CN111499666B - 手性双齿氮膦配体Rong-Phos铱络合物及其氮手性中心高对映选择性构建和应用 - Google Patents

手性双齿氮膦配体Rong-Phos铱络合物及其氮手性中心高对映选择性构建和应用 Download PDF

Info

Publication number
CN111499666B
CN111499666B CN202010223610.3A CN202010223610A CN111499666B CN 111499666 B CN111499666 B CN 111499666B CN 202010223610 A CN202010223610 A CN 202010223610A CN 111499666 B CN111499666 B CN 111499666B
Authority
CN
China
Prior art keywords
formula
phos
reaction
rong
iridium complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010223610.3A
Other languages
English (en)
Other versions
CN111499666A (zh
Inventor
张俊良
张荣华
徐杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202010223610.3A priority Critical patent/CN111499666B/zh
Publication of CN111499666A publication Critical patent/CN111499666A/zh
Application granted granted Critical
Publication of CN111499666B publication Critical patent/CN111499666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/2672-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/68Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D211/72Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D211/74Oxygen atoms
    • C07D211/76Oxygen atoms attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D223/08Oxygen atoms
    • C07D223/10Oxygen atoms attached in position 2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0225Complexes comprising pentahapto-cyclopentadienyl analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0263Planar chiral ligands, e.g. derived from donor-substituted paracyclophanes and metallocenes or from substituted arenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Abstract

本发明公开了式(2)手性双齿氮膦配体Rong‑Phos铱络合物及其氮手性中心高对映选择性构建方法和应用。本发明中铱络合物同时具有碳手性中心和氮手性中心且性质稳定,采用高对映选择性构建该类铱络合物氮原子中心的方法,并将该类铱络合物不同氮中心手性的一对非对映异构体催化剂应用于环状不饱和羰基化合物的不对称氢化反应中,且所述铱络合物在其他环状不饱和羰基化合物的不对称氢化反应中也取得了优秀的反应活性和对映选择性,效果显著优异,具有科学研究价值和广泛应用前景。

Description

手性双齿氮膦配体Rong-Phos铱络合物及其氮手性中心高对 映选择性构建和应用
技术领域
本发明属于有机化学技术领域,具体涉及一类新型手性双齿氮膦配体Rong-Phos铱络合物及其氮手性中心的高对映选择性构建的制备方法和应用。
背景技术
手性广泛的存在于自然界中,手性化合物就如同人们的左右手一样不能相互重叠,两个对映异构体互为镜像却不能完全重合。看似相近的两个对映体却往往具有不同的光学性质、物理化学性质以及不同甚至截然相反的生物活性。
在2001年,诺贝尔化学奖被授予Knowles、Noyori和Sharpless三位从事不对称催化氢化和不对称催化氧化的研究。不对称氢化反应因其高效性、原子经济性以及很好的工业化应用前景而成为制备各种光学纯化合物最为有效的方法之一。特别是在手性胺、手性氨基酸、手性醇、手性羧酸等的制备上已有了大量的研究,并且成功地得到了工业化应用。这些手性化合物具有重要而广泛的应用价值,其不对称制备一直是有机合成领域的研究重点和热点。其中,不对称催化尤其是不对称氢化反应,以其高效、绿色和经济等优点正逐渐在其工业化制备中显示出巨大的潜能。
手性氮膦配体如SIPHOX,在不对称催化氢化中广泛的被使用(C.C.Bausch,A.Pfaltz,Privileged Chiral Ligands and Catalysts(Ed.:Q.-L.Zhou),Wiley-VCH,Weinheim,2011,Chap.6,pp.221–256),这类手性的氮膦配体,与过渡金属的络合物可用作不对称催化氢化反应的催化剂。手性配体中常用的手性中心有碳手性中心、磷手性中心、硫手性中心,因为它们是稳定的,而当sp3杂化的氮原子连接三个不同基团时,氮原子也可以成为手性中心,但是氮原子的手性容易翻转非常不稳定,以至于它的手性通常不被人们考虑,因此氮原子也不被用作手性中心来设计相应的手性配体。虽然已有一些含氮的手性配体被报道,氮原子中心的手性在不对称催化反应中的影响和效果还没有被研究。我们设想能否根据动力学稳定性和热力学稳定性,在氮原子与金属配位时来构建稳定的氮中心手性,以此来得到稳定的具有氮手性中心的金属络合物并将其用于不对称催化反应。这个科学问题机遇与挑战并存,值得我们去探索。本课题组一直致力于C-中心手性新型单膦配体(催化剂)的开发,先后开发了Ming-Phos(Angew.Chem.Int.Ed.2014,53,4350;Angew.Chem.,Int.Ed.2016,55,6324;ACSCatal.2015,5,7488;ACS Catal.2017,7,210)、Xiao-Phos(Angew.Chem.Int.Ed.2015,54,6874)、Wei-Phos(Angew.Chem.Int.Ed.2015,54,14853)、Peng-Phos(Angew.Chem.Int.Ed.2016,55,13316)、PC-Phos(Angew.Chem.,Int.Ed.2017,56,15905;J.Am.Chem.Soc.2018,140,3467)和N-Me-XuPhos(Angew.Chem.,Int.Ed.2018,57,10373)等多种碳中心手性新型单膦配体(催化剂),并用这些配体高效地实现了许多不对称催化反应。
发明内容
本发明的目的是提供一类新型手性双齿氮膦配体Rong-Phos及其制备方法和Rong-Phos铱络合物氮手性中心高对映选择性制备方法及其在不对称催化氢化中的应用。
本发明提出并合成了新的一类手性双齿氮膦配体Rong-Phos,该配体结构简洁制备方法简单,可改造位点多,具有广阔的应用前景。值得一提的是,本发明提出的Rong-Phos在与过渡金属铱配位时,能以高对映选择性构建同时具有碳中心手性和氮中心手性的铱络合物,这一特征赋予了铱络合物不同的活性,在催化过程中有不同的手性环境,这是其他配体不能实现的。该类铱络合物一共包含四种异构体,不同立体构性的铱络合物具有各不相同的性质,各有优势。本发明能以高对映选择性精准地控制碳中心手性和氮中心手性的构建,并将这些铱络合物应用于环状不饱和羰基化合物的不对称催化氢化反应。其中,在五元环状不饱和羰基化合物的不对称氢化中,使用同一Rong-Phos配体制备所得的一对非对映异构体的Rong-Phos铱络合物,这一对铱络合物仅存在氮中心手性的差别,但在催化过程中有不同的手性环境,能够分别以高对映选择性得到R构型和S构型的产物,成为解决“使用一种构型的配体合成一对对映异构体”这一化学难题的成功案例,而且所述铱络合物在其他类环状不饱和羰基化合物的不对称氢化反应中也同样地展现了优秀的反应活性和高对映选择性,具有科学研究价值和广泛应用前景。
本发明提出的新型手性双齿氮膦配体Rong-Phos及其离子型铱络合物,该类铱络合物由于同时具有碳中心手性和氮中心手性,一共有四种构型,可以以高对映选择性得到四种全构型的光学纯的离子型铱络合物。
本发明手性双齿氮膦配体Rong-Phos、手性双齿氮膦配体Rong-Phos铱络合物,分别具有如下式(1)、式(2)所示的结构式:
Figure BDA0002426924940000021
上述(式1)或(式2)中:Ar选自
Figure BDA0002426924940000022
R1选自氢、C1~C12的烷烃基、C1~C12的烷氧基、
Figure BDA0002426924940000031
Figure BDA0002426924940000032
R2、R3分别独立选自氢、C1~C12的烷烃基、C1~C10的硅氧基、C1~C10的烷酰基、C1~C10的酯基、C1~C10的磺酸酯基、
Figure BDA0002426924940000033
ORw、SRw;R4、R5分别独立选自氢、C1~C12的烷烃基、
Figure BDA0002426924940000034
其中,Rx和Rx’分别独立选自氢、卤素、C1~C12的烷烃基、C1~C10的烷氧基、C1~C10的硅氧基、C1~C10的烷酰基、C1~C10的酯基、C1~C10的磺酸酯基;Ry、Rz和Rw分别独立选自C1~C12的烷烃基、C1~C10的烷氧基、C1~C10的硅氧基、C1~C10的烷酰基、C1~C10的酯基、C1~C10的磺酸酯基;n选自1~5的整数;
X为:BArF-、BF4 -、PF6 -或者Cl-中任一的阴离子。
作为一种优选方案,上述(式1)或(式2)中的Ar选自
Figure BDA0002426924940000035
Figure BDA0002426924940000039
;R1选自C1~C12的烷烃基、
Figure BDA0002426924940000036
R2、R3分别独立选自氢、C1~C12的烷烃基、C1~C10的硅氧基、C1~C10的酯基、
Figure BDA0002426924940000037
R4、R5分别独立选自氢、C1~C12的烷烃基、
Figure BDA0002426924940000038
其中,Rx和Rx’分别独立选自氢、卤素、C1~C12的烷烃基、C1~C10的烷氧基、C1~C10的硅氧基、C1~C10的烷酰基、C1~C10的酯基、C1~C10的磺酸酯基;n选自1~5的整数。
作为进一步优选方案,上述式(1)或式(2)中的Ar选自
Figure BDA0002426924940000041
Figure BDA0002426924940000042
R1选自C1~C12的烷烃基、
Figure BDA0002426924940000043
R2、R3分别独立选自氢、C1~C12的烷烃基、
Figure BDA0002426924940000044
R4、R5分别独立选自氢、C1~C12的烷烃基、
Figure BDA0002426924940000045
其中,Rx和Rx’分别独立选自氢、卤素、C1~C12的烷烃基、n选自1~5的整数。
本发明中,所述式(1)化合物经过硅胶柱纯化,得到式(S)-1、(R)-1所示的光学纯化合物;
Figure BDA0002426924940000046
式中:
Ar选自
Figure BDA0002426924940000047
R1选自氢、C1~C12的烷烃基、C1~C12的烷氧基、
Figure BDA0002426924940000048
Figure BDA0002426924940000049
R2、R3分别独立选自氢、C1~C12的烷烃基、C1~C10的硅氧基、C1~C10的烷酰基、C1~C10的酯基、C1~C10的磺酸酯基、
Figure BDA00024269249400000410
ORw、SRw
R4、R5分别独立选自氢、C1~C12的烷烃基、
Figure BDA00024269249400000411
其中,Rx和Rx’分别独立选自氢、卤素、C1~C12的烷烃基、C1~C10的烷氧基、C1~C10的硅氧基、C1~C10的烷酰基、C1~C10的酯基、C1~C10的磺酸酯基;
Ry、Rz和Rw分别独立选自C1~C12的烷烃基、C1~C10的烷氧基、C1~C10的硅氧基、C1~C10的烷酰基、C1~C10的酯基、C1~C10的磺酸酯基;
n选自1~5的整数。
作为更进一步优选方案,所述手性双齿氮膦配体Rong-Phos和Rong-Phos铱络合物选自如下化合物;
Figure BDA0002426924940000051
Figure BDA0002426924940000061
其中:Ph为苯基,Ad为1-金刚烷基,Me为甲基,Bn为苄基,nBu为正丁基。
本发明公开的手性双齿氮膦配体Rong-Phos及其离子型铱络合物的高对映选择性制备方法。
本发明提出了手性双齿氮膦配体Rong-Phos的合成方法,所述方法包括以下三种。
方法一:包括以下第一步、第二步;
参考本课题组已授权的专利——手性亚磺酰胺类单膦配体、其全构型制备方法及应用(申请号:CN201310671902.3,公开号:CN103709195A)来制备本发明中所述的手性亚磺酰胺单膦配体Ming-Phos,即式(3)化合物。再经过取代反应生成氮原子取代的Ming-Phos,即式(4)化合物,进而在盐酸的作用下,发生水解反应,得到手性双齿氮膦配体Rong-Phos。
第一步:由如下式(3)化合物出发,在碱的作用下和R4X进行取代反应,得到氮原子取代的Ming-Phos化合物;
其中,所述式(3)化合物包括式(SC,RS)-3、式(SC,SS)-3、式(RC,SS)-3、式(RC,RS)-3;
其中,氮原子取代的Ming-Phos化合物包括式(SC,RS)-4、式(SC,SS)-4、式(RC,SS)-4、式(RC,RS)-4;
其中,所述碱包括BuLi,NaH,K2CO3,Na2CO3,KHCO3,NaHCO3,KOH,NaOH;
所述第一步的反应路线如下:
Figure BDA0002426924940000071
其中,式(3)化合物、碱与R4X的摩尔比为1:0.1~10:0.1~10;反应温度为-78℃~30℃;反应时间为0.5小时~12小时。所述溶剂可以是二氯甲烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合。反应中所述碱的作用为和卤素X进行交换、进行取代反应;所述碱包括BuLi,NaH,K2CO3,Na2CO3,KHCO3,NaHCO3,KOH,NaOH。
第二步:所述化合物式(SC,RS)-4、式(SC,SS)-4、式(RC,SS)-4、式(RC,RS)-4再在盐酸的作用下,发生水解反应,得到手性双齿氮膦配体Rong-Phos式(S)-1、式(R)-1;
所述第二步的反应式如下:
Figure BDA0002426924940000081
其中,式(4)化合物、HCl的摩尔比为1:0.1~10;反应温度为0℃~30℃;反应时间为0.5小时~12小时。所述溶剂可以是甲醇、乙醇、正丁醇、异丙醇、二氯甲烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合。
本发明还提出了所述手性双齿氮膦配体Rong-Phos制备的另一方法:
方法二,同方法一从Ming-Phos即式(3)化合物出发,在盐酸的作用下,发生水解反应,得到式(A)、式(B)所示的中间体,中间体无需纯化再经过与醛的缩合和还原,得到手性双齿氮膦配体Rong-Phos。
Figure BDA0002426924940000082
第一步:由式(3)化合物出发,在盐酸的作用下,发生水解反应,得到式(A)、式(B)所示的中间体:其中,所述式(3)化合物包括式(SC,RS)-3、式(SC,SS)-3、式(RC,SS)-3、式(RC,RS)-3;
所述第一步的反应路线如下:
Figure BDA0002426924940000091
其中,式(3)化合物、HCl的摩尔比为1:0.1~10;反应温度为0℃~30℃;反应时间为0.5小时~12小时。所述溶剂可以是甲醇、乙醇、正丁醇、异丙醇、二氯甲烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合。
第二步:由式(A)、式(B)所示的中间体经过与醛的缩合,通过还原剂还原,得到手性氮膦配体Rong-Phos式(S)-1、式(R)-1;
所述第二步的反应式如下:
Figure BDA0002426924940000101
其中,中间体
Figure BDA0002426924940000102
醛和还原剂的摩尔比为1:0.1~10:0.1~10;反应温度为0℃~30℃;反应时间为0.5小时~12小时。所述溶剂可以是甲醇、乙醇、正丁醇、异丙醇、二氯甲烷、1,2-二氯乙烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合。所述还原剂包括硼氢化钠、三乙酰氧基硼氢化钠、硼烷、四氢铝锂、氢化钠、DIBAL、硼氢化钾。
本发明还提出了所述手性双齿氮膦配体Rong-Phos制备的另一方法:
方法三,同方法二从Ming-Phos即式(3)化合物出发,在盐酸的作用下,发生水解反应,得到中间体,中间体无需纯化再再经过与卤代烷的取代反应,得到手性双齿氮膦配体Rong-Phos。
Figure BDA0002426924940000103
第一步:由如下式(3)化合物出发,在盐酸的作用下,发生水解反应,得到式(A)、式(B)所示的中间体;其中,所述式(3)化合物包括式(SC,RS)-3、式(SC,SS)-3、式(RC,SS)-3、式(RC,RS)-3;
所述第一步的反应路线如下:
Figure BDA0002426924940000111
其中,式(3)化合物、HCl的摩尔比为1:0.1~10;反应温度为0℃~30℃;反应时间为0.5小时~12小时。所述溶剂可以是甲醇、乙醇、正丁醇、异丙醇、二氯甲烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合。
第二步:式(A)、式(B)所示的中间体在碱的作用下与R4X和R5X发生取代反应,得到手性双齿氮膦配体Rong-Phos式(S)-1、式(R)-1;
所述第二步的反应路线如下:
Figure BDA0002426924940000121
其中,中间体
Figure BDA0002426924940000122
R4、R5和碱的摩尔比为1:0.1~10:0.1~10:2~20;反应温度为0℃~100℃;反应时间为1小时~24小时。所述溶剂可以是乙腈、甲醇、乙醇、正丁醇、异丙醇、二氯甲烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合。反应中碱可以是碳酸钾、碳酸钠、氢氧化钾、氢氧化钠、碳酸氢钾、碳酸氢钠、三乙胺、二乙胺、叔丁醇钾、叔丁醇钠。
本发明还提出了手性双齿氮膦配体Rong-Phos在制备其铱络合物中的应用。
本发明还提出了手性双齿氮膦配体Rong-Phos及其离子型铱络合物的高对映选择性制备方法。
本发明提出的手性双齿氮膦配体Rong-Phos铱络合物的合成方法,即,式(2)手性双齿氮膦配体Rong-Phos铱络合物的氮手性中心高对映选择性构建方法,由式(1)化合物出发,和[Ir(COD)Cl]2、和钠盐溶解于溶剂中,搅拌反应,制得式(2)光学纯Rong-Phos铱络合物;其中,所述式(1)化合物如下;所述化合物式(1)为化合物式(S)-1、式(R)-1;
Figure BDA0002426924940000123
所述式(2)Rong-Phos铱络合物包括式(SC,RN)-2、(SC,SN)-2、(RC,SN)-2、(RC,RN)-2所示的四种构型:
Figure BDA0002426924940000131
本发明所述手性双齿氮膦配体Rong-Phos铱络合物的合成方法包括以下三种方法:
方法一:将化合物(S)-1或(R)-1与[Ir(COD)Cl]2反应,反应完全后再加入H2O和NaX,分别得到单一构型的手性双齿氮膦配体Rong-Phos铱络合物,手性碳原子上较大的基团R2和氮原子上较大的基团R4呈反式,其构型如式(SC,RN)-2和式(RC,SN)-2所示;反应式如下所示。
Figure BDA0002426924940000132
其中,化合物(S)-1或(R)-1、[Ir(COD)Cl]2、H2O和NaX的摩尔比为1:0.1~10:100~1000:0.1~10;反应温度为0℃~100℃;反应时间为0.5小时~12小时。所述溶剂可以是二氯甲烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合。反应中NaX可以为NaBArF、NaBF4、NaPF6、NaCl。
方法二:将化合物(S)-1或(R)-1、[Ir(COD)Cl]2、NaX一起反应,分别得到单一构型的Rong-Phos铱络合物,手性碳原子上较大的基团R2和氮原子上较大的基团R4呈顺式,其构型如式(SC,SN)-2和式(RC,RN)-2所示;反应式如下所示。
Figure BDA0002426924940000141
其中,化合物(S)-1或(R)-1、[Ir(COD)Cl]2和NaX的摩尔比为1:0.1~10:0.1~10;反应温度为0℃~100℃;反应时间为0.5小时~12小时。所述溶剂可以是二氯甲烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合。反应中NaX可以为NaBArF、NaBF4、NaPF6、NaCl。
方法三:由Rong-Phos制备方法中氮原子取代的Ming-Phos即式(4)化合物、[Ir(COD)Cl]2、NaX一起反应,Rong-Phos的碳手性中心保持不变的同时可以得到两种氮手性的催化剂,可以同时得到两个构型即一对非对映异构体的Rong-Phos铱络合物;所述式(4)化合物为化合物式(Sc,Rs)-4、(Sc,Ss)-4、(Rc,Ss)-4、(Rc,Rs)-4;反应式如下所示。
Figure BDA0002426924940000151
其中,式(4)化合物、[Ir(COD)Cl]2和NaX的摩尔比为1:0.1~10:0.1~10;反应温度为0℃~100℃;反应时间为0.5小时~12小时。所述溶剂可以是二氯甲烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合。反应中NaX可以为NaBArF、NaBF4、NaPF6、NaCl。
本发明上述方法中,所述钠盐为NaBArF、NaBF4、NaPF6或NaCl,所述溶剂为二氯甲烷,所述搅拌反应是指:在惰性气体氛围下,在0℃~50℃温度范围下,搅拌0.5小时~12小时。
手性双齿氮膦配体Rong-Phos具有一种手性因素:碳中心手性,所有具有两个旋光异构体。Rong-Phos铱络合物具有两种手性因素:碳中心手性和氮中心手性,所有具有四个旋光异构体,其中包括两对对映异构体,即碳中心手性为R,氮中心手性为R与碳中心手性为S,氮中心手性S为一对对映异构体;碳中心手性为S,氮中心手性为R与碳中心手性为R,氮中心手性S为另一对对映异构体。因此,本发明所说的Rong-Phos铱络合物实际上包含上述四种异构体。这些异构体具有相同的化学结构通式,但具有不同的立体结构和旋光性能。
本发明还提供了所述Rong-Phos铱络合物在环状不饱和羰基化合物的不对称催化氢化反应中的应用,通过将环状不饱和羰基化合物溶于甲苯或1,2-二氯乙烷中,在1atm~100atm环境下加压反应,实现环状不饱和羰基化合物的不对称氢化反应。
优选地,环状不饱和羰基化合物和所述手性双齿氮膦配体Rong-Phos铱络合物以0.0005~0.05:1的摩尔比溶解于甲苯或1,2-二氯乙烷中,在1atm~100atm环境下加压反应,实现环状不饱和羰基化合物的氢化反应。
所述的环状不饱和羰基化合物的结构为:
Figure BDA0002426924940000161
式中:X’=C、O、NH或NR8;R7以及R8分别为芳基、烷基、烷芳基、芳烷基、或其取代衍生物中的一种;n=0,1,2,3,4。
所述取代衍生物是指:羧酸、烷氧基、羟基、烷基巯基、巯基、或二烷基:
所述的加压反应是指:在氢气压力环境下反应1小时~120小时。
在一具体实施方案中,经实验证明,本发明制备所得Rong-Phos铱络合物在氢化反应中可得到99%的产率,其产物ee值可达到99%。这一结果,对于该烯酮类的底物已经达到了最好的水平,对于内酰胺的底物来说,是目前取得的最好的结果。
本发明克服了现在技术存在的技术困难。现有技术从手性α-苯乙胺出发,采取在邻位上膦的方法,此方法中苯环的α位即碳上的取代基只能为甲基或者没有取代基,技术局限性大。而本发明方法的实质性技术突破,能合成出在该位置由种类繁多的不同取代基取代的相应结构,效果显著优异。并且制备铱催化剂即铱络合物,本发明创新提出的氮原子手性的高效构建,使用同一个配体以合成一对氮中心手性相反的非对映异构体催化剂,而且氮原子的手性在催化过程中展现出了重要的作用,通过改变铱络合物的氮中心手性可以实现不对称氢化反应的手性翻转,即一对氮中心手性相反的非对映异构体催化剂可以分别催化该反应以高对映选择性得到R和S两种构型相反的产物,本发明提出这一难度极高的技术创新,至目前尚未见有任何报道。
本发明还提出了一种环状不饱和羰基化合物的不对称氢化反应,所述反应通过将环状不饱和羰基化合物和如权利要求1所述的式(2)Rong-Phos铱络合物溶解于甲苯或1,2-二氯乙烷中,在1atm~100atm环境下加压反应来实现。
本发明提出的一类式(1)新型手性双齿氮膦配体Rong-Phos及其离子型铱络合物,同时具有碳手性中心和氮手性中心且性质稳定。本发明还公开了高对映选择性构建该类铱络合物氮原子中心的方法,并将该类铱络合物不同氮中心手性的一对非对映异构体催化剂应用于环状不饱和羰基化合物的不对称氢化反应中,取得了显著优异结果。本发明还公开了用该配体以高对映选择性制备同时具有碳中心手性和氮中心手性的Rong-Phos铱络合物式(2)及其方法。本发明开创性地以高对映选择性构建了氮手性中心的Rong-Phos铱络合物并成功将其用于催化五元环状不饱和羰基化合物的不对称氢化反应,使用一对非对映异构体的Rong-Phos铱络合物,能够分别以高对映选择性得到R构型和S构型的产物,成为解决“使用一种构型的配体合成一对对映异构体”这一化学难题的成功案例,而且所述铱络合物在其他环状不饱和羰基化合物的不对称氢化反应中也取得了优秀的反应活性和对映选择性,具有科学研究价值和广泛应用前景。
具体实施方式
结合以下具体实施例对本发明作进一步详细说明,实施本发明的过程、条件、试剂、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。
下述实施例提供了上述Rong-Phos式(1)化合物的合成方案,具体为:
实施例1
Figure BDA0002426924940000171
(SC,RS)-6a的合成
参考方法一,在一个50mL的干燥的单支口瓶,在氦气氛围下加入
Figure BDA0002426924940000172
(1mmol)和干燥的四氢呋喃溶剂(10mL),在-40℃下搅拌10分钟,滴加正丁基锂(1.6eq.,1mL,1.6M)。继续搅拌1小时,加入三氟甲磺酸甲酯(1.6mmol),然后搅拌30分钟。之后再用饱和氯化铵溶液淬灭反应。再进行分液、萃取、干燥、旋干溶剂和柱层析纯化,得
Figure BDA0002426924940000173
产率为91%。氢谱核磁(500MHz,Chloroform-d)δ7.76–7.69(m,1H),7.37–7.21(m,11H),7.18–7.11(m,1H),7.11–7.04(m,1H),5.43(d,J=13.6Hz,1H),2.62(s,3H),1.13(s,9H),1.01(s,9H).磷谱核磁(202MHz,CDCl3)δ-16.37.碳谱核磁(126MHz,Chloroform-d)δ145.99(d,J=24.4Hz),137.31(d,J=10.6Hz),137.08(d,J=2.7Hz),136.99(d,J=3.4Hz),135.39,133.92(d,J=6.9Hz),133.76(d,J=7.1Hz),129.57(d,J=3.6Hz),128.67–128.43(m),128.39,127.39,73.23(d,J=28.4Hz),58.93,38.68,32.84(d,J=1.6Hz),28.97(d,J=1.8Hz),24.75.高分辨率质谱理论数据C28H37NOPS([M+H]+),466.2328,实验数据466.2328。
实施例2
Figure BDA0002426924940000181
(SC,RS)-6b的合成
具体操作参考实施例1,所用的原料为
Figure BDA0002426924940000182
产率为86%。氢谱核磁(500MHz,Chloroform-d)δ7.76–7.71(m,1H),7.43–7.39(m,1H),7.35–7.29(m,9H),7.28–7.23(m,3H),5.47(d,J=13.1Hz,1H),2.84(s,3H),1.88–1.73(m,6H),1.63–1.48(m,9H),1.08(s,9H).磷谱核磁(202MHz,CDCl3)δ-18.14,碳谱核磁(126MHz,Chloroform-d)δ143.89(d,J=25.9Hz),137.80(d,J=11.9Hz),137.33(d,J=12.3Hz),137.15(d,J=10.8Hz),136.16(d,J=1.8Hz),134.10(d,J=20.0Hz),133.45(d,J=19.0Hz),129.98(d,J=4.1Hz),128.67,128.51–128.37(m),128.33,127.14,73.65(d,J=27.5Hz),58.66,40.68(d,J=1.6Hz),40.04,30.10(d,J=1.4Hz),28.62,24.75(d,J=2.0Hz).高分辨率质谱理论数据C34H43NOPS([M+H]+),544.2797,实验数据544.2794。
实施例3
Figure BDA0002426924940000183
(SC,RS)-6c的合成
具体操作参考实施例1,所用的原料为
Figure BDA0002426924940000184
产率为76%。氢谱核磁(500MHz,Chloroform-d)δ7.52–7.12(m,14H),5.23(t,J=10.2Hz,1H),2.64(s,3H),2.15–2.03(m,1H),2.00–1.88(m,1H),1.84–1.75(m,1H),1.61–1.50(m,1H),1.40–1.27(m,2H),1.22–0.91(m,13H),0.85–0.78(m,1H).磷谱核磁(202MHz,CDCl3)δ-18.64.碳谱核磁(126MHz,Chloroform-d)δ145.32(d,J=25.4Hz),137.04(d,J=12.1Hz),136.80–136.51(m),135.02,134.53(d,J=20.7Hz),133.57(d,J=18.8Hz),129.16,128.89,128.66–128.32(m),127.15,126.86(d,J=4.9Hz),70.10(d,J=26.3Hz),58.61,38.51,30.75,29.95,26.43–26.01(m),25.33,24.41(d,J=2.7Hz).高分辨率质谱理论数据C30H38NNaOPS([M+Na]+),514.2304,实验数据514.2297。
实施例4
Figure BDA0002426924940000191
(SC,RS)-6d的合成
具体操作参考实施例1,所用的原料为
Figure BDA0002426924940000192
产率为93%。氢谱核磁(500MHz,Chloroform-d)δ7.52–7.12(m,14H),5.23(t,J=10.2Hz,1H),2.64(s,3H),2.15–2.03(m,1H),2.00–1.88(m,1H),1.84–1.75(m,1H),1.61–1.50(m,1H),1.40–1.27(m,2H),1.22–0.91(m,13H),0.85–0.78(m,1H).磷谱核磁(202MHz,CDCl3)δ-18.64.碳谱核磁δ145.32(d,J=25.4Hz),137.04(d,J=12.1Hz),136.80–136.51(m),135.02,134.53(d,J=20.7Hz),133.57(d,J=18.8Hz),129.16,128.89,128.66–128.32(m),127.15,126.86(d,J=4.9Hz),70.10(d,J=26.3Hz),58.61,38.51,30.75,29.95,26.43–26.01(m),25.33,24.41(d,J=2.7Hz).高分辨率质谱理论数据C31H42NNaOPS([M+Na]+),530.2617,实验数据530.2602。
实施例5
Figure BDA0002426924940000193
(SC,RS)-6e的合成
具体操作参考实施例1,所用的原料为
Figure BDA0002426924940000194
产率为82%。氢谱核磁(500MHz,Chloroform-d)δ7.91–7.86(m,1H),7.46–7.40(m,1H),7.36–7.21(m,12H),5.76(d,J=13.4Hz,1H),2.77(d,J=0.9Hz,3H),1.90(dq,J=14.6,7.3Hz,1H),1.48–1.38(m,1H),1.16(s,9H),1.08(s,3H),0.91(t,J=7.4Hz,3H),0.80(dq,J=13.9,7.3Hz,1H),0.57(t,J=7.4Hz,3H).磷谱核磁(202MHz,CDCl3)δ-18.44.碳谱核磁(126MHz,Chloroform-d)δ144.80(d,J=25.5Hz),137.97(d,J=11.5Hz),137.48(d,J=11.7Hz),137.10(d,J=10.9Hz),136.21(d,J=1.9Hz),134.06–133.14(m),130.30(d,J=4.1Hz),128.92–128.21(m),127.25,68.85(d,J=27.4Hz),59.12,42.86,31.44(d,J=2.2Hz),29.00(d,J=2.9Hz),28.63,25.13,22.01(d,J=2.2Hz),8.24,7.66.高分辨率质谱理论数据C30H40NOPS([M+H]+),516.2460,实验数据516.2452。
实施例6
Figure BDA0002426924940000201
(SC,RS)-6f的合成
具体操作参考实施例1,所用的原料为
Figure BDA0002426924940000202
产率为83%。氢谱核磁(500MHz,Chloroform-d)δ7.99–7.92(m,1H),7.44–7.19(m,13H),5.77(d,J=13.9Hz,1H),2.73(s,3H),1.66–1.45(m,6H),1.24–1.14(m,9H),0.71(t,J=7.5Hz,9H).磷谱核磁(202MHz,CDCl3)δ-18.23.碳谱核磁(126MHz,Chloroform-d)δ144.94(d,J=25.6Hz),138.13(d,J=11.4Hz),137.46(d,J=11.2Hz),136.92(d,J=11.0Hz),136.26(d,J=1.8Hz),133.87(d,J=20.0Hz),133.31(d,J=18.8Hz),130.90(d,J=3.8Hz),128.93–128.16(m),127.39,68.88(d,J=27.4Hz),59.16,45.07,32.11(d,J=2.3Hz),27.27(d,J=2.1Hz),25.27,8.86.高分辨率质谱理论数据C31H42NNaOPS([M+Na]+),530.2617,实验数据530.2599。
实施例7
Figure BDA0002426924940000203
(SC,RS)-6g的合成
具体操作参考实施例1,所用的原料为
Figure BDA0002426924940000204
产率为85%。氢谱核磁(500MHz,Chloroform-d)δ7.55(ddd,J=7.9,4.5,1.3Hz,1H),7.43–7.37(m,1H),7.33–7.29(m,3H),7.23–7.14(m,6H),7.06–6.98(m,5H),6.59(s,1H),3.55(s,3H),2.71(s,3H),1.30(s,18H),1.16(s,9H).磷谱核磁(122MHz,CDCl3)δ-17.86.碳谱核磁(126MHz,Chloroform-d)δ158.14,146.92(d,J=23.6Hz),142.89,137.82(d,J=11.9Hz),136.11(d,J=3.6Hz),136.01,134.92,133.57(d,J=19.7Hz),132.85,128.85,128.71,128.46,128.41,128.38,128.26(d,J=7.1Hz),127.43,64.10,58.57,35.67,32.07,24.00.高分辨率质谱理论数据C39H51NO2PS([M+H]+),628.3370;found,628.3373,实验数据628.3373。
实施例8
Figure BDA0002426924940000211
(S)-1a的合成
参考方法一,在一个50mL的干燥的单支口瓶,在氦气氛围下加入
Figure BDA0002426924940000212
(1mmol)和甲醇溶剂(5mL),滴加浓盐酸(5.0eq.),在室温下搅拌1小时。之后再用乙酸乙酯稀释溶液。然经过饱和碳酸氢钠溶液洗、饱和食盐水洗、萃取、干燥、旋干溶剂和柱层析纯化,得
Figure BDA0002426924940000213
产率为96%。氢谱核磁(500MHz,Chloroform-d)δ7.62–7.58(m,1H),7.44–7.26(m,10H),7.23–7.18(m,1H),7.17–7.13(m,1H),4.71(d,J=8.9Hz,1H),1.96(s,3H),1.07(s,9H).磷谱核磁(202MHz,CDCl3)δ-17.95.碳谱核磁(126MHz,Chloroform-d)δ147.69(d,J=23.6Hz),137.95(d,J=12.7Hz),137.72(d,J=2.8Hz),137.62(d,J=4.2Hz),134.86(d,J=2.1Hz),133.89(d,J=20.0Hz),133.56(d,J=19.1Hz),128.85,128.64–128.09(m),127.54(d,J=5.3Hz),126.78,69.20(d,J=23.7Hz),36.12,35.16,27.55(d,J=3.0Hz).高分辨率质谱理论数据C24H29NP([M+H]+),362.2032,实验数据362.2037。
实施例9
Figure BDA0002426924940000214
(S)-1b的合成
具体操作参考实施例8,所用的原料为
Figure BDA0002426924940000215
产率为95%。氢谱核磁(500MHz,Chloroform-d)δ7.56–7.49(m,1H),7.41–7.24(m,11H),7.21–7.17(m,1H),7.16–7.11(m,1H),4.54(d,J=9.0Hz,1H),1.99–1.92(m,6H),1.90(s,3H),1.71–1.52(m,9H).磷谱核磁(202MHz,CDCl3)δ-17.33,碳谱核磁(126MHz,Chloroform-d)δ146.66(d,J=23.9Hz),138.15(d,J=12.7Hz),137.78(d,J=13.0Hz),137.51(d,J=11.5Hz),134.72,133.93(d,J=20.0Hz),133.53(d,J=19.1Hz),128.76–128.15(m),127.88(d,J=5.3Hz),126.69,70.10(d,J=23.5Hz),39.36(d,J=3.1Hz),37.88,37.12,35.04,28.68.高分辨率质谱理论数据C30H35NP([M+H]+),440.2502,实验数据440.2505。
实施例10
Figure BDA0002426924940000221
(S)-1c的合成
具体操作参考实施例8,所用的原料为
Figure BDA0002426924940000222
产率为91%。氢谱核磁(500MHz,Chloroform-d)δ7.52–7.12(m,14H),5.23(t,J=10.2Hz,1H),2.64(s,3H),2.15–2.03(m,1H),2.00–1.88(m,1H),1.84–1.75(m,1H),1.61–1.50(m,1H),1.40–1.27(m,2H),1.22–0.91(m,4H),0.85–0.78(m,1H).磷谱核磁(202MHz,CDCl3)δ-18.64.碳谱核磁(126MHz,Chloroform-d)δ145.32(d,J=25.4Hz),137.04(d,J=12.1Hz),136.80–136.51(m),135.02,134.53(d,J=20.7Hz),133.57(d,J=18.8Hz),129.16,128.89,128.66–128.32(m),127.15,126.86(d,J=4.9Hz),70.10(d,J=26.3Hz),58.61,38.51,30.75,29.95,26.43–26.01(m),24.41(d,J=2.7Hz).高分辨率质谱理论数据C26H31NP([M+H]+),388.2189,实验数据388.2190。
实施例11
Figure BDA0002426924940000223
(S)-1d的合成
具体操作参考实施例8,所用的原料为
Figure BDA0002426924940000224
产率为90%。氢谱核磁(500MHz,Chloroform-d)δ7.52–7.12(m,14H),5.23(t,J=10.2Hz,1H),2.64(s,3H),2.15–2.03(m,1H),2.00–1.88(m,1H),1.84–1.75(m,1H),1.61–1.50(m,1H),1.40–1.27(m,2H),1.22–0.91(m,4H),0.85–0.78(m,1H).磷谱核磁(202MHz,CDCl3)δ-18.64.碳谱核磁δ145.32(d,J=25.4Hz),137.04(d,J=12.1Hz),136.80–136.51(m),135.02,134.53(d,J=20.7Hz),133.57(d,J=18.8Hz),129.16,128.89,128.66–128.32(m),127.15,126.86(d,J=4.9Hz),70.10(d,J=26.3Hz),58.61,38.51,30.75,29.95,26.43–26.01(m),24.41(d,J=2.7Hz).高分辨率质谱理论数据C27H35NP([M+H]+),404.2502,实验数据404.2505。
实施例12
Figure BDA0002426924940000225
(S)-1e的合成
具体操作参考实施例8,所用的原料为
Figure BDA0002426924940000231
产率为93%。氢谱核磁(500MHz,Chloroform-d)δ7.91–7.86(m,1H),7.46–7.40(m,1H),7.36–7.21(m,12H),5.76(d,J=13.4Hz,1H),2.77(d,J=0.9Hz,3H),1.90(dq,J=14.6,7.3Hz,1H),1.48–1.38(m,1H),1.08(s,3H),0.91(t,J=7.4Hz,3H),0.80(dq,J=13.9,7.3Hz,1H),0.57(t,J=7.4Hz,3H).磷谱核磁(202MHz,CDCl3)δ-18.44.碳谱核磁(126MHz,Chloroform-d)δ144.80(d,J=25.5Hz),137.97(d,J=11.5Hz),137.48(d,J=11.7Hz),137.10(d,J=10.9Hz),136.21(d,J=1.9Hz),134.06–133.14(m),130.30(d,J=4.1Hz),128.92–128.21(m),127.25,68.85(d,J=27.4Hz),59.12,42.86,31.44(d,J=2.2Hz),29.00(d,J=2.9Hz),28.63,22.01(d,J=2.2Hz),8.24,7.66.高分辨率质谱理论数据C26H33NP([M+H]+),390.2345,实验数据390.2341。
实施例13
Figure BDA0002426924940000232
(S)-1f的合成
具体操作参考实施例8,所用的原料为
Figure BDA0002426924940000233
产率为95%。氢谱核磁(500MHz,Chloroform-d)δ7.99–7.92(m,1H),7.44–7.19(m,13H),5.77(d,J=13.9Hz,1H),2.73(s,3H),1.66–1.45(m,6H),,0.71(t,J=7.5Hz,9H).磷谱核磁(202MHz,CDCl3)δ-18.23.碳谱核磁(126MHz,Chloroform-d)δ144.94(d,J=25.6Hz),138.13(d,J=11.4Hz),137.46(d,J=11.2Hz),136.92(d,J=11.0Hz),136.26(d,J=1.8Hz),133.87(d,J=20.0Hz),133.31(d,J=18.8Hz),130.90(d,J=3.8Hz),128.93–128.16(m),127.39,68.88(d,J=27.4Hz),59.16,45.07,32.11(d,J=2.3Hz),27.27(d,J=2.1Hz),8.86.高分辨率质谱理论数据C27H35NP([M+H]+),404.2502,实验数据404.2502。
实施例14
Figure BDA0002426924940000234
(S)-1g的合成
具体操作参考实施例8,所用的原料为
Figure BDA0002426924940000241
产率为88%。氢谱核磁(500MHz,Chloroform-d)δ7.68–7.63(m,1H),7.42–7.23(m,11H),7.18–7.11(m,3H),7.00–6.94(m,1H),5.70(d,J=7.9Hz,1H),3.84(s,1H),3.62(s,3H),2.32(s,3H),1.36(s,18H).磷谱核磁(202MHz,CDCl3)δ-17.63.碳谱核磁(126MHz,Chloroform-d)δ158.03,149.00(d,J=23.3Hz),142.93,137.80(d,J=11.2Hz),136.81,136.72,135.43(d,J=13.2Hz),134.33–134.26(m),134.02–133.43(m),129.40,128.65–128.25(m),127.42(d,J=5.4Hz),126.96,126.02(d,J=2.1Hz),65.61(d,J=24.2Hz),64.05,35.70,35.05,32.12.高分辨率质谱理论数据C35H43NOP([M+H]+),524.3077,实验数据524.3085。
实施例15
Figure BDA0002426924940000242
(S)-1b的合成
参考方法二,在一个50mL的干燥的单支口瓶,在氦气氛围下加入
Figure BDA0002426924940000243
(1mmol)和甲醇溶剂(5mL),滴加浓盐酸(5.0eq.),在室温下搅拌1小时。之后再用乙酸乙酯稀释溶液。然经过饱和碳酸氢钠溶液洗、饱和食盐水洗、萃取、干燥、旋干溶剂得到水解粗产物。在一个50mL的干燥的单支口瓶,在氦气氛围下加入该粗产物和干燥的1,2-二氯乙烷(5mL)、多聚甲醛(1.5eq.)、和三乙酰氧基硼氢化钠(3.0eq.)和干燥的1,2-二氯乙烷溶液(5mL)。在室温下搅拌12小时,之后抽滤旋干溶剂和柱层析纯化,得
Figure BDA0002426924940000244
产率为81%。氢谱核磁(500MHz,Chloroform-d)δ7.56–7.49(m,1H),7.41–7.24(m,11H),7.21–7.17(m,1H),7.16–7.11(m,1H),4.54(d,J=9.0Hz,1H),1.99–1.92(m,6H),1.90(s,3H),1.71–1.52(m,9H).磷谱核磁(202MHz,CDCl3)δ-17.33.碳谱核磁(126MHz,Chloroform-d)δ146.66(d,J=23.9Hz),138.15(d,J=12.7Hz),137.78(d,J=13.0Hz),137.51(d,J=11.5Hz),134.72,133.93(d,J=20.0Hz),133.53(d,J=19.1Hz),128.76–128.15(m),127.88(d,J=5.3Hz),126.69,70.10(d,J=23.5Hz),39.36(d,J=3.1Hz),37.88,37.12,35.04,28.68.高分辨率质谱理论数据C30H35NP([M+H]+),440.2502,实验数据440.2505。
实施例16
Figure BDA0002426924940000251
(S)-1g的合成
具体操作参考实施例15,所用的原料为正丁醛,产率为78%。氢谱核磁(500MHz,Chloroform-d)δ7.64–7.49(m,1H),7.41–7.22(m,11H),7.16–7.11(m,2H),4.74(d,J=9.0Hz,1H),1.99–0.62(m,24H).磷谱核磁(202MHz,CDCl3)δ-17.94.碳谱核磁(126MHz,Chloroform-d)δ146.66(d,J=23.9Hz),138.15(d,J=12.7Hz),137.78(d,J=13.0Hz),137.51(d,J=11.5Hz),134.72,133.93(d,J=20.0Hz),133.53(d,J=19.1Hz),128.76–128.15(m),127.88(d,J=5.3Hz),126.69,70.10(d,J=23.5Hz),50.81,39.36(d,J=3.1Hz),37.88,37.12,35.04,28.68,20.1013.18.高分辨率质谱理论数据C33H41NP([M+H]+),482.2971,实验数据482.2977。
实施例17
Figure BDA0002426924940000252
(S)-1h的合成
具体操作参考实施例15,所用的原料为苯甲醛,产率为83%。氢谱核磁(500MHz,Chloroform-d)δ7.75–7.62(m,1H),7.49–7.10(m,18H),4.71(d,J=8.6Hz,1H),3.23(d,J=13.2Hz,1H),3.01(d,J=13.2Hz,1H),2.04–1.91(m,6H),1.70–1.56(m,9H).磷谱核磁(202MHz,CDCl3)δ-17.03.碳谱核磁(126MHz,Chloroform-d)δ147.29(d,J=23.8Hz),141.50,138.27–137.53(m),134.61(d,J=1.9Hz),134.05(d,J=20.1Hz),133.54(d,J=19.1Hz),128.79–127.69(m),126.60(d,J=15.4Hz),68.18(d,J=23.2Hz),52.13,39.37(d,J=3.0Hz),38.07,37.17,28.72.高分辨率质谱理论数据C36H39NP([M+H]+),516.2815,实验数据516.2817。
实施例18
Figure BDA0002426924940000253
(S)-1b的合成
参考方法三,在一个50mL的干燥的单支口瓶,在氦气氛围下加入
Figure BDA0002426924940000254
(1mmol)和甲醇溶剂(5mL),滴加浓盐酸(5.0eq.),在室温下搅拌1小时。之后再用乙酸乙酯稀释溶液。然经过饱和碳酸氢钠溶液洗、饱和食盐水洗、萃取、干燥、旋干溶剂得到水解粗产物。在一个50mL的干燥的单支口瓶,在氦气氛围下加入该粗产物和干燥的乙腈(5mL)、碘甲烷(1.5eq)、和碳酸钾(3.0eq.)。在80℃下搅拌12小时,之后抽滤旋干溶剂和柱层析纯化,得
Figure BDA0002426924940000261
产率为82%。氢谱核磁(500MHz,Chloroform-d)δ7.56–7.49(m,1H),7.41–7.24(m,11H),7.21–7.17(m,1H),7.16–7.11(m,1H),4.54(d,J=9.0Hz,1H),1.99–1.92(m,6H),1.90(s,3H),1.71–1.52(m,9H).磷谱核磁(202MHz,CDCl3)δ-17.33.碳谱核磁(126MHz,Chloroform-d)δ146.66(d,J=23.9Hz),138.15(d,J=12.7Hz),137.78(d,J=13.0Hz),137.51(d,J=11.5Hz),134.72,133.93(d,J=20.0Hz),133.53(d,J=19.1Hz),128.76–128.15(m),127.88(d,J=5.3Hz),126.69,70.10(d,J=23.5Hz),39.36(d,J=3.1Hz),37.88,37.12,35.04,28.68.高分辨率质谱理论数据C30H35NP([M+H]+),440.2502,实验数据440.2505。
实施例19
Figure BDA0002426924940000262
(S)-1g的合成
具体操作参考实施例18,所用的原料为碘代丁烷,产率为82%。氢谱核磁(500MHz,Chloroform-d)δ7.64–7.49(m,1H),7.41–7.22(m,11H),7.16–7.11(m,2H),4.74(d,J=9.0Hz,1H),1.99–0.62(m,24H).磷谱核磁(202MHz,CDCl3)δ-17.94.碳谱核磁(126MHz,Chloroform-d)δ146.66(d,J=23.9Hz),138.15(d,J=12.7Hz),137.78(d,J=13.0Hz),137.51(d,J=11.5Hz),134.72,133.93(d,J=20.0Hz),133.53(d,J=19.1Hz),128.76–128.15(m),127.88(d,J=5.3Hz),126.69,70.10(d,J=23.5Hz),50.81,39.36(d,J=3.1Hz),37.88,37.12,35.04,28.68,20.1013.18.高分辨率质谱理论数据C33H41NP([M+H]+),482.2971,实验数据482.2977。
实施例20
Figure BDA0002426924940000263
(S)-1h的合成
具体操作参考实施例18,所用的原料为溴化苄,产率为81%。氢谱核磁(500MHz,Chloroform-d)δ7.75–7.62(m,1H),7.49–7.10(m,18H),4.71(d,J=8.6Hz,1H),3.23(d,J=13.2Hz,1H),3.01(d,J=13.2Hz,1H),2.04–1.91(m,6H),1.70–1.56(m,9H).磷谱核磁(202MHz,CDCl3)δ-17.03.碳谱核磁(126MHz,Chloroform-d)δ147.29(d,J=23.8Hz),141.50,138.27–137.53(m),134.61(d,J=1.9Hz),134.05(d,J=20.1Hz),133.54(d,J=19.1Hz),128.79–127.69(m),126.60(d,J=15.4Hz),68.18(d,J=23.2Hz),52.13,39.37(d,J=3.0Hz),38.07,37.17,28.72.高分辨率质谱理论数据C36H39NP([M+H]+),516.2815,实验数据516.2817。
下述实施例提供了上述不同立体构Rong-Phos铱络合物2的合成方案,具体为:
实施例21
Figure BDA0002426924940000271
(SC,RN)-2a的合成
参考方法一,在一个50mL的干燥的Schlenk反应瓶中,在氦气氛围下加入
Figure BDA0002426924940000272
(0.5mmol)、[Ir(COD)Cl]2(0.25mmol)和干燥的二氯甲烷溶剂(10mL),在50℃下搅拌6小时,取样TLC,当配体完全络合后停止加热,让体系自然降至室温。剧烈搅拌下加入H2O(5mL)和NaBArF(661mg),加完之后继续反应1小时。之后分液,有机相用Na2SO4干燥,再旋干溶剂和柱层析纯化,得
Figure BDA0002426924940000273
产率为80%。氢谱核磁(500MHz,Chloroform-d)δ8.09–7.98(m,2H),7.79–7.71(m,8H),7.64–7.42(m,13H),7.24–7.19(m,1H),7.18–7.11(m,2H),4.84–4.76(m,1H),4.29(d,J=6.5Hz,1H),4.11–4.01(m,2H),3.47(h,J=3.4,2.5Hz,2H),2.65(d,J=6.0Hz,3H),2.51–2.39(m,1H),2.33–2.16(m,3H),2.07–1.99(m,1H),1.95–1.83(m,2H),1.81–1.70(m,1H),1.28(s,9H).磷谱核磁(202MHz,CDCl3)δ5.39.碳谱核磁(126MHz,Chloroform-d)δ162.38–161.05(m),139.52(d,J=15.4Hz),136.30,135.12(d,J=10.0Hz),134.93,134.81(d,J=4.4Hz),132.53(d,J=9.7Hz),132.26(d,J=2.5Hz),131.91,131.61(d,J=2.3Hz),131.47,131.29(d,J=2.5Hz),130.56(d,J=6.7Hz),129.43(d,J=10.9Hz),129.32–129.20(m),129.14–128.92(m),128.84–128.67(m),128.58–128.43(m),128.32,127.81,125.64,123.47,123.25,122.89,121.30,92.84(d,J=8.6Hz),85.14(d,J=15.2Hz),80.01(d,J=3.1Hz),67.20,63.41,43.55,35.99,33.50(d,J=4.0Hz),31.97,30.21(d,J=2.3Hz),29.03,27.50(d,J=2.7Hz).高分辨率质谱理论数据C32H40NPIr+([M-BArF]+):662.25221,实验数据662.25206。
实施例22
Figure BDA0002426924940000281
(SC,RN)-2b的合成
具体操作参考实施例21,所用的原料为
Figure BDA0002426924940000282
产率为85%。氢谱核磁(500MHz,Chloroform-d)δ8.09–8.01(m,2H),7.77–7.73(m,8H),7.65–7.41(m,13H),7.23–7.11(m,3H),4.81–4.73(m,1H),4.32–4.23(m,1H),4.11–4.02(m,1H),3.93–3.88(m,1H),3.54–3.46(m,2H),2.65(d,J=5.9Hz,3H),2.56–2.44(m,1H),2.34–2.17(m,3H),2.13–2.07(m,4H),2.03–1.89(m,4H),1.83–1.73(m,7H),1.66–1.58(m,4H).磷谱核磁(202MHz,CDCl3)δ4.80.碳谱核磁(126MHz,Chloroform-d)δ162.46–161.01(m),138.55(d,J=15.7Hz),136.28,135.17–134.64(m),132.53(d,J=9.6Hz),132.22(d,J=2.5Hz),131.77,131.57(d,J=2.3Hz),131.33,131.20(d,J=2.4Hz),130.58(d,J=6.6Hz),129.53–128.39(m),127.81,125.65,123.48,123.10,121.31,117.79–117.11(m),91.24(d,J=8.1Hz),81.96(d,J=16.3Hz),81.43(d,J=3.1Hz),66.75,63.90,43.42,41.33,37.54,36.21,34.23(d,J=4.4Hz),32.84,29.60(d,J=2.2Hz),28.28,27.26(d,J=2.9Hz).高分辨率质谱理论数据C38H46NPIr+([M-BArF]+):740.29916,实验数据740.29883。
实施例23
Figure BDA0002426924940000283
(SC,RN)-2c的合成
具体操作参考实施例21,所用的原料为
Figure BDA0002426924940000284
产率为87%。氢谱核磁(500MHz,Chloroform-d)δ7.77–7.72(m,9H),7.70–7.62(m,2H),7.59–7.35(m,14H),7.17–7.11(m,1H),4.79–4.70(m,1H),4.54–4.44(m,1H),4.40–4.30(m,1H),4.13–4.05(m,1H),3.43–3.31(m,1H),3.27–3.18(m,1H),2.57(d,J=6.0Hz,3H),2.46–2.19(m,2H),2.16–1.96(m,4H),1.95–1.75(m,3H),1.33–1.25(m,5H),1.19–0.99(m,2H),0.65–0.53(m,1H),0.53–0.44(m,1H),0.33–0.21(m,1H).磷谱核磁(202MHz,CDCl3)δ5.02.碳谱核磁(126MHz,Chloroform-d)δ162.46–160.92(m),140.99(d,J=14.7Hz),135.34(d,J=2.0Hz),134.80,134.21(d,J=10.9Hz),133.75(d,J=10.0Hz),133.28(d,J=11.4Hz),132.13(d,J=2.5Hz),132.00–131.85(m),130.84(d,J=7.1Hz),129.89–128.36(m),127.80,125.63,123.47,122.76,122.39,121.30,117.81–117.13(m),94.07(d,J=11.5Hz),90.51(d,J=12.5Hz),74.70(d,J=5.1Hz),69.50,62.11,44.92(d,J=2.6Hz),40.89,32.19–29.67(m),28.88(d,J=2.2Hz),25.67,25.38,24.91.高分辨率质谱理论数据C34H42NPIr+([M-BArF]+):688.26786,实验数据688.26744。
实施例24
Figure BDA0002426924940000291
(SC,RN)-2d的合成
具体操作参考实施例21,所用的原料为
Figure BDA0002426924940000292
产率为82%。氢谱核磁(500MHz,Chloroform-d)δ8.08–8.00(m,2H),7.80–7.72(m,8H),7.65–7.58(m,1H),7.57–7.42(m,12H),7.26–7.20(m,1H),7.19–7.10(m,2H),4.82–4.75(m,1H),4.31–4.24(m,1H),4.12(d,J=2.3Hz,1H),4.07–3.99(m,1H),3.54–3.48(m,1H),3.47–3.42(m,1H),2.67(d,J=6.0Hz,3H),2.50–2.39(m,1H),2.33–2.13(m,2H),2.09–1.85(m,3H),1.84–1.73(m,1H),1.50–1.31(m,7H),1.19(d,J=2.9Hz,6H),0.87(t,J=7.3Hz,3H).磷谱核磁(202MHz,CDCl3)δ4.93.碳谱核磁(126MHz,Chloroform-d)δ162.45–160.78(m),139.38(d,J=15.5Hz),136.35,135.07(d,J=10.1Hz),134.91,134.81,132.59(d,J=9.6Hz),132.26(d,J=2.5Hz),131.99,131.62–131.52(m),131.26(d,J=2.6Hz),130.53(d,J=6.7Hz),129.69–128.35(m),127.81,125.64,123.48(d,J=2.7Hz),123.13,121.31,117.96–116.94(m),92.46(d,J=8.3Hz),84.09(d,J=15.7Hz),79.96(d,J=2.8Hz),66.56,63.72,43.65,41.19(d,J=2.3Hz),38.62,33.26(d,J=3.9Hz),31.80,31.51,30.48(d,J=2.6Hz),30.33,30.16,29.71,27.70(d,J=2.8Hz),26.55(d,J=2.9Hz),25.82,23.36,14.00.高分辨率质谱理论数据C35H46NPIr+([M-BArF]+):704.29916,实验数据704.29831。
实施例25
Figure BDA0002426924940000301
(SC,RN)-2e的合成
具体操作参考实施例21,所用的原料为
Figure BDA0002426924940000302
产率为89%。氢谱核磁(500MHz,Chloroform-d)δ8.09–7.98(m,2H),7.84–7.70(m,9H),7.67–7.42(m,12H),7.26–7.13(m,3H),4.87–4.78(m,1H),4.25(s,1H),4.22–4.16(m,1H),4.02–3.92(m,1H),3.51–3.36(m,2H),2.65(d,J=5.5Hz,3H),2.47(m,1H),2.31–2.13(m,5H),2.11–1.94(m,2H),1.90–1.78(m,1H),1.69–1.34(m,4H),1.23–1.14(m,2H),1.01–0.84(m,6H).磷谱核磁(162MHz,CDCl3)δ5.96.碳谱核磁(126MHz,Chloroform-d)δ162.41–161.03(m),139.37(d,J=15.5Hz),136.41,134.82(t,J=6.3Hz),132.46(d,J=9.7Hz),132.20(d,J=2.4Hz),131.73–131.05(m),130.38(d,J=6.6Hz),129.88–128.23(m),127.82,125.65,124.11,123.75,123.48,121.32,117.47(p,J=4.1Hz),92.47(d,J=8.2Hz),83.54(d,J=16.1Hz),75.98(d,J=2.8Hz),67.04,63.34,43.56,40.85,33.85(d,J=4.3Hz),32.54,31.18–29.48(m),27.18(d,J=2.9Hz),23.21,7.70(d,J=11.1Hz).高分辨率质谱理论数据C34H44NPIr+([M-BArF]+):690.28351,实验数据690.28350。
实施例26
Figure BDA0002426924940000303
(SC,RN)-2f的合成
具体操作参考实施例21,所用的原料为
Figure BDA0002426924940000311
产率为85%。氢谱核磁(500MHz,Chloroform-d)δ8.04–7.96(m,2H),7.79–7.72(m,8H),7.66–7.60(m,1H),7.58–7.46(m,10H),7.34–7.29(m,1H),7.24–7.16(m,2H),4.81–4.72(m,1H),4.27(d,J=2.2Hz,1H),4.11–4.05(m,1H),4.02–3.94(m,1H),3.47–3.37(m,2H),2.65(d,J=6.0Hz,3H),2.52–2.42(m,1H),2.29–2.13(m,2H),2.09–2.00(m,1H),1.98–1.89(m,1H),1.86–1.69(m,6H),1.60(s,2H),1.49–1.32(m,3H),0.84(t,J=7.5Hz,9H).磷谱核磁(202MHz,CDCl3)δ6.11.碳谱核磁(126MHz,Chloroform-d)δ162.48–160.76(m),139.78(d,J=15.5Hz),136.53,135.23–134.47(m),132.48(d,J=9.7Hz),132.20(d,J=2.7Hz),131.76,131.62(d,J=2.3Hz),131.53(d,J=2.3Hz),131.33,130.54(d,J=6.6Hz),129.50–128.41(m),127.81,125.64,124.26,123.89,123.48,121.31,117.46(p,J=4.0Hz),92.10(d,J=8.1Hz),82.81(d,J=16.1Hz),76.09(d,J=2.6Hz),66.46,63.69,43.35,43.14,33.66(d,J=4.2Hz),32.44,31.51,30.50–29.31(m),27.32(d,J=2.8Hz),8.67.高分辨率质谱理论数据C35H46NPIr+([M-BArF]+):704.29916,实验数据704.29817。
实施例27
Figure BDA0002426924940000312
(SC,RN)-2g的合成
参考方法三,在一个50mL的干燥的Schlenk反应瓶中,在氦气氛围下加入
Figure BDA0002426924940000313
(0.5mmol)、[Ir(COD)Cl]2(0.25mmol)、NaBArF(661mg)和干燥的二氯甲烷溶剂(10mL),在50℃下搅拌6小时,取样TLC,当配体完全络合后停止加热,让体系自然降至室温。之后分液,有机相用Na2SO4干燥,再旋干溶剂和柱层析纯化,得
Figure BDA0002426924940000321
产率为27%。氢谱核磁(400MHz,Chloroform-d)δ8.03–7.93(m,2H),7.76–7.63(m,9H),7.60–7.49(m,9H),7.48–7.38(m,3H),7.34–7.28(m,1H),7.20–7.10(m,2H),7.04(s,2H),5.51(s,1H),4.45(s,1H),4.29(s,1H),3.73(s,3H),3.47–3.29(m,2H),2.84–2.74(m,1H),2.49(d,J=6.1Hz,3H),2.39–2.27(m,1H),2.20–1.91(m,2H),1.75–1.32(m,23H).磷谱核磁(202MHz,CDCl3)δ11.51.碳谱核磁(126MHz,Chloroform-d)δ162.53–160.68(m),145.45,141.58(d,J=15.8Hz),135.89,134.95(d,J=12.2Hz),134.78,133.50(d,J=10.3Hz),132.99–132.32(m),131.65(d,J=2.5Hz),130.43–128.22(m),127.75(d,J=11.7Hz),127.25,126.93,125.63,123.88–123.03(m),121.29,117.68–117.33(m),93.05(d,J=12.5Hz),92.72(d,J=11.5Hz),72.79(d,J=4.1Hz),65.70,64.36,63.25,43.49(d,J=2.0Hz),36.10,32.99(d,J=3.5Hz),31.84,30.77(d,J=2.7Hz),29.41(d,J=2.2Hz),29.06.高分辨率质谱理论数据C43H54NOPIr+([M-BArF]+):824.35668,实验数据824.35675。
实施例28
Figure BDA0002426924940000322
(SC,SN)-2a’的合成
参考方法二,在一个50mL的干燥的Schlenk反应瓶中,在氦气氛围下加入
Figure BDA0002426924940000323
(0.5mmol)、[Ir(COD)Cl]2(0.25mmol)、NaBArF(661mg)和干燥的二氯甲烷溶剂(10mL),在50℃下搅拌6小时。之后分液,有机相用Na2SO4干燥,再旋干溶剂和柱层析纯化,得
Figure BDA0002426924940000331
产率为74%。氢谱核磁(500MHz,Chloroform-d)δ8.00–7.92(m,2H),7.81–7.76(m,9H),7.75–7.71(m,1H),7.62–7.50(m,11H),7.35–7.26(m,3H),5.02–4.95(m,1H),4.60–4.57(m,1H),4.33–4.27(m,1H),3.97–3.91(m,1H),3.47–3.42(m,1H),3.26–3.20(m,1H),2.50–2.38(m,2H),2.36(d,J=5.9Hz,3H),2.29–2.20(m,1H),2.15–2.06(m,1H),2.05–1.89(m,3H),1.78–1.70(m,1H),1.01(s,9H).磷谱核磁(202MHz,CDCl3)δ9.35.碳谱核磁(126MHz,Chloroform-d)δ162.41–161.07(m),136.90(d,J=11.4Hz),135.45(d,J=11.8Hz),134.82,133.38(d,J=10.9Hz),133.06(d,J=3.7Hz),132.68(d,J=2.4Hz),132.05(d,J=2.4Hz),131.33(d,J=2.2Hz),130.04–128.39(m),128.00,127.83,125.66,124.60,124.16,123.50,121.33,117.64–117.36(m),93.53(d,J=10.5Hz),87.10(d,J=13.7Hz),72.25(d,J=13.3Hz),69.40,61.19,37.13,35.80,32.19(d,J=3.6Hz),31.55(d,J=2.8Hz),30.53(d,J=1.7Hz),28.97(d,J=2.6Hz),27.90.高分辨率质谱理论数据C32H40NPIr+([M-BArF]+):662.25221,实验数据662.25231。
实施例29
Figure BDA0002426924940000332
(SC,SN)-2b’的合成
具体操作参考实施例28,所用的原料为
Figure BDA0002426924940000333
产率为76%。氢谱核磁(500MHz,Chloroform-d)δ7.98–7.91(m,2H),7.86–7.82(m,1H),7.76–7.71(m,9H),7.65–7.60(m,1H),7.59–7.47(m,11H),7.28–7.22(m,2H),5.03–4.97(m,1H),4.33–4.27(m,2H),4.13–4.07(m,1H),3.43–3.36(m,1H),3.20–3.13(m,1H),2.47–2.35(m,2H),2.30(d,J=5.8Hz,3H),2.26–2.17(m,1H),2.12–1.84(m,7H),1.76–1.44(m,13H).磷谱核磁(202MHz,CDCl3)δ9.52.碳谱核磁(126MHz,Chloroform-d)δ161.72(dd,J=99.5,49.9Hz),136.56(d,J=11.3Hz),135.50(d,J=11.3Hz),134.81,133.68–127.47(m),125.65,124.61,124.17,123.48,121.32,117.50,93.40(d,J=10.3Hz),86.90(d,J=13.4Hz),73.26(d,J=14.1Hz),69.30,61.07,40.15,38.19,37.67,36.11,32.25(d,J=3.6Hz),31.50,30.50,29.72,29.02,27.91.高分辨率质谱理论数据C38H46NPIr+([M-BArF]+):740.29916,实验数据740.29890。
实施例30
Figure BDA0002426924940000341
(SC,SN)-2c’的合成
具体操作参考实施例28,所用的原料为
Figure BDA0002426924940000342
产率为83%。氢谱核磁(400MHz,Chloroform-d)δ7.98(d,J=11.4Hz,1H),7.74–7.69(m,11H),7.54–7.42(m,12H),7.34–7.27(m,1H),7.24–7.18(m,1H),7.13–7.07(m,1H),4.71(d,J=8.6Hz,1H),4.59–4.45(m,2H),3.64–3.46(m,2H),2.75–2.60(m,1H),2.40–1.79(m,7H),1.71–1.39(m,5H),1.32–1.08(m,6H),1.02–0.76(m,3H).磷谱核磁(202MHz,CDCl3)δ6.75.碳谱核磁(126MHz,Chloroform-d)δ163.21,162.59–160.82(m),143.45(d,J=14.5Hz),135.65,134.79,133.89(d,J=12.0Hz),132.65(d,J=10.4Hz),132.20(d,J=2.4Hz),132.05–131.68(m),130.80–127.36(m),125.62,123.46,122.96,122.57,121.29,117.65–117.28(m),97.54(d,J=10.9Hz),90.94(d,J=12.6Hz),87.33,69.26,67.39,47.11,32.90,32.29(d,J=3.2Hz),31.47(d,J=3.1Hz),31.15,29.99,29.81,25.93(d,J=17.2Hz),25.51.高分辨率质谱理论数据C34H42NPIr+([M-BArF]+):688.26786,实验数据688.26757。
实施例31
Figure BDA0002426924940000343
(SC,SN)-2d’的合成
具体操作参考实施例28,所用的原料为
Figure BDA0002426924940000344
产率为81%。氢谱核磁(400MHz,Chloroform-d)δ7.97–7.88(m,2H),7.76–7.67(m,10H),7.58–7.48(m,11H),7.30–7.26(m,1H),7.23–7.16(m,2H),4.94–4.86(m,1H),4.63(s,1H),4.27–4.16(m,1H),3.88–3.78(m,1H),3.43–3.35(m,1H),3.18–3.10(m,1H),2.48–2.32(m,2H),2.31(d,J=5.9Hz,3H),2.24–2.13(m,1H),2.11–2.00(m,1H),2.00–1.87(m,3H),1.76–1.64(m,1H),1.47–1.15(m,4H),1.11(s,3H),1.06–0.91(m,5H),0.66(t,J=7.3Hz,3H).磷谱核磁(202MHz,CDCl3)δ9.01.碳谱核磁(126MHz,Chloroform-d)δ162.68–160.60(m),136.87(d,J=11.3Hz),135.70(d,J=11.6Hz),134.81,133.26(d,J=11.6Hz),132.77,132.04,131.37,130.38–127.06(m),125.64,124.88,124.43,123.47,121.30,117.46,93.60(d,J=10.5Hz),87.13(d,J=13.5Hz),69.95,69.48,60.99,41.86,38.34,37.34,32.13,31.67,30.67,28.88,26.89,24.69(d,J=22.3Hz),23.02,13.80.高分辨率质谱理论数据C35H46NPIr+([M-BArF]+):704.29916,实验数据704.29997。
实施例32
Figure BDA0002426924940000351
(SC,SN)-2e’的合成
具体操作参考实施例28,所用的原料为
Figure BDA0002426924940000352
产率为86%。氢谱核磁(500MHz,Chloroform-d)δ8.01–7.93(m,2H),7.79–7.72(m,9H),7.60–7.50(m,12H),7.34–7.29(m,1H),7.26–7.20(m,2H),4.99–4.91(m,1H),4.68(s,1H),4.29–4.20(m,1H),3.95–3.88(m,1H),3.46–3.38(m,1H),3.20–3.10(m,1H),2.50–2.31(m,4H),2.28–2.16(m,1H),2.14–2.03(m,1H),2.03–1.89(m,3H),1.79–1.68(m,1H),1.64–1.54(m,2H),1.41–1.32(m,2H),1.12(s,3H),1.01–0.82(m,1H),0.63–0.49(m,3H),0.30–0.21(m,3H).磷谱核磁(162MHz,CDCl3)δ8.83.碳谱核磁(126MHz,Chloroform-d)δ161.70(dd,J=99.7,49.9Hz),136.87(d,J=11.2Hz),135.80(d,J=11.8Hz),134.81,133.31,133.22,132.75(d,J=2.4Hz),132.01(d,J=2.5Hz),131.35,130.22–128.30(m),127.76(d,J=12.5Hz),127.28,125.64,125.09,124.65,123.47,121.31,117.79–117.16(m),93.73(d,J=10.4Hz),87.23(d,J=13.6Hz),69.92,69.36(d,J=13.1Hz),60.95,41.25,37.44,32.07(d,J=3.6Hz),31.68(d,J=2.8Hz),30.67,30.36,28.86(d,J=2.6Hz),27.72,21.54,7.02,6.54.高分辨率质谱理论数据C34H44NPIr+([M-BArF]+):690.28351,实验数据690.28412。
实施例33
Figure BDA0002426924940000361
(SC,SN)-2f’的合成
具体操作参考实施例28,所用的原料为
Figure BDA0002426924940000362
产率为88%。氢谱核磁(500MHz,Chloroform-d)δ8.02–7.94(m,2H),7.84–7.80(m,1H),7.79–7.72(m,9H),7.63–7.45(m,9H),7.36–7.31(m,1H),7.27–7.18(m,2H),4.99–4.92(m,1H),4.78(s,1H),4.30–4.21(m,1H),4.00–3.91(m,1H),3.48–3.38(m,1H),3.14–3.07(m,1H),2.54–2.33(m,5H),2.29–2.17(m,1H),2.13–1.91(m,4H),1.79–1.65(m,4H),1.59(s,1H),1.57–1.45(m,3H),0.71–0.46(m,9H).磷谱核磁(202MHz,CDCl3)δ8.44.碳谱核磁(126MHz,Chloroform-d)δ162.60–160.69(m),137.21(d,J=11.2Hz),136.02(d,J=11.9Hz),134.81,133.43(d,J=3.6Hz),133.20(d,J=10.8Hz),132.75(d,J=2.6Hz),131.97(d,J=2.3Hz),131.37(d,J=1.9Hz),129.97(d,J=7.7Hz),129.68(d,J=10.4Hz),129.54,129.36–128.40(m),127.81,127.43,127.00,125.64,125.35,124.90,123.48,121.31,117.77–116.90(m),93.78(d,J=10.7Hz),87.69(d,J=13.3Hz),69.91,69.34(d,J=13.2Hz),60.95,43.39,37.53,32.17(d,J=3.5Hz),31.54(d,J=2.8Hz),30.49(d,J=1.7Hz),28.94(d,J=2.4Hz),28.57,8.30.高分辨率质谱理论数据C35H46NPIr+([M-BArF]+):704.29916,实验数据704.29920。
实施例34
Figure BDA0002426924940000363
(SC,SN)-2g’的合成
在实施例27时同时产生(SC,SN)-2g’,产率为54%。氢谱核磁(400MHz,Chloroform-d)δ8.09–8.02(m,1H),7.81–7.73(m,2H),7.70(p,J=2.1Hz,9H),7.58–7.38(m,12H),7.25–7.11(m,4H),7.06(s,2H),6.12(s,1H),4.32(d,J=5.5Hz,1H),3.76(s,3H),3.64–3.51(m,2H),3.15–3.06(m,1H),2.42–2.29(m,1H),2.23–2.06(m,1H),1.89–1.79(m,1H),1.78–1.62(m,1H),1.57–1.21(m,23H).磷谱核磁(202MHz,CDCl3)δ16.35.碳谱核磁(126MHz,Chloroform-d)δ162.38–161.00(m),160.85,159.81,145.31,143.76(d,J=14.3Hz),135.05(d,J=2.2Hz),134.79,134.19(d,J=12.0Hz),132.60(d,J=2.3Hz),132.41(d,J=2.6Hz),132.30(d,J=10.5Hz),131.91(d,J=2.4Hz),131.84,130.73(d,J=10.0Hz),129.94–129.60(m),129.35–128.40(m),128.28,127.89,127.79,126.05,125.61(d,J=3.2Hz),124.25,123.86,123.45,121.29,117.70–117.21(m),97.80(d,J=11.8Hz),92.47(d,J=12.0Hz),83.37(d,J=3.3Hz),67.57,66.94,64.37,36.07,33.44(d,J=3.7Hz),31.84,30.04(d,J=2.3Hz),29.97(d,J=2.6Hz),28.76.高分辨率质谱理论数据C43H54NOPIr+([M-BArF]+):824.35668,实验数据824.35682。
实施例35五元环环状不饱和羰基化合物的不对称催化氢化反应
将实施例21所得的Rong-Phos铱络合物
Figure BDA0002426924940000371
(SC,RN)-2a用于反应的催化,具体操作为:称取Rong-Phos铱络合物
Figure BDA0002426924940000372
(SC,RN)-2a(2.4mg)和化合物
Figure BDA0002426924940000373
(0.15mmol)于10mL装有搅拌子的氢化反应管中,抽真空,换氮气,在氮气氛围下加入甲苯(1.5mL),液氮冷却-抽真空,反复三次。将反应管转移到高压釜中,充入氢气(50atm)反应。12小时后打开高压釜,经柱层析得到产物分析其产率,HPLC分析其对映体过量值(ee)。
具体催化反应如下反应式所示:
Figure BDA0002426924940000381
柱层析分析得知:目标产物产率95%:HPLC分析得知:ee=66%
目标产物的1H NMR(500MHz,Chloroform-d)δ7.36–7.27(m,5H),7.26–7.19(m,5H),4.48(q,J=15.0Hz,2H),3.28(dd,J=13.2,3.6Hz,1H),3.13(dt,J=9.8,7.7Hz,1H),3.04(td,J=9.2,3.5Hz,1H),2.86–2.71(m,2H),2.09–1.97(m,1H),1.77–1.67(m,1H);13CNMR(126MHz,Chloroform-d)δ175.80,139.38,136.51,129.12,128.66,128.45,128.10,127.52,126.32,46.79,44.78,43.66,37.03,24.01。高分辨率质谱理论数据C18H19NNaO+,288.1359,实验数据:288.1359。手性通过HPLC测定,使用ADH手性柱(hexane:2-propanol=90:10,1.0mL/min,210nm);大的对映异构体保留时间10.7min,小的对映异构体保留时间11.8min。[α]D 22=+55.48(c=1.0,CHCl3)。
实施例36-47
考察本发明所述的Rong-Phos铱络合物即化合物2,配体R2取代基、氢气压力及溶剂对反应的影响,具体操作及其余条件均参照实施例35所述。各实施例的反应条件及实验结果详见表1所示。
表1实施例36-47的反应条件和反应结果
Figure BDA0002426924940000382
Figure BDA0002426924940000391
通过实施例36-47,说明(SC,RN)-2b和(SC,SN)-2b’为制备S构型和R构型的最合适的催化剂,值得一提的是Rong-Phos铱络合物(SC,RN)-2b以96%产率,90%的ee得到S构型目标产物,而Rong-Phos铱络合物(SC,SN)-2b’则以96%产率,98%的ee得到R构型目标产物,出现了手性翻转的现象,而这两个铱络合物(SC,RN)-2b和(SC,SN)-2b’是由同一配体Rong-Phos(S)-1b制得,两者区别仅在于两者氮原子上的手性,通过对氮原子手性的控制,实现了使用同一配体,以优秀的对映选择性和优秀的产率得到两种构型的目标产物,这是非常具有挑战性的。
实施例48-71
考察本发明所述的底物的普适性,分别对(SC,RN)-2b和(SC,SN)-2b’两个铱络合物进行了考察,具体操作及其余条件均参照实施例43所述。各实施例的反应条件及实验结果详见表2所示。
催化反应如下式(5)所示:
Figure BDA0002426924940000401
表2实施例48-71的反应条件和反应结果
Figure BDA0002426924940000402
Figure BDA0002426924940000411
通过实施例48-71,在五元环环状不饱和羰基化合物的不对称催化氢化反应中的应用中,所述铱络合物(SC,RN)-2b有较好的底物普适性,而铱络合物(SC,SN)-2b’则在此普适性好的基础上展现出了极好的对映选择性,且具有很高的反应活性和对映选择性。
实施例72六元环环状不饱和羰基化合物的不对称催化氢化反应
将实施例27所得的Rong-Phos铱络合物
Figure BDA0002426924940000412
(SC,RN)-2g用于反应的催化,具体操作为:称取Rong-Phos铱络合物
Figure BDA0002426924940000413
(SC,RN)-2g(2.5mg)和化合物
Figure BDA0002426924940000421
(0.15mmol)于10mL装有搅拌子的氢化反应管中,抽真空,换氮气,在氮气氛围下加入二氯甲烷(1.5mL),液氮冷却-抽真空,反复三次。将反应管转移到高压釜中,充入氢气(20atm)反应。12小时后打开高压釜,经柱层析得到产物分析其产率,HPLC分析其对映体过量值(ee)。
具体催化反应如下反应式所示:
Figure BDA0002426924940000422
柱层析分析得知:目标产物产率71%:HPLC分析得知:ee=75%
目标产物的1H NMR(400MHz,Chloroform-d)δ7.32–7.12(m,5H),3.76–3.65(m,1H),3.62–3.51(m,1H),3.45–3.34(m,1H),2.69–2.57(m,2H),1.91–1.63(m,3H),1.54(s,9H);13C NMR(101MHz,Chloroform-d)δ173.61,152.96,139.60,129.22,128.38,126.24,82.76,45.75,45.58,37.09,28.05,25.34,21.57。高分辨率质谱理论数据C17H23NNaO3 +,312.1570,实验数据:312.1571。手性通过HPLC测定,使用OZ-3手性柱(hexane:2-propanol=95:5,0.5mL/min,210nm);大的对映异构体保留时间17.3min,小的对映异构体保留时间21.3min。[α]D 22=+82.33(c=1.0,CHCl3)。
实施例73-77
考察本发明所述的Rong-Phos铱络合物即化合物2,氢气压力及溶剂对反应的影响,具体操作及其余条件均参照实施例72所述。各实施例的反应条件及实验结果详见表3所示。
表3实施例73-77的反应条件和反应结果
Figure BDA0002426924940000423
Figure BDA0002426924940000431
通过实施例73-74,说明(SC,SN)-2g’为最合适的催化剂,通过实施例74-75,说明氢气压力为30atm为最合适的压力,通过实施例75-77,说明DCE为最合适的溶剂,以99%产率,96%的ee得到R构型目标产物。
实施例78-87
考察本发明所述的底物的普适性,对(SC,SN)-2g’进行了考察,具体操作及其余条件均参照实施例77所述。各实施例的反应条件及实验结果详见表4所示。
催化反应如下式(式6)所示:
Figure BDA0002426924940000432
表4 实施例78-87的反应条件和反应结果
Figure BDA0002426924940000433
Figure BDA0002426924940000441
通过实施例78-87,在六元环环状不饱和羰基化合物的不对称催化氢化反应中的应用中,所述铱络合物(SC,SN)-2g’有优秀的底物普适性,具有很高的反应活性和对映选择性。
实施例88七元环环状不饱和羰基化合物的不对称催化氢化反应
将实施例27所得的Rong-Phos铱络合物
Figure BDA0002426924940000451
(SC,RN)-2g用于反应的催化,具体操作为:称取Rong-Phos铱络合物
Figure BDA0002426924940000452
(SC,RN)-2g(2.5mg)和化合物
Figure BDA0002426924940000453
(0.15mmol)于10mL装有搅拌子的氢化反应管中,抽真空,换氮气,在氮气氛围下加入二氯甲烷(1.5mL),液氮冷却-抽真空,反复三次。将反应管转移到高压釜中,充入氢气(30atm)反应。12小时后打开高压釜,经柱层析得到产物分析其产率,HPLC分析其对映体过量值(ee)。
具体催化反应如下反应式所示:
Figure BDA0002426924940000454
柱层析分析得知:目标产物产率98%:HPLC分析得知:ee=60%
目标产物的1H NMR(400MHz,Chloroform-d)δ7.32–7.23(m,2H),7.22–7.16(m,3H),4.27–4.17(m,1H),3.35(dd,J=15.3,10.6Hz,1H),3.26(dd,J=14.1,5.3Hz,1H),2.96–2.85(m,1H),2.58(dd,J=14.1,8.7Hz,1H),1.91–1.71(m,3H),1.52(s,9H),1.49–1.38(m,3H);13C NMR(101MHz,Chloroform-d)δ176.76,153.32,140.12,129.31,128.33,126.11,82.71,47.87,45.29,38.11,29.34,28.43,28.05。高分辨率质谱理论数据C18H25NNaO3 +,326.1726,实验数据:326.1722。手性通过HPLC测定,使用AS-H手性柱(hexane:2-propanol=98:2,1.0mL/min,210nm);小的对映异构体保留时间5.0min,大的对映异构体保留时间5.8min。[α]D 22=-9.27(c=1.0,CHCl3)。
实施例89-90
考察本发明所述的Rong-Phos铱络合物即化合物2对反应的影响,具体操作及其余条件均参照实施例88所述。各实施例的反应条件及实验结果详见表5所示。
表5实施例89-90的反应条件和反应结果
Figure BDA0002426924940000461
通过实施例96-97,说明(SC,SN)-2g’为最合适的催化剂,以99%产率,96%ee得到R构型目标产物。
实施例91-98
考察本发明所述的底物的普适性,对(SC,SN)-2g’进行了考察,具体操作及其余条件均参照实施例90所述。各实施例的反应条件及实验结果详见表6所示。
催化反应如下式(7)所示:
Figure BDA0002426924940000462
表6 实施例91-98的反应条件和反应结果
Figure BDA0002426924940000471
通过实施例91-98,在七元环环状不饱和羰基化合物的不对称催化氢化反应中的应用中,所述铱络合物(SC,SN)-2g’有优秀的底物普适性,具有很高的反应活性和对映选择性。
本发明的保护内容不局限于以上实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。

Claims (14)

1.一种Rong-Phos铱络合物,其特征在于,所述Rong-Phos铱络合物为如下式(2)所示的化合物或化合物对映体、或消旋体:
Figure FDA0003346957030000011
所述式(2)中:Ar选自
Figure FDA0003346957030000012
R1选自
Figure FDA0003346957030000013
R2选自C1~C12的烷烃基、
Figure FDA0003346957030000014
或4-甲氧基-3,5-二叔丁基苯基;
R3选自氢;
R4和R5为C1~C12的烷烃基和氢、
Figure FDA0003346957030000015
和氢;
其中,Rx和Rx’分别独立选自C1~C12的烷烃基、C1~C10的烷氧基;n选自1~5的整数;
X为:BArF-、BF4 -、PF6 -或者Cl-中任一的阴离子。
2.如权利要求1所述的手性双齿氮膦配体Rong-Phos铱络合物,其特征在于,其中,Ar选自
Figure FDA0003346957030000016
R1选自
Figure FDA0003346957030000017
R2选自叔丁基、金刚烷基、环己基、-C(CH3)2 nBu、-C(CH2CH3)2Me、-C(CH2CH3)3、4-甲氧基-3,5-二叔丁基苯基;
R3选自氢;
R4、R5分别独立选自甲基和氢、正丁基和氢、苄基和氢;
其中,Rx和Rx’分别独立选自氢;n选自1~5的整数;
X为:BArF-、BF4 -、PF6 -或者Cl-中任一的阴离子。
3.如权利要求1所述的手性双齿氮膦配体Rong-Phos铱络合物,其特征在于,结构如下:
Figure FDA0003346957030000021
4.如权利要求1所述Rong-Phos铱络合物的氮手性中心高对映选择性构建方法,其特征在于,所述方法为:由式(1)化合物出发,和[Ir(COD)Cl]2、和钠盐溶解于溶剂中,搅拌反应,制得式(2)光学纯Rong-Phos铱络合物;
其中,所述式(1)化合物如下:
Figure FDA0003346957030000022
所述式(2)Rong-Phos铱络合物包括式(SC,RN)-2、(SC,SN)-2、(RC,SN)-2、(RC,RN)-2所示的四种构型:
Figure FDA0003346957030000023
其中,对各基团的定义同权利要求1。
5.如权利要求4所述的构建方法,其特征在于,所述方法如下:
方法一:将化合物式(1)式(S)-1或式(R)-1与[Ir(COD)Cl]2反应,反应完全后再加入H2O和NaX,分别得到单一构型的所述手性双齿氮膦配体Rong-Phos铱络合物,其构型分别为(SC,RN)-2、(RC,SN)-2,所述化合物式(1)为化合物式(S)-1、式(R)-1;其中,手性碳原子上较大的基团R2和氮原子上较大的基团R4呈反式;其构型如式(SC,RN)-2和式(RC,SN)-2所示;反应式如下所示:
Figure FDA0003346957030000031
6.如权利要求5所述的构建方法,其特征在于,所述方法中,所述化合物式(1)、[Ir(COD)Cl]2、H2O和NaX的摩尔比为1:0.1~10:100~1000:0.1~10;反应温度为0℃~100℃;反应时间为0.5小时~12小时;所述溶剂为二氯甲烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合;所述反应中NaX为NaBArF、NaBF4、NaPF6、NaCl。
7.如权利要求4所述的构建方法,其特征在于,所述方法如下:
方法二:将化合物式(1)、[Ir(COD)Cl]2、NaX一起反应,分别得到单一构型的所述手性双齿氮膦配体Rong-Phos铱络合物,其构型分别为(SC,SN)-2、(RC,RN)-2;所述化合物式(1)为化合物式(S)-1、式(R)-1;其中,手性碳原子上较大的基团R2和氮原子上较大的基团R4呈顺式;其构型如式(SC,SN)-2和式(RC,RN)-2所示;所述反应式如下:
Figure FDA0003346957030000041
其中,对各基团的定义同权利要求1。
8.如权利要求7所述的构建方法,其特征在于,所述方法中,化合物式(1)、[Ir(COD)Cl]2和NaX的摩尔比为1:0.1~10:0.1~10;反应温度为0℃~100℃;反应时间为0.5小时~12小时;所述溶剂为二氯甲烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合;所述NaX包括NaBArF、NaBF4、NaPF6、NaCl。
9.如权利要求4所述的构建方法,其特征在于,所述方法如下:
方法三:由化合物式(4)、[Ir(COD)Cl]2、NaX一起反应,Rong-Phos的碳手性中心保持不变的同时可以得到两种氮手性的催化剂,即一个Rong-Phos配体可以制得两个构型即一对非对映异构体的Rong-Phos铱络合物;所述化合物式(4)为化合物式(Sc,Rs)-4、(Sc,Ss)-4、(Rc,Ss)-4、(Rc,Rs)-4;所述反应式如下:
Figure FDA0003346957030000051
R6选自叔丁基。
10.如权利要求9所述的构建方法,其特征在于,所述方法中,化合物式(4)、[Ir(COD)Cl]2和NaX的摩尔比为1:0.1~10:0.1~10;反应温度为0℃~100℃;反应时间为0.5小时~12小时;所述溶剂为二氯甲烷、乙醚、二丁醚、甲基叔丁基醚、乙二醇二甲醚、1,4-二氧六环、四氢呋喃、2-甲基四氢呋喃、甲苯、二甲苯、苯、氯苯、氟苯、氯仿、正己烷之中一种或其任意混合;反应中NaX为NaBArF、NaBF4、NaPF6、NaCl。
11.如权利要求4所述的构建方法,其特征在于,所述钠盐为NaBArF、NaBF4、NaPF6或NaCl;述溶剂为二氯甲烷;所述搅拌反应是指:在惰性气体氛围下,在0℃~50℃温度范围下,搅拌0.5小时~12小时。
12.如权利要求1-3之任一项所述Rong-Phos铱络合物在环状不饱和羰基化合物的氢化反应中的应用,其特征在于,通过将环状不饱和羰基化合物和所述Rong-Phos铱络合物溶解于甲苯或1,2-二氯乙烷中,在1atm~100atm环境下加压反应,实现环状不饱和羰基化合物的氢化反应;其中,所述环状不饱和羰基化合物的结构为如下:
Figure FDA0003346957030000061
式中:X’=NR8
R7为芳基;
R8为芳烷基;
n=2,3,4。
13.如权利要求12所述的应用,其特征在于,所述加压反应为:在氢气压力环境下反应1小时~240小时。
14.一种环状不饱和羰基化合物的氢化反应,其特征在于,所述反应通过将环状不饱和羰基化合物和如权利要求1所述的式(2)Rong-Phos铱络合物溶解于甲苯中,在1atm~100atm环境下加压反应来实现,所述环状不饱和羰基化合物的结构为如下:
Figure FDA0003346957030000062
式中:X’=NR8
R7为芳基;
R8为芳烷基;
n=2,3,4。
CN202010223610.3A 2020-03-26 2020-03-26 手性双齿氮膦配体Rong-Phos铱络合物及其氮手性中心高对映选择性构建和应用 Active CN111499666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010223610.3A CN111499666B (zh) 2020-03-26 2020-03-26 手性双齿氮膦配体Rong-Phos铱络合物及其氮手性中心高对映选择性构建和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010223610.3A CN111499666B (zh) 2020-03-26 2020-03-26 手性双齿氮膦配体Rong-Phos铱络合物及其氮手性中心高对映选择性构建和应用

Publications (2)

Publication Number Publication Date
CN111499666A CN111499666A (zh) 2020-08-07
CN111499666B true CN111499666B (zh) 2021-12-24

Family

ID=71865805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010223610.3A Active CN111499666B (zh) 2020-03-26 2020-03-26 手性双齿氮膦配体Rong-Phos铱络合物及其氮手性中心高对映选择性构建和应用

Country Status (1)

Country Link
CN (1) CN111499666B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106632478A (zh) * 2016-12-01 2017-05-10 武汉凯特立斯科技有限公司 一种手性双齿氮膦配体及其在不对称催化反应中的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106632478A (zh) * 2016-12-01 2017-05-10 武汉凯特立斯科技有限公司 一种手性双齿氮膦配体及其在不对称催化反应中的应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A New Phosphine-Amine-Oxazoline Ligand for Ru-Catalyzed Asymmetric Hydrogenation of N-Phosphinylimines;Ma, X.等;《 Z. Chin. J. Chem.》;20181008;第36卷;1151-1155 *
Chiral imidate–ferrocenylphosphanes: synthesis and application as P,N-ligands in iridium(I)-catalyzed hydrogenation of unfunctionalized and poorly functionalized olefins;K.Bert等;《Org. Biomol. Chem.》;20120809;第10卷;8539-8550 *
Chiral phosphine ligands in asymmetric synthesis. IV. Hydrosilation of ketones, and the structure of (bicyclo[2.2.l]hepta-2,s-diene)[N,N-dimethyl-1(R)-(o-(bis(tert-butyl)phosphino) phenyl)ethylamine]rhodium(I) perchlorate;IAN D. MCKA等;《Can. J. Chem.》;19861231;第64卷;1930-1935 *
Neue optisch aktive Chelat-Phosphane - Synthese und Verwendung in der enantioselektiven Katalyse;H. Brunne等;《Chcm. Ber.》;19901231;第123卷;847-853 *
Nitrogen- and phosphorus-coordinated nickel(II) complexes as catalysts for the oligomerization of ethylene;M.E. Bluhm等;《Journal of Molecular Catalysis A: Chemical》;20050104;第229卷;177-181 *
Novel P,N Ligands Derived from (R)- and (S)-1-Phenylethylamine with (2R,5R)-2,5-Dimethylphospholanyl Groups (DuPHAMIN) for Asymmetric Catalysis;David J. Brauer等;《Eur. J. Inorg. Chem.》;20031231;1748-1755 *
Spiro[4,4]-1,6-nonadiene-Based Phosphine–Oxazoline Ligands for Iridium-Catalyzed Enantioselective Hydrogenation of Ketimines;Zhaobin Han等;《Angew. Chem. Int. Ed.》;20090616;第48卷;5345-5349 *

Also Published As

Publication number Publication date
CN111499666A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
KR19980702982A (ko) 입체 선택적 개환반응
CN109718851B (zh) 一种手性季鏻盐相转移催化剂及其制备方法和应用
Lu et al. Dipeptide-derived multifunctional phosphonium salt as a catalyst to synthesize highly functionalized chiral cyclopentanes
CN111925356B (zh) 手性喹啉-咪唑啉配体的合成方法及其应用
Peng et al. Synthesis and crystal structure of bis [(4S, 5S)-4, 5-dihydro-4, 5-diphenyl-2-(2′-oxidophenyl-χO) oxazole-χN] copper (II) and its application in the asymmetric Baeyer–Villiger reaction
JP2014040457A (ja) ホスホロアミド化合物及び光学活性アルコールの製造方法
CN111499666B (zh) 手性双齿氮膦配体Rong-Phos铱络合物及其氮手性中心高对映选择性构建和应用
CN111393476B (zh) 一类手性双齿氮膦配体Rong-Phos及其制备方法和应用
CN109503670B (zh) 一类二茂铁骨架的手性单膦配体WJ-Phos及制备方法和应用
CN112110933A (zh) 一种木脂素类天然产物及其中间体、制备方法
JP4474861B2 (ja) 光学活性四級アンモニウム塩、その製造法、並びにそれを用いた光学活性α−アミノ酸誘導体の製造法
CN106146543A (zh) 过渡金属络合物、手性α-氨基三级硼酸酯及其制备方法
CN109503660B (zh) 一类环状膦骨架的手性单膦催化剂Le-Phos及其全构型的制备方法和应用
CN109705014B (zh) 一种新型手性氧化胺配体及其制备方法
CN109666041B (zh) 一类二苯醚骨架的手性单膦配体HP-Phos及制备方法和应用
Wu et al. A New Class of Chiral Pincer-Type PNN Ligands for Pd-Catalyzed Asymmetric Allylic Alkylation
JP3976357B2 (ja) 光学活性アルコールの製造方法
WO2021002407A1 (ja) フルオロアルキル基含有化合物とその製造方法
JP4004547B2 (ja) 光学活性アミンの製造方法
JP2008169201A (ja) 新規光学活性ビアリールリン化合物とその製造方法
JP2009235067A (ja) 軸不斉リン化合物とその製造方法
CN115340446B (zh) 一种手性苯并环丁烯醇、其合成方法及用途
Yang et al. Synthesis and separation of the atropisomers of 2-(5-benzo [b] fluorenyl)-2′-hydroxy-1, 1′-binaphthyl and related compounds
CN109251227A (zh) 一类包含二茂铁骨架和刚性螺环结构的手性化合物及合成与应用
CN112679540B (zh) 一种基于吲哚环骨架的手性亚磺酰胺类膦化合物Na-Phos及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant