(10 mL/10 mL)沖洗。將濾餅在真空中乾燥3 h,以提供1.0 g的目標產物 72
MS (ESI) m/z:[M-2H] 2-針對C 84H 108F 6N 32O 31P 6S 3的計算值1228.27;實測值1228.50。 8-mer:偶聯
Figure 02_image207
向起始材料 72(300 mg,0.103 mmol)在1,3-二甲基-2-咪唑啉酮(9.0 mL)中的溶液中添加反應物 H1(276 mg,0.309 mmol)。向所得溶液中添加4Å分子篩(1.0 g)。將反應燒瓶置於真空中並充入氮氣,並且將該過程再重複兩次。攪拌30 min後,將所得混合物用DBU(0.11 mL,0.72 mmol)處理。將反應混合物在環境溫度下攪拌4 h,然後通過注射器過濾器過濾。將濾液添加至EtOAc(25 mL)中,用1,3-二甲基-2-咪唑啉酮(4.5 mL)沖洗。向所得漿料中添加另外的EtOAc(20 mL)。將沈澱物藉由過濾分離,並且用MeCN/EtOAc(7.5 mL/7.5 mL)沖洗。將所得固體用MeCN(10 mL)、隨後EtOAc(10 mL)處理。將所得漿料通過玻璃過濾器過濾,並且用EtOAc/MeCN(5 mL/5 mL)沖洗。將濾餅在真空中乾燥過夜,以提供0.36 g的目標產物 73
31P NMR (162 MHz, 甲醇-d4) δ = 57.36 (s, 1P), 57.31 (s, 1P), 56.90 (s, 1P), 56.27 (s, 1P) 16.96 (s, 1P), 16.94 (s, 1P), 16.67 (s, 1P)。
MS (ESI) m/z:[M-2H] 2-針對C 122H 144F 6N 35O 39P 7S 4的計算值1591.37;實測值1591.35。 8-mer:去保護
Figure 02_image209
向起始材料 73(360 mg,0.095 mmol)中添加1,1,1,3,3,3-六氟-2-丙醇(4.3 mL)、2,2,2-三氟乙醇(1.1 mL)、三乙基矽烷(3.2 mL)和CH 2Cl 2(5.4 mL)的混合物。將所得溶液在環境溫度下攪拌17 h,並且用EtOAc(75 mL)、隨後MTBE(15 mL)處理。將所得沈澱物藉由過濾收集,並且用EtOAc/MeCN(5 mL/5 mL)的混合物沖洗。將濾餅用MeCN(15 mL)、隨後EtOAc(15 mL)處理。將所得漿料通過玻璃過濾器過濾,並且用MeCN/EtOAc(5 mL/5 mL)沖洗。將濾餅在真空中乾燥2 h,以提供0.305 g的目標產物 74
MS (ESI) m/z:[M-2H] 2-針對C 94H 122F 6N 35O 36P 7S 4的計算值1388.29;實測值1388.26。 9-mer: 偶聯
Figure 02_image211
向起始材料 74(305 mg,0.090 mmol)在1,3-二甲基-2-咪唑啉酮(12 mL)中的溶液中添加反應物 H1(241 mg,0.270 mmol)。向所得溶液中添加4Å分子篩(1 g)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。攪拌30 min後,將所得混合物用DBU(0.11 mL,0.72 mmol)處理。將反應混合物在環境溫度下攪拌2.5天,然後通過注射器過濾器過濾。將濾液添加至EtOAc(20 mL)中,用1,3-二甲基-2-咪唑啉酮(4 mL)沖洗。向所得漿料中添加另外的EtOAc(20 mL)。將所得沈澱物藉由離心(3500 rpm,30 min)收集。將所得沈澱物用MeCN/EtOAc(5 mL/5 mL)的混合物沖洗,並且用MeCN(15 mL)、隨後EtOAc(15 mL)處理。將所得漿料進行離心(3500 rpm,10 min)。將沈澱物用MeCN/EtOAc(5 mL/5 mL)的混合物沖洗,並且在真空中乾燥1 h。獲得385 mg的目標產物 75
31P NMR (162 MHz, 甲醇-d4) δ = 57.44 (s, 1P), 57.35 (s, 1P), 56.88 (s, 2P), 56.17 (s, 1P) 16.95 (s, 1P), 16.92 (s, 1P), 16.74 (s, 1P)。
MS (ESI) m/z:[M-2H] 2-針對C 132H 158F 6N 38O 44P 8S 5的計算值1751.89;實測值1751.73。 9-mer: 去保護
Figure 02_image213
Figure 02_image215
向起始材料 75(385 mg,0.090 mmol)中添加1,1,1,3,3,3-六氟-2-丙醇(4.6 mL)、2,2,2-三氟乙醇(1.2 mL)、三乙基矽烷(3.5 mL)和CH 2Cl 2(5.8 mL)的混合物。將所得溶液在環境溫度下攪拌過夜,並且用EtOAc(90 mL)處理。將所得沈澱物藉由過濾收集,並且用EtOAc/MeCN(10 mL/10 mL)的混合物沖洗。將濾餅在真空中乾燥5 h,以提供320 mg的目標產物 76
MS (ESI) m/z:[M-2H] 2-針對C 104H 136F 6N 38O 41P 8S 5的計算值1547.81;實測值1547.81。 10-mer: 偶聯
Figure 02_image217
Figure 02_image219
向起始材料 76(320 mg,0.083 mmol)在1,3-二甲基-2-咪唑啉酮(13 mL)中的溶液中添加反應物 30b(225 mg,0.249 mmol)。向所得溶液中添加4Å分子篩(1.0 g)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。攪拌30 min後,將所得混合物用DBU(0.112 mL,0.746 mmol)處理。將反應混合物在環境溫度下攪拌17小時,然後通過注射器過濾器過濾。將濾液添加至EtOAc(20 mL)中,用1,3-二甲基-2-咪唑啉酮(5 mL)沖洗。向所得漿料中添加另外的EtOAc(20 mL)。將所得漿料離心(3500 rpm,30 min)。向沈澱物中添加MeCN(20 mL),隨後添加EtOAc(20 mL)。將所得漿料離心(3500 rpm,20 min)。將沈澱物用EtOAc/MeCN(5 mL/5 mL)沖洗,並且在真空中乾燥1 h。獲得420 mg的目標產物 77,並且將其不經進一步純化而直接用於下一步。
31P NMR (162 MHz, 甲醇-d4) δ = 57.29 (s, 1P), 56.99 (s, 1P), 56.95 (s, 1P), 56.78 (s, 2P), 56.23 (s, 1P), 16.95 (s, 2P), 16.72 (s, 1P)。
MS (ESI) m/z:[M-2H] 2-針對C 142H 170F 6N 43O 48P 9S 6的計算值1915.41;實測值1915.21。 10-mer: 去保護
Figure 02_image221
向起始材料 77(理論上為430 mg,0.84 mmol)中添加1,1,1,3,3,3-六氟-2-丙醇(4.8 mL)、2,2,2-三氟乙醇(1.2 mL)、三乙基矽烷(3.6 mL)和CH 2Cl 2(6.0 mL)的混合物。將所得溶液在環境溫度下攪拌30 min,並且用EtOAc(90 mL)處理。將所得沈澱物藉由過濾收集,並且用EtOAc/MeCN(10 mL/10 mL)的混合物沖洗。將濾餅用MeCN(20 mL)、隨後EtOAc(20 mL)處理。將所得漿料通過玻璃過濾器過濾,並且用EtOAc/MeCN(10 mL/10 mL)的混合物沖洗。將濾餅在真空中乾燥過夜,以提供316 mg的目標產物 78
MS (ESI) m/z:[M-2H] 2-針對C 121H 152F 6N 43O 46P 9S 6的計算值1764.34;實測值1764.19。 11-mer:偶聯
Figure 02_image223
向起始材料 78(316 mg,0.071 mmol)在1,3-二甲基-2-咪唑啉酮(12.6 mL)中的溶液中添加反應物 79(189 mg,0.213 mmol)。向所得溶液中添加4Å分子篩(1.4 g)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。攪拌30 min後,將所得混合物用DBU(0.11 mL,0.71 mmol)處理。將反應混合物在環境溫度下攪拌過夜,並且添加另外的反應物79(92 mg)。攪拌2天後,將反應混合物通過注射器過濾器過濾,並且將所得濾液添加至EtOAc(20 mL)中,用1,3-二甲基-2-咪唑啉酮(3 mL)沖洗。將所得漿料混合物離心(3500 rpm,30 min)。將所得沈澱物用MeCN(20 mL)、隨後EtOAc(20 mL)處理。將所得漿料通過玻璃過濾器過濾,並且用MeCN/EtOAc(5 mL/5 mL)沖洗。將濾餅在環境溫度下在真空中乾燥4 h,以提供375 mg的目標產物 80
31P NMR (162 MHz, 甲醇-d4) δ = 57.27 (s, 1P), 56.95 (s, 1P), 56.91 (s, 1P), 56.83 (s, 1P), 56.81 (s, 1P), 56.75 (s, 1P), 56.24 (s, 1P), 16.95 (s, 2P), 16.71 (s, 1P)。
MS (ESI) m/z:[M-3H] 3-針對C 156H 187F 6N 48O 54P 10S 7的計算值1414.96;實測值1414.94 11-mer:去保護
Figure 02_image225
將起始材料 80(375 mg,0.071 mmol)溶解於1,1,1,3,3,3-六氟-2-丙醇(4.5 mL)、2,2,2-三氟乙醇(1.1 mL)、三乙基矽烷(3.4 mL)和CH 2Cl 2(5.6 mL)的混合物中。將所得溶液在環境溫度下攪拌40 min,並且用EtOAc(75 mL)、隨後MTBE(25 mL)處理。將所得沈澱物藉由過濾收集,並且用EtOAc/MeCN(10 mL/10 mL)的混合物沖洗。將濾餅用MeCN(20 mL)、隨後EtOAc(20 mL)處理。將所得漿料通過過濾器過濾,並且用MeCN/EtOAc(5 mL/5 mL)沖洗。將濾餅在真空中乾燥過夜,以提供343 mg的目標產物 81
MS (ESI) m/z:[M-2H] 2-針對C 135H 170F 6N 48O 52P 10S 7的計算值1971.88;實測值1971.73。 12-mer:偶聯
Figure 02_image227
向起始材料 81(343 mg,0.068 mmol)在1,3-二甲基-2-咪唑啉酮(12 mL)中的溶液中添加反應物 H2(189 mg,0.239 mmol)。向所得溶液中添加4Å分子篩(1.5 g)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。攪拌30 min後,將所得混合物用DBU(0.113 mL,0.753 mmol)處理。將反應混合物在環境溫度下攪拌23 h,然後通過注射器過濾器過濾。將濾液添加至EtOAc(20 mL)中,用1,3-二甲基-2-咪唑啉酮(5 mL)沖洗。添加另外的EtOAc(20 mL)。將所得漿料離心(3500 rpm,30 min)。將所得沈澱物用MeCN(20 mL)、隨後EtOAc(20 mL)處理。將所得漿料通過玻璃過濾器過濾,並且用MeCN/EtOAc(5 mL/5 mL)沖洗。將濾餅在環境溫度下在真空中乾燥3 h,以提供目標產物 82
31P NMR (162 MHz, 甲醇-d4) δ = 57.28 (s, 1P), 57.24 (s, 1P), 56.94 (s, 1P), 56.81 (s, 2P), 56.74 (s, 2P), 56.22 (s, 1P), 16.95 (s, 2P), 16.70 (s, 1P)
MS (ESI) m/z:[M-3H] 3-針對C 166H 200F 6N 50O 60P 11S 8的計算值1521.63;實測值1521.41 12-mer:去保護
Figure 02_image229
將起始材料 82(理論上為396 mg,0.068 mmol)溶解於1,1,1,3,3,3-六氟-2-丙醇(4.8 mL)、2,2,2-三氟乙醇(1.2 mL)、三乙基矽烷(3.6 mL)和CH 2Cl 2(6.0 mL)的混合物中。將所得溶液在環境溫度下攪拌16 h,並且用EtOAc(100 mL)處理。將所得沈澱物藉由過濾收集,並且用EtOAc/MeCN(5 mL/5 mL)的混合物沖洗。將濾餅用MeCN(20 mL)、隨後EtOAc(20 mL)處理。將所得漿料通過玻璃過濾器過濾,並且用MeCN/EtOAc(5 mL/5 mL)沖洗。將濾餅在真空中乾燥1 h,以提供310 mg的目標產物 83
MS (ESI) m/z:[M-3H] 3-針對C 145H 182F 6N 50O 58P 11S 8的計算值1421.26;實測值1421.32。 13-mer:偶聯
Figure 02_image231
向起始材料 83(310 mg,0.057 mmol)在1,3-二甲基-2-咪唑啉酮(11 mL)中的溶液中添加反應物 30b(179 mg,0.198 mmol)。向所得溶液中添加4Å分子篩(1.2 g)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。攪拌30 min後,將所得混合物用DBU(0.102 mL,0.678 mmol)處理。將反應混合物在環境溫度下攪拌過夜,然後通過注射器過濾器過濾。將濾液添加至EtOAc(20 mL)中,用1,3-二甲基-2-咪唑啉酮(5 mL)沖洗。添加另外的EtOAc(20 mL)。將所得漿料離心(3500 rpm,30 min)。將所得沈澱物用MeCN(20 mL)、隨後EtOAc(20 mL)處理。將所得漿料通過玻璃過濾器過濾,並且用MeCN/EtOAc(5 mL/5 mL)沖洗。將濾餅在環境溫度下在真空中乾燥3天,然後用25 mL MeCN處理以製備漿料。攪拌30 min後,將所得漿料通過玻璃過濾器過濾,並且用MeCN/EtOAc(5 mL/5 mL)沖洗。將濾餅在真空中乾燥1 h,以提供365 mg的目標產物 84
31P NMR (162 MHz, 甲醇-d4) δ = 57.22 (s, 1P), 56.96 (s, 2P), 56.89 (s, 1P), 56.78 (s, 2P), 56.74 (s, 2P), 56.27 (s, 1P), 16.96 (s, 2P), 16.72 (s, 1P)。
MS (ESI) m/z:[M-3H] 3-針對C 183H 216F 6N 55O 65P 12S 9的計算值1666.32;實測值1666.24。 13-mer:去保護
Figure 02_image233
Figure 02_image235
將起始材料 84(365 mg,0.057 mmol)溶解於1,1,1,3,3,3-六氟-2-丙醇(4.4 mL)、2,2,2-三氟乙醇(1.1 mL)、三乙基矽烷(3.3 mL)和CH 2Cl 2(5.5 mL)的混合物中。將所得溶液在環境溫度下攪拌20 min,並且用125 mL EtOAc處理。將所得沈澱物藉由過濾收集,並且用EtOAc/MeCN(10 mL/10 mL)的混合物沖洗。將濾餅用MeCN(20 mL)、隨後EtOAc(10 mL)處理。將所得漿料離心(4000 rpm,60 min)。將所得沈澱物藉由傾析分離,並且用MeCN/EtOAc(5 mL/5 mL)沖洗。在真空中乾燥過夜,以提供328 mg的目標產物 85
MS (ESI) m/z:[M-3H] 3-針對C 162H 198F 6N 55O 63P 12S 9的計算值1565.61;實測值1565.65。 實例5.4:13+5偶聯
Figure 02_image237
Figure 02_image239
向起始材料 85(100 mg,0.016 mmol)和反應物 55(139 mg,0.058 mmol)的混合物中添加1,3-二甲基-2-咪唑啉酮(3.5 mL)。將所得混合物在30°C-33°C下與甲苯共沸三次(每次2 mL)。向所得溶液中添加4Å分子篩(0.40 g)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。攪拌30 min後,將所得混合物用DBU(0.032 mL,0.21 mmol)處理。將反應混合物在環境溫度下攪拌3天,然後通過注射器過濾器過濾。將濾液添加至EtOAc(15 mL)中,用1,3-二甲基-2-咪唑啉酮(2.5 mL)沖洗。將所得漿料離心(3500 rpm,20 min)。將沈澱物溶解於EtOH(3 mL)和CH 2Cl 2(6 mL)中。向所得溶液中添加EtOAc(20 mL)。將所得漿料通過玻璃過濾器過濾,並且用MeCN(10 mL)沖洗。將濾餅在環境溫度下在真空中乾燥0.5 h,以提供0.13 g的目標產物 87
31P NMR (162 MHz, 甲醇-d4) δ = 57.30 (s, 1P), 57.19 (s, 1P), 56.91 (s, 2P), 56.80 (s, 2P), 56.73 (s, 2P), 56.62 (s, 1P), 56.18 (s, 1P), 17.07 (s, 2P), 16.94 (s, 2P), 16.91 (s, 1P), 16.85 (s, 1P), 16.67 (s, 1P)
MS (ESI) m/z:[M-4H] 4-針對C 255H 309F 6N 86O 88P 17S 10的計算值1736.38;實測值1736.31。 實例5.5:最終的去保護
Figure 02_image241
Figure 02_image243
向起始材料 87(0.130 mg,0.015 mmol)在甲醇(4.6 mL)和28%氫氧化銨(4.6 mL)的混合物中的溶液中添加DL-二硫蘇糖醇(0.024 g,0.15 mmol)。將所得混合物在53°C-55°C下攪拌23 h,並且冷卻至環境溫度。添加MeCN/EtOAc(20 mL/20 mL)的混合物,並且將所得漿料進行離心(4000 rpm,90 min)。將所得沈澱物分離並溶解於水(30 mL)中。將水溶液進行超濾(Amicon Ultra-15,ultracel 3K,3500 rpm,35 min)。將剩餘溶液用水(30 mL)稀釋,並且進行超濾(Amicon Ultra-15,ultracel 3K,3500 rpm,35 min)。將剩餘溶液通過注射器過濾器過濾,並且用水沖洗。將濾液(約5 mL)進行離心(4000 rpm,30 min),並且將上清液使用表6中的條件和表7中的條件藉由製備型HPLC純化。 [表6]:RP-HPLC條件
沃特世,XBridge Prep C18 5 μm OBD,19 x 100 mm(部件編號:186002978)
儀器 沃特世2545二元梯度模式,沃特世3100質量檢測器
流動相A 水中的100 mM HFIP(六氟異丙醇) + 8.6 mM TEA(三乙胺)
流動相B 甲醇100%
柱溫(°C) 60
梯度
時間(min) A% B% 流速(mL/min) 注釋
0 90 10 25 初始
2.2 90 10 25
4.4 80 20 30 洗脫梯度
11.1 50 50 30
11.2 0 100 30 洗滌
17.9 0 100 30
18.0 90 10 30 重置條件
20.2 90 10 30
流速(mL/min) 參見表格
波長(nm) 260
[表7]:IEX-HPLC條件
東曹生物科技公司(TOSOH Bioscience),TSKgel SuperQ-5PW,7.5 mm ID x 7.5 cm,10 μm(部件編號:0018257)
儀器 安捷倫1200
流動相A 在水中的10 mM NaOH
流動相B 在水中的10 mM NaOH + 1 M NaCl
柱溫(°C) 45
梯度:
時間(min) A% B% 注釋
0 50 50 初始
1.7 30 70 洗脫梯度
11.6 0 100 洗滌
13.3 0 100
13.4 50 50 重置條件
15.1 50 50
流速(mL/min) 2.0
波長(nm) 260
用Amicon Ultra-15、Ultracel-3K(3500 rpm,45 min)對純化產物進行4次脫鹽。將所得溶液(12.5 mL)冷凍乾燥2天,以提供18 mg的目標產物 132m
HRMS (ESI) m/z:[M-3H] 3-針對C 192H 266N 86O 78P 17S 10的計算值1957.7415;實測值1957.7418。 實例5.6:化合物 132n的製備
Figure 02_image245
在製備5’翼5-mer(化合物 53)時用化合物 52b代替化合物 52a,藉由與化合物 132f所述相同的反應順序製備化合物 132n
HRMS (ESI) m/z:[M-3H] 3-針對C 192H 266N 86O 78P 17S 10的計算值1957.7415;實測值1957.7422。 實例5.7:化合物 132f的製備
Figure 02_image247
在製備5’翼5-mer(化合物 53)時,用((2R,3S,5R)-3-(雙(4-甲氧基苯基)(苯基)甲氧基)-5-(2-異丁醯胺基-6-側氧基-1,6-二氫-9H-嘌呤-9-基)四氫呋喃-2-基)甲基 二甲基氯胺基磷酸酯( 52)代替化合物 52a,藉由與化合物 132m所述相同的反應順序製備化合物 132f
HRMS (ESI) m/z:[M-3H] 3-針對C 192H 266N 86O 78P 17S 10的計算值1957.7415;實測值1957.7439。 實例6:與脂質軛合的PMO-缺口體的製備 具有3’脂質的PMO-缺口體的製備 - PEG連接子的安裝
Figure 02_image249
Figure 02_image251
向在4 mL小瓶中的起始材料 91(9 mg,1.523 µmol)中添加1,3-二甲基-2-咪唑啉酮(1.5 mL)。超音波處理約1 min後,將所得混合物用NaHCO 3飽和水溶液(8%,0.5 mL)和水(0.25 mL)處理。向所得漿料中添加2,5-二側氧基吡咯啶-1-基 1-(9H-茀-9-基)-3-側氧基-2,7,10-三氧雜-4-氮雜十三烷-13-酸酯(9.1 mg,0.018 mmol)。將反應混合物在35°C下攪拌過夜(約18 h),用水(20 mL)稀釋,並且進行三次超濾(Amicon Ultra-15,ultracel 3K,3500 rpm,45 min)。將在水(約3 mL)中的粗產物(約30%產物和約70%起始材料的混合物)再次經受四次以上上述反應條件,直到轉化率達到 > 90%。
將在水(約3 mL)中的偶聯產物用1.0 M NaOH(0.7 mL)水溶液處理,並且在室溫下攪拌過夜。將反應混合物通過注射器過濾器過濾,用水(30 mL)稀釋,並且進行兩次超濾(Amicon Ultra-15,ultracel 3K,3500 rpm,45 min)。將所得在水(2.5 mL)中的產物( 92)不經進一步純化而用於下一步。
MS (ESI) m/z:[M+5H] 5+針對C 200H 303N 73O 87P 17S 8的計算值1180.3;實測值1180.9 與棕櫚醯脂質軛合
Figure 02_image253
Figure 02_image255
向起始材料 92(9.24 mg,1.521 µmol)在水(2.5 mL)中的溶液中添加NaHCO 3飽和水溶液(8%)(0.5 mL)、DMSO(1.5 mL)、乙腈(1.5 mL)、TEA(0.050 mL,0.36 mmol),然後添加全氟苯基棕櫚酸酯(32.1 mg,0.076 mmol)。將所得混合物在35°C下攪拌2天,用8 mL水稀釋,通過注射器過濾器過濾,並且進行兩次超濾(Amicon Ultra-15,ultracel 3K,3500 rpm,45 min)。將所得溶液(約4 mL)再次經受上述偶聯條件。將粗產物用Sep-Pak Vac C18 6cc/1 g純化,用在水中的MeCN(從0%至40%)洗脫。將含有所需產物的級分合併,濃縮,溶解於水(約3 mL)中,並且進行冷凍乾燥2天。2.2 mg的產物 93
MS (ESI) m/z:[M+5H] 5+針對C 216H 333N 73O 88P 17S 8的計算值1227.7;實測值1227.9 實例7:具有5’脂質的PMO-缺口體的製備 TBDPS的去保護
Figure 02_image257
在室溫下,向起始材料 94(290 mg,0.105 mmol)在吡啶(2 mL)和TEA(2 mL)中的溶液中添加TEA-3HF(0.257 mL,1.576 mmol)。將所得溶液攪拌過夜,並且用甲氧基三甲基矽烷(1 mL,7.254 mmol)處理。在室溫下攪拌1 h後,添加1,3-二甲基-2-咪唑啉酮(2 mL)以製備澄清溶液。將所得溶液添加至EtOAc(12 mL)中,並且緩慢添加MTBE(36 mL)。30 min後,將漿料通過燒結玻璃過濾器過濾,用MTBE/EtOAc(3/1,10 mL)沖洗。將餅狀物在真空中乾燥,以提供245 mg的目標產物 95。MS (ESI) m/z:[M+2H] 2+針對C 110H 143N 28O 32P 5的計算值1261.75;實測值1261.45。 己胺基連接子的安裝
Figure 02_image259
將化合物 95(225 mg,0.089 mmol)溶解於MeCN(5.6 mL)和6 mL DCM中,並且在真空中濃縮。將該過程再重複兩次。將所得殘餘物溶解於DCM(9.0 mL)和MeCN(5.6 mL)中。向所得溶液中添加MMT-己胺基連接子亞磷醯胺(158 mg,0.268 mmol)和4,5-二氰基咪唑(42.1 mg,0.357 mmol)。1 h後,添加另外的MMT-己胺基連接子亞磷醯胺(50 mg)和4,5-二氰基咪唑(10 mg)。30 min後,添加三級丁基氫過氧化物在癸烷(5.5 M,0.081 mL,0.446 mmol)中的溶液。在室溫下攪拌過夜後,將反應混合物添加至35 mL MTBE中,用4 mL DCM沖洗。然後添加另外的7 mL MTBE,並將所得固體藉由過濾收集,並且用MTBE/DCM(4/1,15 mL)的混合物沖洗。將餅狀物在真空中乾燥過夜,以給出270 mg的化合物 96
MS (ESI) m/z:[M+2H] 2+針對C 139H 176N 30O 36P 6的計算值1513.56;實測值1513.88。 MMT和DMT基團的去保護
Figure 02_image261
向化合物 96(270 mg,0.089 mmol)在二氯甲烷(10 mL)中的溶液中添加乙醇(0.5 mL,8.563 mmol)和TFA(0.5 mL,6.49 mmol)。1 h後,在室溫下,將反應混合物添加至EtOAc(30 mL)中,並且添加30 mL MTBE。30 min後,將固體藉由過濾收集,並且用MTBE/EtOAc(1/1,10 mL)沖洗。將餅狀物在真空中乾燥2 h,以提供210 mg的目標產物( 97)。
MS (ESI) m/z:[M+2H] 2+針對C 98H 142N 30O 33P 6的計算值1226.44;實測值1226.68。 棕櫚醯脂質的安裝
Figure 02_image263
向起始材料 97(210 mg,0.082 mmol)在MeCN(10.5 mL)和甲醇(3.4 mL)中的溶液中添加TEA(0.103 mL,0.736 mmol)和全氟苯基棕櫚酸酯(114 mg,0.27 mmol)。1 h後,在室溫下,將反應混合物用120 mL MTBE分批次處理。將所得固體藉由過濾收集,並且用MTBE沖洗。將餅狀物在室溫下在真空中乾燥2天,以給出169 mg的目標產物( 98)。
MS (ESI) m/z:[M+2H] 2+針對C 114H 172N 30O 34P 6的計算值1345.55;實測值1345.53。 用 (-)-PSI激活
Figure 02_image265
將起始材料 98(169 mg,0.063 mmol)和 (-)-PSI試劑(奧德里奇公司,CAS:2245335-70-8,56.1 mg,0.126 mmol)溶解於THF(3 mL)中,並且在真空中濃縮。將該過程再重複兩次。在室溫下,將所得殘餘物溶解於THF(4 mL)中,並且用DBU(0.014 mL,0.094 mmol)處理。將反應混合物攪拌1 h,並且用MTBE(20 mL)處理。將所得漿料過濾,用MTBE(2 x 3 mL)沖洗。將餅狀物在室溫下在真空中乾燥過夜,以給出187 mg的目標產物 99
MS (ESI) m/z:[M+2H] 2+針對C 124H 187N 30O 35P 7S 2的計算值1468.57;實測值1468.93 12 + 6偶聯
Figure 02_image267
Figure 02_image269
向起始材料 99(100 mg,0.019 mmol)和反應物 100(187 mg,0.064 mmol)的混合物中添加1,3-二甲基-2-咪唑啉酮(4 mL)。將所得混合物在30°C-33°C下與甲苯共沸四次(每次2.5 mL)。向所得溶液中添加4Å分子篩(250 mg)。將反應燒瓶置於真空中並充入氮氣。將該過程再重複兩次。向所得混合物中添加𠰌啉(0.034 mL,0.386 mmol),然後添加DBU(0.041 mL,0.27 mmol)。在室溫下攪拌24 h後,將反應混合物通過注射器過濾器過濾,並且將濾液添加至EtOAc(15 mL)中,用4 mL 1,3-二甲基-2-咪唑啉酮沖洗。將所得漿料混合物離心(3000 rpm,20 min)。將所得沈澱物藉由傾析收集,溶解於DCM/EtOH(10 mL/5 mL)的混合物中,並且用EtOAc(20 mL)處理。將所得固體藉由過濾收集,並且用EtOAc/DCM(4 mL/2 mL)的混合物沖洗。將餅狀物在室溫下在真空中乾燥1 h,以提供123 mg被剩餘的起始材料( 100)污染的目標產物 101。將該材料不經進一步純化而用於下一步。
MS (ESI) m/z:[M-4H] 4-針對C 249H 345F 6N 73O 93P 18S 8的計算值1693.19;實測值1693.6。 最終的去保護/純化
Figure 02_image271
Figure 02_image273
向起始材料 101(0.123 g)在甲醇(5 mL)中的溶液中添加28%氫氧化銨(5 mL)和DL-二硫蘇糖醇(0.024 g,0.15 mmol)。將所得混合物在53°C-55°C下攪拌24 h,並且冷卻至室溫。添加MeCN/EtOAc(60 mL/20 mL)的混合物,並且將所得漿料離心(3500 ppm,20 min)。將所得沈澱物分離並溶解於水(約10 mL)中。將水溶液進行五次超濾(Amicon Ultra-15,ultracel 3K,3500 rpm,45 min)。將所得溶液用4 mL水稀釋,並且在表8中描述的以下條件下藉由IEX-HPLC純化。 [表8]:IEX-HPLC條件
Figure 02_image275
用Amicon Ultra-15、Ultracel-3K(3500 rpm,45 min)對純化產物進行5次脫鹽。將所得溶液(5 mL)冷凍乾燥2天,以提供4.2 mg的目標產物 102
MS (ESI) m/z:[M+5H] 5+針對C 215H 334N 73O 88P 18S 8的計算值1231.93;實測值1232.4。 實例8:靶向MAPT基因轉錄物的PMO-缺口體的體外活性
所揭露的PMO-缺口體減少基因翻譯的能力係藉由測量其減少MAPT基因轉錄物表現的能力進行評估的,該等轉錄物與Tau蛋白的表現相關。 實例8.1:5-8-5 PMO-缺口體對SH-SY5Y細胞中人Tau的抑制
在體外測試了靶向Tau的反義寡核苷酸對人Tau mRNA的抑制作用。使用具有10、30或100 nM反義寡核苷酸的Endo-Porter轉染培養的SH-SY5Y細胞。2天的處理期後,使用Maxwell® RSC simply RNA細胞/組織套組(kit)從細胞中分離RNA,並合成cDNA。使用對人MAPT(測定ID Hs00902194_m1)和人GAPDH(測定ID HS99999905_m1)特異的TaqMan探針,藉由定量即時PCR測量Tau mRNA水平。將Tau mRNA水平相對於內源參考基因GAPDH的水平歸一化。結果以用媒介物處理的對照細胞的相對表現量表示。
藉由測定相對於內源參考基因GAPDH的表現歸一化的Tau mRNA的相對表現,測量七十個合成的靶向MAPT基因轉錄物的立體無規的5-8-5 PMO-缺口體及其降低所述轉錄物的表現的能力。17個立體無規的5-8-5 PMO-缺口體在10 nM、30 nM或100 nM濃度下的體外活性如表9所示: [表9]
相對表現 MAPT/GAPDH
序列 化合物 ID(SEQ ID NO) 10 nM 30 nM 100 nM
GGGGACTCGCTGACATGG 103(SEQ ID NO: 1) 0.771 0.675 0.581
TGGGTGTAGCGAGAATCC 104(SEQ ID NO: 2) 0.863 0.542 0.401
GGGTGCACTAGTTTATAG 105(SEQ ID NO: 3) 0.811 0.587 0.377
GGGGTCTTCTAATATCCT 106(SEQ ID NO: 4) 0.619 0.410 0.291
AGGTTCTCGCTATATCGC 107(SEQ ID NO: 5) 0.850 0.628 0.357
GAGTTAGAAGCTTTGACT 108(SEQ ID NO: 6) 0.801 0.480 0.378
GCAGATGACCCTTAGACA 109(SEQ ID NO: 7) 0.866 0.587 0.373
CAAACCTGTCACACCCGA 110(SEQ ID NO: 8) 0.898 0.785 0.547
TTAAACCCCATAGACATA 111(SEQ ID NO: 9) 0.959 0.865 1.070
GAGGCCCAAATGATCACA 112(SEQ ID NO: 10) 0.972 0.853 0.822
TGGATTTAGCAGTAGGGT 113(SEQ ID NO: 11) 0.896 0.710 0.441
AGCAGATGACCCTTAGAC 114(SEQ ID NO: 12) 0.806 0.618 0.496
AGCCGGCATACAGTATAT 115(SEQ ID NO: 13) 0.955 0.698 0.578
TGTGCTCTTTATGGATGG 116(SEQ ID NO: 14) 0.764 0.632 0.435
GGATTTAGCAGTAGGGTG 117(SEQ ID NO: 15) 1.245 0.844 0.480
CCCCATGACTACAGTGTG 118(SEQ ID NO: 16) 0.893 0.747 0.442
GCTTTTGTGACCAGGGAC 119(SEQ ID NO: 17) 0.793 0.381 0.173
實例8.2:4-10-4 PMO-缺口體對SH-SY5Y細胞中人Tau的抑制
在體外測試了靶向tau的反義寡核苷酸對人Tau mRNA的抑制作用。使用具有30、100或300 nM反義寡核苷酸的Endo-Porter轉染培養的SH-SY5Y細胞。2天的處理期後,使用Maxwell® RSC simply RNA細胞/組織套組從細胞中分離RNA,並合成cDNA。使用對人MAPT(測定ID Hs00902194_m1)和人GAPDH(測定ID HS99999905_m1)特異的TaqMan探針,藉由定量即時PCR測量Tau mRNA水平。將Tau mRNA水平相對於內源參考基因GAPDH的水平歸一化。該等4-10-4 PMO-缺口體的結果如表10所示。 [表10]
化合物編號 (SEQ ID NO:) 相對表現(MAPT/GAPDH)
30 nM 100 nM 300 nM
120(SEQ ID NO: 11) 0.613 0.492 [未測試]
121(SEQ ID NO: 17) 0.628 0.484 0.320
122(SEQ ID NO: 5) 0.646 0.520 0.429
123(SEQ ID NO: 12) 0.735 0.576 0.415
124(SEQ ID NO: 14) 0.812 0.663 0.541
125(SEQ ID NO: 16) 0.705 0.565 0.439
126(SEQ ID NO: 2) 0.600 0.450 0.324
127(SEQ ID NO: 3) 0.638 0.520 0.442
128(SEQ ID NO: 4) 0.556 0.423 0.311
129(SEQ ID NO: 7) 0.709 0.545 0.436
130(SEQ ID NO: 10) 0.747 0.528 0.486
131(SEQ ID NO: 9) 0.989 0.914 0.801
實例8.1和8.2中報導的立體無規的PMO-缺口體的體外評估結果表明,所揭露的PMO-缺口體能夠結合MAPT基因轉錄物並誘導RNA酶H活性,從而降低MAPT mRNA的表現。 實例8.3:MALDI-質量(MALDI-MASS)分析
對十七個5-8-5 PMO-缺口體和十二個4-10-4 缺口體進行了MALDI-質量分析,結果分別顯示在表11和表12中。在Autoflex MALDI-TOF-MS光譜儀上藉由負模式獲得質譜,該光譜儀由標準寡核苷酸(Bruker)校準。以添加檸檬酸氫二銨的3-羥基吡啶甲酸作為基質。 [表11] - 5-8-5 PMO-缺口體的MALDI-質量
化合物編號 (SEQ ID NO:) 序列(5'-3')
理論值 實測值
103(SEQ ID NO: 1) GGGGACTCGCTGACATGG 5942.9 5944.0
104(SEQ ID NO: 2) TGGGTGTAGCGAGAATCC 5942.0 5943.8
105(SEQ ID NO: 3) GGGTGCACTAGTTTATAG 5931.9 5933.7
106(SEQ ID NO: 4) GGGGTCTTCTAATATCCT 5842.9 5844.9
107(SEQ ID NO: 5) AGGTTCTCGCTATATCGC 5827.9 5828.6
108(SEQ ID NO: 6) GAGTTAGAAGCTTTGACT 5915.9 5916.0
109(SEQ ID NO: 7) GCAGATGACCCTTAGACA 5854.9 5857.3
110(SEQ ID NO: 8) CAAACCTGTCACACCCGA 5759.9 5759.7
111(SEQ ID NO: 9) TTAAACCCCATAGACATA 5797.9 5800.8
112(SEQ ID NO: 10) GAGGCCCAAATGATCACA 5863.9 5865.9
113(SEQ ID NO: 11) TGGATTTAGCAGTAGGGT 5972.0 5972.8
114(SEQ ID NO: 12) AGCAGATGACCCTTAGAC 5854.9 5853.3
115(SEQ ID NO: 13) AGCCGGCATACAGTATAT 5869.9 5869.8
116(SEQ ID NO: 14) TGTGCTCTTTATGGATGG 5913.9 5914.7
117(SEQ ID NO: 15) GGATTTAGCAGTAGGGTG 5997.0 5996.2
118(SEQ ID NO: 16) CCCCATGACTACAGTGTG 5821.9 5822.1
119(SEQ ID NO: 17) GCTTTTGTGACCAGGGAC 5892.9 5892.7
[表12] - 4-10-4 PMO-缺口體的MALDI-質量
化合物編號 (SEQ ID NO:) 序列(5'-3')
理論值 實測值
120(SEQ ID NO: 11) TGGATTTAGCAGTAGGGT 5951.9 5952.9
121(SEQ ID NO: 17) GCTTTTGTGACCAGGGAC 5872.9 5873.9
122(SEQ ID NO: 5) AGGTTCTCGCTATATCGC 5807.8 5809.0
123(SEQ ID NO: 12) AGCAGATGACCCTTAGAC 5834.9 5837.1
124(SEQ ID NO: 14) TGTGCTCTTTATGGATGG 5893.9 5897.6
125(SEQ ID NO: 16) CCCCATGACTACAGTGTG 5801.8 5803.9
126(SEQ ID NO: 2) TGGGTGTAGCGAGAATCC 5921.9 5921.7
127(SEQ ID NO: 3) GGGTGCACTAGTTTATAG 5911.9 5911.4
128(SEQ ID NO: 4) GGGGTCTTCTAATATCCT 5822.8 5822.2
129(SEQ ID NO: 7) GCAGATGACCCTTAGACA 5834.9 5835.6
130(SEQ ID NO: 10) GAGGCCCAAATGATCACA 5843.9 5844.1
131(SEQ ID NO: 9) TTAAACCCCATAGACATA 5777.8 5778.7
實例9:PMO-缺口體對人Tau的體內敲除
使用圖6中提到的手性對選定的反義寡核苷酸進行體內測試。還測試了具有隨機手性的反義寡核苷酸。該等中的每一個皆為具有(SEQ ID NO: 12)的4-10-4 PMO-缺口體。藉由腦室內(ICV)推注向每組4隻人MAPT敲入小鼠(Saito等人, J. Biol. Chem. [生物化學雜誌], 23; 294(34):12754-12765)投與60或100 ug的選定的反義寡核苷酸。對照組的4隻小鼠同樣用生理鹽水處理。所有手術都在布托啡諾、美托咪定和咪達唑侖的麻醉下進行,並符合IACUC的規定。
對於ICV推注,將反義寡核苷酸注射到人MAPT敲入小鼠的左側腦室。注射十微升含有60或100 ug的寡核苷酸的鹽溶液。寡核苷酸投與後3天收集組織。從海馬提取RNA,並且藉由即時PCR分析檢測人tau mRNA表現。使用對人MAPT和小鼠Gapdh特異的TaqMan探針測量人tau mRNA水平。表13a和表13b中所示的結果計算為與對照小鼠相比,相對於Gapdh水平歸一化的人tau mRNA表現的抑制。 [表13a]
化合物ID 劑量(ug) MAPT mRNA的相對表現水平
123 100 0.684
132a 100 0.683
132b 100 0.435
132c 100 0.569
132d 100 0.799
132e 100 0.602
132f 100 0.466
132g 100 0.671
132h 100 0.671
132i 100 0.727
132j 100 0.795
132k 60 0.513
132l 60 0.622
132m 60 0.597
132n 60 0.681
[表13b]
化合物ID SEQ ID NO: 鍵的手性
123 SEQ ID NO: 12 立體無規
132a SEQ ID NO: 12 SSSMSSSSRSSRSSSSS
132b SEQ ID NO: 12 SSSMSSSRSSRSSSSSS
132c SEQ ID NO: 12 SSSMSSRSSRSSSSSSS
132d SEQ ID NO: 12 SSSMSRSSRSSSSSSSS
132e SEQ ID NO: 12 SSSMSSRSSSSSSSSSS
132f SEQ ID NO: 12 SSSMSSSRSSSSSSSSS
132g SEQ ID NO: 12 SSSMSSSSRSSSSSSSS
132h SEQ ID NO: 12 SSSMSSSSSRSSSSSSS
132i SEQ ID NO: 12 SSSMSSSSSSRSSSSSS
132j SEQ ID NO: 12 SSSMSSSSSSSRSSSSS
132k SEQ ID NO: 12 SSSSSSSRSSRSSSSSS
132l SEQ ID NO: 12 SSSRSSSRSSRSSSSSS
132m SEQ ID NO: 12 SSSSSSSRSSSSSSSSS
132n SEQ ID NO: 12 SSSRSSSRSSSSSSSSS
儘管已根據具體示例性實施方式和實例來描述實施方式,但本文揭露的實施方式只是出於說明性目的,並且熟悉該項技術者可以在不偏離如以下請求項中所陳述的本發明的精神和範圍的情況下作出不同的修改和改變。 引用文獻
本文的所有引用文獻,包括以下該等,均藉由援引以其全文併入本文。 1. WO 2018057430 A1. 2. U.S. Patent No. 10,457,698. 3. U.S. Patent No. 10,836,784 4. C.F.Bennett, Annu.Rev. Med. 2019, 70, 307.
[圖1A和圖1B]展示了寡核苷酸的固相合成和該固相合成中偶聯反應的合成循環之示意圖。
[圖2A和圖2B]描繪了根據溶液相合成方法的PMO-缺口體之代表性合成。
[圖3]展現了一般SEQ ID NO: 7作為5-8-5 PMO-缺口體(SEQ ID NO: 7)之實例(粗體核苷酸係存在於翼區域的核苷酸)。
[圖4]展現了一般SEQ ID NO: 12作為立體定義的4-10-4 PMO-缺口體(SEQ ID NO: 12)之實例(粗體核苷酸係存在於翼區域的核苷酸)。
[圖5]顯示了5-8-5和4-10-4 PMO-缺口體之結構。
[圖6]顯示了一般SEQ ID NO: 12作為立體定義的4-10-4 PMO-缺口體(SEQ ID NO: 12)之實例。前四個和最後四個核苷酸係翼區域核苷酸。

          <![CDATA[<110>  日商衛材R&D企管股份有限公司(Eisai R&D Management Co., Ltd.)]]>
          <![CDATA[<120>  聚-]]>𠰌啉代寡核苷酸缺口體
          <![CDATA[<130>  ]]>
          <![CDATA[<160>  17    ]]>
          <![CDATA[<170>  PatentIn 3.5版]]>
          <![CDATA[<210>  1]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  1]]>
          ggggactcgc tgacatgg                                                     18
          <![CDATA[<210>  2]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  2]]>
          tgggtgtagc gagaatcc                                                     18
          <![CDATA[<210>  3]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  3]]>
          gggtgcacta gtttatag                                                     18
          <![CDATA[<210>  4]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  4]]>
          ggggtcttct aatatcct                                                     18
          <![CDATA[<210>  5]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  5]]>
          aggttctcgc tatatcgc                                                     18
          <![CDATA[<210>  6]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  6]]>
          gagttagaag ctttgact                                                     18
          <![CDATA[<210>  7]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  7]]>
          gcagatgacc cttagaca                                                     18
          <![CDATA[<210>  8]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  8]]>
          caaacctgtc acacccga                                                     18
          <![CDATA[<210>  9]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  9]]>
          ttaaacccca tagacata                                                     18
          <![CDATA[<210>  10]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  10]]>
          gaggcccaaa tgatcaca                                                     18
          <![CDATA[<210>  11]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  11]]>
          tggatttagc agtagggt                                                     18
          <![CDATA[<210>  12]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  12]]>
          agcagatgac ccttagac                                                     18
          <![CDATA[<210>  13]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  13]]>
          agccggcata cagtatat                                                     18
          <![CDATA[<210>  14]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  14]]>
          tgtgctcttt atggatgg                                                     18
          <![CDATA[<210>  15]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  15]]>
          ggatttagca gtagggtg                                                     18
          <![CDATA[<210>  16]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  16]]>
          ccccatgact acagtgtg                                                     18
          <![CDATA[<210>  17]]>
          <![CDATA[<211>  18]]>
          <![CDATA[<212>  DNA]]>
          <![CDATA[<213>  人工序列]]>
          <![CDATA[<220>]]>
          <![CDATA[<223>  DNA缺口體]]>
          <![CDATA[<400>  17]]>
          gcttttgtga ccagggac                                                     18
          
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 110146559-A0101-11-0002-1

Claims (80)

  1. 一種缺口體或該缺口體的藥學上可接受的鹽,該缺口體或該缺口體的藥學上可接受的鹽包含: 缺口區域,其中該缺口區域含有藉由硫代磷酸酯鍵彼此連接的去氧核糖核苷; 位於該缺口區域5’末端處的5’翼區域,其中該5’翼區域含有藉由磷二醯胺鍵彼此連接的𠰌啉代單體;以及 位於該缺口區域3’末端處的3’翼區域,其中該3’翼區域含有藉由磷二醯胺鍵彼此連接的𠰌啉代單體。
  2. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該去氧核糖核苷由以下結構組成:
    Figure 03_image277
    , 其中P*表示立構中心,該立構中心處於 (R) 或 (S) 組態; 其中該𠰌啉代單體由以下結構組成:
    Figure 03_image279
    , 其中P*表示立構中心,該立構中心處於 (R) 或 (S) 組態; 其中該去氧核糖核苷和𠰌啉代單體結構中的鹼基獨立地選自由以下組成之群組:
    Figure 03_image281
    , 其中R選自H、C(O)R 1或C(O)OR 1, 其中R 1選自C 1-C 6烷基或芳基,並且其中該芳基視需要被選自以下群組的取代基取代,該群組由鹵素、硝基和甲氧基組成。
  3. 如請求項2之缺口體或該缺口體的藥學上可接受的鹽,其中該缺口體或該缺口體的藥學上可接受的鹽具有以下結構:
    Figure 03_image283
    , 其中n和p係1與5之間的整數, m係6與10之間的整數;並且 B係鹼基。
  4. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該硫代磷酸酯鍵和磷二醯胺鍵各自具有獨立地處於R或S組態的磷,並且其中每個R或S組態為至少90%純。
  5. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該硫代磷酸酯鍵和磷二醯胺鍵各自具有獨立地處於R或S組態的磷,並且其中每個R或S組態為至少95%純。
  6. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該硫代磷酸酯鍵和磷二醯胺鍵各自具有獨立地處於R或S組態的磷,並且其中每個R或S組態為至少99%純。
  7. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該5’和3’翼區域各自由藉由磷二醯胺鍵彼此連接的3-7個𠰌啉代單體組成。
  8. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該缺口區域由藉由硫代磷酸酯鍵彼此連接的6-12個去氧核糖核苷組成。
  9. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該5’和3’翼區域的所有磷二醯胺鍵都具有磷原子,該磷原子具有S組態,並且其中每個S組態為至少90%純。
  10. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該5’和3’翼區域的所有磷二醯胺鍵都具有磷原子,該磷原子具有S組態,並且其中每個S組態為至少95%純。
  11. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該5’和3’翼區域的所有磷二醯胺鍵都具有磷原子,該磷原子具有S組態,並且其中每個S組態為至少99%純。
  12. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該等硫代磷酸酯鍵中的至少一個在缺口區域中具有磷原子,該磷原子具有R p組態。
  13. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該缺口區域中的所有硫代磷酸酯鍵都具有磷原子,該磷原子具有S組態,並且其中每個S組態為至少95%純。
  14. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該缺口區域中的所有硫代磷酸酯鍵都具有磷原子,該磷原子具有S組態,並且其中每個S組態為至少99%純。
  15. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該缺口區域中的硫代磷酸酯鍵具有R與S磷組態的混合物,並且其中每個R和S組態為至少90%純。
  16. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該缺口區域中的硫代磷酸酯鍵具有R與S磷組態的混合物,並且其中每個R和S組態為至少95%純。
  17. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該缺口區域中的硫代磷酸酯鍵具有R與S磷組態的混合物,並且其中每個R和S組態為至少99%純。
  18. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該等硫代磷酸酯鍵和磷二醯胺鍵都具有立體無規的磷原子。
  19. 如請求項1之缺口體或該缺口體的藥學上可接受的鹽,其中該等缺口體與脂質軛合。
  20. 如請求項19之缺口體或該缺口體的藥學上可接受的鹽,其中該脂質係棕櫚醯脂質。
  21. 如請求項19或請求項20之缺口體或該缺口體的藥學上可接受的鹽,其中該脂質在該等缺口體的5’末端軛合。
  22. 如請求項19或請求項20之缺口體或該缺口體的藥學上可接受的鹽,其中該等硫代磷酸酯鍵和磷二醯胺鍵都具有立體無規的磷原子。
  23. 如請求項19或請求項20之缺口體或該缺口體的藥學上可接受的鹽,其中該5’和3’翼區域的所有磷二醯胺鍵都具有磷原子,該磷原子具有S組態,並且其中每個S組態為至少90%純。
  24. 如請求項19或請求項20之缺口體或該缺口體的藥學上可接受的鹽,其中該缺口區域中的所有硫代磷酸酯鍵都具有磷原子,該磷原子具有S組態,並且其中每個S組態為至少90%純。
  25. 如請求項19或請求項20之缺口體或該缺口體的藥學上可接受的鹽,其中該缺口區域中的硫代磷酸酯鍵具有R與S磷組態的混合物,並且其中每個R和S組態為至少90%純。
  26. 如前述請求項中任一項之缺口體或藥學上可接受的鹽,其中該缺口體係5-8-5缺口體。
  27. 如請求項1至25中任一項之缺口體或藥學上可接受的鹽,其中該缺口體係4-10-4缺口體。
  28. 一種藥物組成物,該藥物組成物包含如前述請求項中任一項之缺口體或該缺口體的藥學上可接受的鹽。
  29. 一種藥物組成物,該藥物組成物包含如請求項19或請求項20之缺口體或該缺口體的藥學上可接受的鹽。
  30. 一種如前述請求項中任一項之藥物組成物、缺口體、或缺口體的藥學上可接受的鹽在製備藥物中的用途。
  31. 一種如前述請求項中任一項之藥物組成物、缺口體、或缺口體的藥學上可接受的鹽在治療疾病或障礙中的用途。
  32. 一種用於藉由固相合成製備立體無規的聚𠰌啉代寡核苷酸(PMO)缺口體之方法,其中該方法包括: 將𠰌啉代單體附接至固體支持體, 將第一𠰌啉代-二甲基氯胺基磷酸酯在固體支持體上與𠰌啉代單體偶聯,從而產生5’-翼區域, 將該5’-翼區域延長至第一個所需的核苷酸長度, 將反向DNA-亞磷醯胺與該延長的5’-翼區域偶聯,從而產生DNA缺口區域, 將該DNA缺口區域延長至第二個所需的核苷酸長度, 將𠰌啉代-胺基磷酸酯與該DNA缺口區域偶聯,從而產生3’-翼區域 用𠰌啉代-二甲基氯胺基磷酸酯將該3’-翼區域延長至最終所需的核苷酸長度,從而形成完全延長的立體無規的PMO-缺口體。
  33. 如請求項32之方法,其中延長該5’-翼區域、該DNA缺口區域和/或該3’-翼區域進一步包括脫三苯甲基化步驟,其中該脫三苯甲基化步驟包括在3 wt/v%三氯乙酸(TCA)在二氯甲烷(CH 2Cl 2)中的混合物中處理該延長的5’-翼區域、該延長的DNA缺口區域和/或該延長的3’-翼區域。
  34. 如請求項32之方法,其中延長該5’-翼區域和/或延長該3’-翼區域進一步包括中和該延長的5’-翼區域和/或該延長的3’-翼區域,其中該中和包括用比率為10 : 45 : 45的N,N-二異丙基乙胺(iPr 2NEt)、1,3-二甲基-2-咪唑啉酮(DMI)和CH 2Cl 2的混合物洗滌該延長的5’-翼區域和/或該延長的3’-翼區域。
  35. 如請求項32之方法,其中延長該5’-翼區域包括在DMI中的1,2,2,6,6-五甲基哌啶(PMP)的存在下,將𠰌啉代-或反向DNA-二甲基氯胺基磷酸酯與該延長的5’-翼區域的𠰌啉代單體偶聯。
  36. 如請求項32之方法,其中延長該5’-翼區域進一步包括對該延長的5’-翼區域進行封端,其中該封端步驟包括將該延長的5’-翼區域與四氫呋喃(THF)、2,6-二甲基吡啶和乙酸酐(Ac 2O)的混合物,16% 1-甲基咪唑和THF的混合物,或其組合混合。
  37. 如請求項36之方法,其中對該延長的5’-翼區域進行封端包括藉由將該延長的5’-翼區域與𠰌啉在DMI中的0.4 M溶液混合,從該延長的5’-翼區域去除Ac 2O。
  38. 如請求項32之方法,其中延長該DNA缺口區域包括將反向DNA-亞磷醯胺與該延長的5’-翼區域在亞醯胺和5-(乙硫基)-1H-四唑(ETT)在乙腈中的混合物中偶聯。
  39. 如請求項32之方法,其中延長該DNA缺口區域包括硫化步驟,其中該硫化步驟包括在((二甲基胺基-亞甲基)胺基)-3H-1,2,4-二噻唑啉-3-硫酮(DDTT)在吡啶和乙腈中的混合物中處理該延長的DNA缺口區域。
  40. 如請求項32之方法,其中延長該DNA缺口區域進一步包括封端步驟,其中該封端步驟包括將該延長的DNA缺口區域與10 vol%乙酸酐在THF中的混合物、比率為10 : 80 : 10(w/w/w)的1-甲基咪唑-THF-吡啶的混合物、或其組合混合。
  41. 如請求項32之方法,其中延長該3’-翼區域包括在DMI中的PMP的存在下,將𠰌啉代-二甲基氯胺基磷酸酯與該延長的3’-翼區域的𠰌啉代單體偶聯。
  42. 如請求項32之方法,其中延長該3’-翼區域進一步包括對該延長的3’-翼區域進行封端,其中該封端步驟包括將該延長的3’-翼區域與THF、2,6-二甲基吡啶和Ac 2O的混合物,16% 1-甲基咪唑和THF的混合物,或其組合混合。
  43. 如請求項42之方法,其中延長該3’-翼區域包括從該延長的3’ PMO-缺口體翼區域去除Ac 2O,其中該Ac 2O的去除包括將該延長的3’-翼區域與𠰌啉在DMI中的0.4 M溶液混合。
  44. 如請求項32之方法,其中延長該3’-翼區域包括將該延長的3’-翼區域用CH 2Cl 2洗滌。
  45. 如請求項32之方法,其中該方法進一步包括從該固體支持體上切割該完全延長的立體無規的PMO-缺口體。
  46. 如請求項45之方法,其中該切割步驟包括將附接至該固體支持體的該完全延長的立體無規的PMO-缺口體與20 vol%二乙胺在乙腈(CH 3CN)中的混合物或比率為3 : 1的28%氫氧化銨(NH 4OH)和乙醇(EtOH)的混合物混合。
  47. 如請求項32之方法,其中該方法進一步包括藉由反相液相層析法純化該完全延長的立體無規的PMO-缺口體。
  48. 如請求項32之方法,其中該方法進一步包括用脫鹽步驟、陰離子交換步驟、濃縮步驟或其任何組合純化該完全延長的立體無規的PMO-缺口體。
  49. 一種用於藉由溶液相合成方法製備立體定義的聚𠰌啉代寡核苷酸(PMO)缺口體之方法,其中該方法包括: 合成第一長度的立體定義的5’-片段, 合成第二長度的立體定義的3’-片段, 將該立體定義的5’-片段和該立體定義的3’-片段在溶液中偶聯,以產生延長的立體特異性PMO-缺口體, 使該延長的立體特異性PMO-缺口體去保護,以及 純化該去保護的、延長的立體特異性PMO-缺口體。
  50. 如請求項49之方法,其中合成該立體定義的5’-片段進一步包括進行一系列步驟,該等步驟包括偶聯步驟、去保護步驟、活化步驟或其組合,直到合成該第一長度的立體定義的5’-片段。
  51. 如請求項50之方法,其中該系列的偶聯步驟包括將立體定義的𠰌啉代-或反向DNA-二甲基氯胺基磷酸酯與1-mer𠰌啉代或聚𠰌啉代寡核苷酸偶聯。
  52. 如請求項50之方法,其中該系列的偶聯步驟包括在1,3-二甲基-2-咪唑啉酮中並且在1,2,2,6,6-五甲基哌啶(PMP)的存在下混合𠰌啉代-或反向DNA-二甲基氯胺基磷酸酯。
  53. 如請求項50之方法,其中該系列的偶聯步驟包括在藉由沈澱法完成偶聯步驟後分離立體定義的5’-片段中間體。
  54. 如請求項53之方法,其中該沈澱法包括在偶聯基本完成後向該偶聯反應中添加甲基三級丁基醚、正庚烷、EtOAc或其組合。
  55. 如請求項50之方法,其中該系列的去保護步驟包括在DCM、乙醇和三氟乙酸(TFA)的溶液中混合立體定義的5’-片段中間體。
  56. 如請求項50之方法,其中該系列的去保護步驟包括在4-氰基吡啶/TFA在DCM/TFE/EtOH中的溶液中混合立體定義的5’-片段中間體。
  57. 如請求項55之方法,其中該系列的去保護步驟進一步包括向DCM、乙醇和三氟乙酸(TFA)的去保護溶液中添加甲基三級丁基醚、正庚烷和/或EtOAc,直到目標產物沈澱為TFA鹽。
  58. 如請求項57之方法,該方法進一步包括: 視需要用MeOH,將該TFA鹽溶解於DCM中;並且 藉由添加由EtOAc、MTBE、和正庚烷組成之群組中的至少一個成員,將該目標產物沈澱為游離鹼。
  59. 如請求項50之方法,其中該系列的活化步驟包括在活化溶液中混合立體定義的5’-片段中間體,該活化溶液包含(2 S,3a S,6 R,7a S)-3a-甲基-2-((全氟苯基)硫代)-6-(丙-1-烯-2-基)六氫苯并[d][1,3,2]氧雜硫雜磷雜茂 2-硫化物((-)-PSI試劑)或(2 R,3a R,6 S,7a R)-3a-甲基-2-((全氟苯基)硫代)-6-(丙-1-烯-2-基)六氫苯并[d][1,3,2]氧雜硫雜磷雜茂 2-硫化物((+)-PSI試劑)。
  60. 如請求項59之方法,其中該活化溶液進一步包含4Å分子篩、DBU、DMI、DCM和/或THF。
  61. 如請求項50之方法,其中該系列的活化步驟包括在包含2-氯-「螺環」-4,4-五亞甲基-1,3,2-氧雜硫雜磷雜環戊烷的活化溶液中混合立體定義的5’-片段中間體。
  62. 如請求項61之方法,其中該活化溶液進一步包含二異丙基乙胺、THF、DCM和元素硫。
  63. 如請求項49之方法,其中合成該立體定義的3’-片段進一步包括進行一系列步驟,該等步驟包括合成立體定義的聚𠰌啉代寡聚物、鹼基保護基團的去保護步驟、 N-保護步驟、5’- O-保護基團去保護步驟、偶聯步驟、DMT去保護步驟或其組合,直到合成所需長度的立體定義的3’-片段。
  64. 如請求項63之方法,其中該系列的鹼基保護基團的去保護步驟包括在包含甲醇和/或28%氫氧化銨的去保護溶液中混合立體定義的3’-片段中間體。
  65. 如請求項64之方法,其中該鹼基保護基團的去保護步驟進一步包括向該去保護溶液中添加由EtOAc、MeCN、MTBE、及其組合組成之群組中的至少一個成員,直到目標產物從溶液中沈澱出來。
  66. 如請求項65之方法,其中該系列的 N-保護步驟包括在包含THF、水和甲醇的 N-保護溶液中混合去保護的立體定義的3’-片段中間體。
  67. 如請求項66之方法,其中該 N-保護溶液進一步包含1,2,2,6,6-五甲基哌啶和3,5-雙(三氟甲基)苯甲醯氯。
  68. 如請求項65之方法,其中該系列的5’- O-保護基團去保護步驟包括在去保護溶液中混合立體定義的3’-片段中間體,該去保護溶液包含1,3-二甲基-2-咪唑啉酮、甲氧基三甲基矽烷、吡啶、TEA、甲醇和/或三乙胺三氫氟酸鹽(TEA-3HF)。
  69. 如請求項68之方法,其中該5’- O-保護基團去保護步驟進一步包括向該去保護溶液中添加由EtOAc、MeCN、EtOAc、MTBE、正庚烷、及其組合組成之群組中的至少一個成員,直到該立體定義的3’-片段沈澱。
  70. 如請求項65之方法,其中該DNA偶聯步驟包括將手性P(V)活化的核苷與包含立體定義的硫代磷酸酯鍵的去氧核糖核苷酸和立體定義的聚𠰌啉代寡聚物中的任一種偶聯。
  71. 如請求項65之方法,其中該系列的DNA偶聯步驟包括將(+)-或(-)-PSI-軛合的核苷與包含立體定義的硫代磷酸酯鍵的立體定義的PMO-缺口體中間體或立體定義的PMO偶聯以產生PSI-軛合的PMO-缺口體中間體。
  72. 如請求項71之方法,其中(+)-或(-)-PSI-軛合的核苷與包含立體定義的硫代磷酸酯鍵的立體定義的PMO-缺口體中間體或立體定義的PMO的偶聯發生在1,3-二甲基-2-咪唑啉酮的溶液中。
  73. 如請求項71之方法,其中將該PSI-軛合的PMO-缺口體中間體藉由沈澱純化過程從該系列的DNA偶聯步驟中分離。
  74. 如請求項73之方法,其中該沈澱純化過程包括向EtOAc中添加該PSI-軛合的PMO-缺口體中間體的偶聯反應溶液,然後添加MTBE和正庚烷的混合物,直到產物沈澱。
  75. 如請求項65之方法,其中該系列的DMT去保護步驟包括在1,1,1,3,3,3-六氟-2-丙醇、2,2,2-三氟乙醇、DCM和/或三乙基矽烷的去保護混合物中混合立體定義的3’-片段中間體。
  76. 如請求項75之方法,其中該DMT去保護步驟進一步包括向該去保護混合物中添加EtOAc和/或甲基三級丁基醚,直到形成沈澱,然後藉由添加非極性有機溶劑沈澱產物。
  77. 如請求項49之方法,其中該立體定義的5’-片段的第一長度為6-mer和5-mer中的一個,並且該立體定義的3’-片段的第二長度為12-mer、13-mer和14-mer中的一個。
  78. 如請求項77之方法,其中該12-mer、13-mer或14-mer立體定義的3’-片段進一步包含磷二醯胺連接的𠰌啉代單體和/或硫代磷酸酯連接的去氧核糖核苷。
  79. 如請求項77之方法,其中該5-mer或6-mer立體定義的5’-片段包含磷二醯胺連接的𠰌啉代單體和/或硫代磷酸酯連接的去氧核糖核苷。
  80. 如請求項49之方法,其中該純化步驟包括過濾沈澱物,洗滌沈澱物,乾燥沈澱物,將溶液用矽膠層析法純化,過濾漿料,將該漿料或溶液離心,將該溶液用IEX-HPLC純化,將溶液脫鹽,將溶液冷凍乾燥,和/或其組合。
TW110146559A 2020-12-11 2021-12-13 聚-𠰌啉代寡核苷酸缺口體 TW202237847A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063124471P 2020-12-11 2020-12-11
US63/124,471 2020-12-11

Publications (1)

Publication Number Publication Date
TW202237847A true TW202237847A (zh) 2022-10-01

Family

ID=79287974

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110146559A TW202237847A (zh) 2020-12-11 2021-12-13 聚-𠰌啉代寡核苷酸缺口體

Country Status (10)

Country Link
US (1) US20240060068A1 (zh)
EP (1) EP4259798A1 (zh)
JP (1) JP2023553360A (zh)
KR (1) KR20230119637A (zh)
CN (1) CN117120456A (zh)
CA (1) CA3203177A1 (zh)
IL (1) IL303504A (zh)
MX (1) MX2023006341A (zh)
TW (1) TW202237847A (zh)
WO (1) WO2022125987A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11987647B2 (en) 2018-05-09 2024-05-21 Ohio State Innovation Foundation Cyclic cell-penetrating peptides with one or more hydrophobic residues
WO2023205451A1 (en) 2022-04-22 2023-10-26 Entrada Therapeutics, Inc. Cyclic peptides for delivering therapeutics
WO2024002006A1 (zh) * 2022-06-27 2024-01-04 大睿生物医药科技(上海)有限公司 具有增强的稳定性的核苷酸替代物
WO2024010870A2 (en) * 2022-07-07 2024-01-11 Eisai R&D Management Co., Ltd. Crystalline monomers for preparing antisense oligonucleotides and methods of their preparation and use
WO2024015924A2 (en) * 2022-07-15 2024-01-18 Entrada Therapeutics, Inc. Hybrid oligonucleotides

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898031A (en) * 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
MX2018001557A (es) 2015-08-05 2018-05-02 Eisai R&D Man Co Ltd Reactivos quirales para la preparacion de oligomeros homogeneos.
WO2018057430A1 (en) 2016-09-20 2018-03-29 The Regents Of The University Of Colorado, A Body Corporate Synthesis of backbone modified morpholino oligonucleotides and chimeras using phosphoramidite chemistry
EP3954395A4 (en) * 2019-04-08 2023-06-28 National University Corporation Tokyo Medical and Dental University Pharmaceutical composition for muscle disease treatment

Also Published As

Publication number Publication date
MX2023006341A (es) 2023-06-12
CN117120456A (zh) 2023-11-24
US20240060068A1 (en) 2024-02-22
WO2022125987A1 (en) 2022-06-16
CA3203177A1 (en) 2022-06-16
IL303504A (en) 2023-08-01
JP2023553360A (ja) 2023-12-21
EP4259798A1 (en) 2023-10-18
KR20230119637A (ko) 2023-08-16

Similar Documents

Publication Publication Date Title
TW202237847A (zh) 聚-𠰌啉代寡核苷酸缺口體
JP7472018B2 (ja) オリゴヌクレオチド調製のための技術
JP2021104037A (ja) アンチセンス核酸
TWI760600B (zh) 糖原病Ia型治療藥
JP2022033738A (ja) アンチセンス核酸
TW202237848A (zh) 靶向tau之寡核苷酸缺口體
EP3603648A1 (en) Complex of nucleic acid medicine and multibranched lipid
JP7263236B2 (ja) 新規二環式ヌクレオシドおよびそれから調製されたオリゴマー
WO2022232411A2 (en) Antisense oligonucleotides and their use for treatment of neurodegenerative disorders
WO2021049504A1 (ja) 肝臓送達用GalNAc-オリゴヌクレオチドコンジュゲートおよび製造方法
WO2024002006A1 (zh) 具有增强的稳定性的核苷酸替代物
TW202417628A (zh) 糖原病Ia型治療藥
KR20200003031A (ko) 올리고뉴클레오티드 유도체 또는 그 염