CN111499390A - 在陶瓷基质复合材料中产生内腔室的方法 - Google Patents

在陶瓷基质复合材料中产生内腔室的方法 Download PDF

Info

Publication number
CN111499390A
CN111499390A CN202010092132.7A CN202010092132A CN111499390A CN 111499390 A CN111499390 A CN 111499390A CN 202010092132 A CN202010092132 A CN 202010092132A CN 111499390 A CN111499390 A CN 111499390A
Authority
CN
China
Prior art keywords
cmc
mandrel
preform
cmc preform
inner chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010092132.7A
Other languages
English (en)
Inventor
P.E.格雷
H.C.罗伯茨三世
G.C.塔克萨赫
S.K.F.沃卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN111499390A publication Critical patent/CN111499390A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/342Moulds, cores, or mandrels of special material, e.g. destructible materials which are at least partially destroyed, e.g. broken, molten, before demoulding; Moulding surfaces or spaces shaped by, or in, the ground, or sand or soil, whether bound or not; Cores consisting at least mainly of sand or soil, whether bound or not
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/52Mechanical actuating means with crank, eccentric, or cam
    • F16K31/524Mechanical actuating means with crank, eccentric, or cam with a cam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

本发明涉及一种在陶瓷基质复合材料中产生内腔室的方法。用于在CMC制品中产生内腔室的过程及与其一起使用的心轴。该过程需要并入由可熔材料制成的心轴,该可熔材料在CMC预成型件的热处理期间被熔化和排出,以形成CMC制品。心轴材料优选为在热处理期间不润湿CMC预成型件的任何组分并且与CMC预成型件的任何组分不反应。心轴优选为锡或锡合金。

Description

在陶瓷基质复合材料中产生内腔室的方法
本申请为2013年4月26日提交的发明专利申请“在陶瓷基质复合材料中产生内腔室的方法”(申请号:201310149114.8,申请人:通用电气公司)的分案申请。
本申请要求2012年4月27日提交的美国临时申请No.61/639,617的权益,该申请的内容通过参考并入本文中。
本发明在能源部授予的合同No.DE-FC26-05NT42643下利用政府支持完成。政府具有本发明中的某些权利。
技术领域
本发明大体涉及陶瓷基质复合材料(CMC)制品及其生产过程。
背景技术
当寻找较高操作温度以提高涡轮机的效率时,涡轮机中的使用已经变得特别感兴趣的是CMC材料。CMC材料和特别地提出用于燃气涡轮发动机应用的这些CMC材料典型地包括嵌入在陶瓷基质材料中的陶瓷纤维增强材料。增强材料用作CMC的承载组分,并且陶瓷基质保护增强材料,保持其纤维的方位,并且用于使负载散开至增强材料。
高温应用特别感兴趣的是硅基复合材料,诸如作为基质材料和/或增强材料的碳化硅(SiC)。在共同转让的美国专利No.5,015,540、5,330,854、5,336,350、5,628,938、6,024,898、6,258,737、6,403,158和6,503,441,以及共同转让的美国专利申请公开No.2004/0067316中公开SiC/Si-SiC(纤维/基质)CMC材料和过程的值得注意的实例。一种这种过程被称为"预浸料坯(prepreg)"熔渗(MI),其大体上需要使用多个预浸料坯层(每个呈包括期望的增强材料的带状结构的形式)、CMC基质材料的前体(precursor)、粘合剂和其它可能的成分来制造CMC。预浸料坯必须经历加工(包括固化,也被称为焚烧),以使前体转变成期望的陶瓷。多个预浸料坯板层(ply)被堆叠和压实以形成层压预成型件,该过程被称为"铺层"。在铺层之后,层压预成型件将典型地经历压实和固化,同时经受施加的压力和升高的温度,诸如在高压釜中。熔渗过程大体需要在真空或惰性气氛中加热层压预成型件,以分解(烧尽)粘合剂并且产生多孔预成型件以备熔渗,在此之后,可利用例如从外部供应至预成型件的熔融的硅熔渗预成型件。熔融的硅渗透到孔隙中,并且优选为与基质内的组分(例如,碳源)反应以形成硅基陶瓷(例如,碳化硅),其填充孔隙以产生期望的CMC构件。
对于一些应用,具有内腔室的CMC制品为合乎需要或必要的,该内腔室包括但不受限于限定翼型构件内的冷却槽/孔和复杂的冷却通路的腔室,以及意图大体实现减轻重量的腔室。可通过围绕心轴形成层压预成型件而在CMC制品中产生内腔室。然而,在熔渗之前必须移除心轴。在烧制(burnout)期间保持固体的心轴必须被物理地移除,如果期望的腔室具有扭曲或为锥形,则这可为不可能的。图1示意性地示出了实例,其中,常规钢心轴30意图在层压预成型件10的区段20中形成随后的腔室。钢心轴30由于其被在预成型件10的一个端部处由板层限定的肩部22捕获而不可从预成型件10移除。为了解决该问题,已经提出了由易变树脂形成的聚合物心轴。在本说明书的背景下,易变聚合树脂典型地为基于碳氢化合物的固体,其在加热到足够高的温度(典型地为400℃至800℃)之后挥发,从而留下很少的碳残渣或不留下碳残渣。易变树脂的值得注意实例包括聚甲基丙烯酸甲酯或聚乙烯醇。然而,这些树脂具有可比CMC预成型件的材料大五倍至十倍的热膨胀系数。易变树脂的较高膨胀系数可在加热以分解粘合剂树脂期间引起CMC预成型件扭曲。在烧制期间,易变树脂熔化,并且熔融树脂必须从CMC制品的内部内的产生的腔室移除。熔融树脂中的一些可在腔室内侧形成含碳涂层,在随后的熔渗期间与硅反应时,该含碳涂层可改变腔室尺寸。当与较大大小的CMC构件一起使用易变树脂时,在聚合物心轴分解时必须从或通过预成型件逸出的气体的量还增大。这使使用较慢的高温分解循环成为必需,这延长用于CMC构件的加工循环时间。
因此,存在对能够在CMC制品内形成内腔室的改进方法的需要。
发明内容
本发明提供了一种能够通过使用可溶的心轴而在CMC制品内形成内腔室的方法。
本发明的第一方面为一种通过使用心轴而在CMC制品中形成内腔室以实现CMC制品中的腔室的方法。心轴材料在CMC预成型件的热处理期间熔化,并且产生的熔融材料不润湿CMC预成型件的组分或者不与CMC预成型件的组分反应,并且被排走,从而留下内腔室。在本发明的优选实施例中,可熔的心轴由元素锡或锡合金制成,并且在CMC预成型件的烧制操作期间允许心轴熔化和从预成型件排出,从而在CMC预成型件内留下中空内部。
本发明的第二方面为通过使用由在CMC预成型件的烧制过程期间熔化的材料制成的心轴的方法而形成具有期望的内腔室的CMC制品。产生的熔融材料不润湿CMC预成型件的任何组分并且不与CMC预成型件的任何组分反应,并且被排走,从而在CMC预成型件中留下内腔室,接着,该CMC预成型件被熔渗,从而形成具有内腔室的CMC制品。
一种形成具有至少一个内腔室的CMC制品的方法,该方法包括:将至少一个心轴并入到CMC预成型件中;以及使CMC预成型件经受热处理,其中,至少一个心轴熔化以形成熔融材料,其从CMC预成型件排出以在CMC预成型件内留下至少一个内腔室。
优选地,心轴由锡或锡合金构成。
优选地,热处理为烧制过程。
优选地,至少一个内腔室包括多个腔室,并且至少一个心轴包括多个心轴。
优选地,至少一个心轴不具有润湿CMC预成型件的组分并且/或者与CMC预成型件的组分反应的材料。
优选地,该方法还包括回收熔融材料和由熔融材料形成另一个心轴。
优选地,该方法还包括利用包括陶瓷材料的浆料涂覆至少一个内腔室。
优选地,陶瓷材料为氮化硼。
优选地,碳化硼的平均颗粒大小为大约0.5微米至1.0微米。
一种形成具有至少一个内腔室的CMC制品的方法,该方法包括:将至少一个心轴并入到CMC预成型件中,至少一个心轴由不润湿CMC预成型件的任何组分并且与CMC预成型件的任何组分不反应的材料构成;使CMC预成型件经受烧制过程,其中,至少一个心轴熔化以形成熔融材料,其不润湿CMC预成型件,并且不与CMC预成型件的组分反应,并且从CMC预成型件排出以在CMC预成型件中留下至少一个内腔室;以及利用浸渗剂熔渗CMC预成型件以形成具有至少一个内腔室的CMC制品。
优选地,至少一个心轴的材料为元素锡。
优选地,至少一个心轴的材料为锡合金。
优选地,至少一个内腔室包括多个腔室,并且至少一个心轴包括多个心轴。
优选地,该方法还包括在熔渗步骤之前利用陶瓷材料的浆料涂覆至少一个内腔室,陶瓷材料不能够被浸渗剂润湿。
优选地,陶瓷材料为氮化硼。
优选地,氮化硼的平均颗粒大小为大约0.5微米至1.0微米。
优选地,至少一个内腔室为冷却槽或孔。
优选地,CMC制品为翼型构件。
优选地,CMC制品基于至少一种硅化合物。
优选地,浸渗剂为硅,并且至少一种硅化合物为SiC。
本发明的技术效果为,可在用于生产制品的CMC预成型件没有不期望的扭曲或变形的情况下产生CMC制品中的内腔室。此外,可消除易变聚合物用于产生腔室时典型地需要的长加工时间。
本发明的另一个技术效果为,可出于减轻重量和/或冷却的目的,在没有典型地与移除常规金属心轴相关的困难或与除去在非反应性心轴中使用的易变树脂相关的问题的情况下,在CMC制品中实现期望且复杂的形状的腔室。
将从下列详细描述进一步认识到本发明的其它方面和优点。
附图说明
图1示意性地示出具有常规金属心轴的CMC预成型件的截面。
图2示意性地示出具有心轴的CMC预成型件的截面,该心轴由不润湿CMC预成型件的组分并与CMC预成型件的组分不反应的可熔材料制成。
图3示意性地示出具有腔室的CMC制品的截面,该腔室通过排出和回收由可熔材料制成的心轴而实现,该可熔材料不润湿形成制品的CMC预成型件的组分并且与该组分不反应。
部件列表
10、110 预成型件
20、120 区段
22、122 肩部
30、130 心轴
40、140 心轴
50、150 腔室
100、1100 制品。
具体实施方式
本发明涉及在CMC制品内形成内腔室,例如以形成冷却通道,实现减轻重量和/或任何其它期望的目的。形成这种腔室的常规过程利用由诸如易变树脂或非反应性金属的材料形成的心轴。这些方法两者具有如先前描述的若干限制和缺点。本发明通过如下方法解决现有技术的困难和缺点,该方法利用由可熔材料制成的心轴,该可熔材料可在CMC预成型件的烧制过程期间和在CMC制品的制造中的熔渗阶段之前被熔化和排走。特别地,用于与本发明一起使用的心轴的优选材料在预成型件的热处理温度下熔化,例如,在于层压预成型件上执行以形成多孔预成型件的固化(焚烧)步骤期间。
可有利地从CMC预成型件除去的心轴材料的优选特性包括不润湿CMC预成型件、与CMC预成型件的组分的低反应性或无反应性,以及在于CMC预成型件上执行的热处理的温度下完全可熔且可排出。在本发明的优选实施例中,可熔的心轴包括元素锡或锡合金,或者由元素锡或锡合金构成。这种心轴可铸造成期望的内腔室的形状并且并入到CMC预成型件中。由诸如锡或其合金的低熔点金属或合金制成的该心轴可在CMC预成型件的烧制操作期间熔化并且被允许从预成型件排出,从而在CMC预成型件中留下中空腔室。
本发明的心轴可完全由元素锡或锡合金形成。本发明的心轴可铸造成用于CMC制品的内腔室的期望形状,并且预浸料坯带可直接放置在心轴上。低熔点的锡或合金在CMC预成型件的烧制阶段熔化,并且被允许从预成型件排出,从而留下期望形状的中空腔室。已经证实锡及其合金拥有不润湿CMC预成型件并与CMC预成型件不反应的可熔材料的期望特性。此外,可在烧制过程期间在没有与将易变聚合物用作心轴材料大体相关的热膨胀问题的情况下,移除由这种可熔且可回收的材料制成的心轴。
由于用于心轴的锡或锡合金在并入到CMC预成型件中时为固体,并且随后被熔化,同时不润湿CMC预成型件并与CMC预成型件不反应,故随后形成的内腔室的尺寸与可熔心轴的尺寸大致匹配。图2示意性地示出并入到层压预成型件10的区段20中的可熔心轴40的截面。在CMC预成型件烧制过程期间,由锡或锡合金制成的可熔心轴熔化,不润湿CMC预成型件10的组分或者不与该组分反应,并且远离CMC预成型件10排出。在随后的操作(例如,熔渗)中,CMC制品可由预成型件10形成。图3示意性地示出完全渗透的CMC预成型件10的区段20中形成的腔室50,该完全渗透的CMC预成型件10在图3中表示为最终CMC制品100。可能的是,氧化锡可在可熔心轴熔化时的烧制过程期间形成;然而,形成的任何氧化锡将在用于形成CMC制品的随后的过程(诸如例如熔渗)中完全地消失。
在形成基于硅化合物(诸如例如SiC)的CMC制品的一些过程中,熔渗可用于将熔融的硅用作浸渗剂。在这种情况下,在内腔室形成在CMC预成型件中之后,可通过以浆料涂覆内腔室的表面而防止或至少抑制浸渗剂在熔渗期间进入到内腔室中,该浆料包括陶瓷材料的粉末(其为不可润湿的或者至少呈现对浸渗剂的低可润湿性),例如,氮化硼(NB)(如果浸渗剂为硅)。氮化硼浆料可为水基的,并且干燥步骤可用于实现涂覆。陶瓷材料粉末的颗粒应当大到足以不穿过多孔预成型件中的开口,并且小到足以制成可导致均匀涂履的浆料。预成型件开口典型地在0.1微米至0.2微米的范围内。因此,在浸渗剂为硅时在浆料中用于实现内腔室的陶瓷涂层的氮化硼粉末的优选平均颗粒大小为大约0.5微米至1.0微米。该涂层在形成CMC制品时的熔渗步骤期间有利地防止内腔室的表面被浸渗剂润湿,并且因此防止硅形成在CMC制品的内腔室中。
可预见的是,可使用其它可熔材料,其在烧制过程期间不润湿CMC预成型件或者不与CMC预成型件反应,并且能够在CMC预成型件的烧制温度下完全移除。因此,本发明的优选实施例为利用任何低熔点材料,使得不形成除意图在常规CMC制造过程(诸如,形成例如SiC的熔渗过程)中形成的这些材料之外的材料。本发明的另一个特征为,可在CMC预成型件的热处理期间被熔化和排走以在层压预成型件中形成内腔室的可熔材料可回收,以形成另一个心轴来用于在另一个CMC制品中形成内腔室。因此,本发明可描述为使用可回收的心轴来在CMC预成型件或最终CMC制品中形成内腔室的方法。
鉴于上文,可看到,本发明的显著优点在于其解决了与在CMC制品内形成中空内腔室相关的问题,而不必在使CMC预成型件固化之后从产生的内腔室物理地移除心轴,并且不将潜在有害的材料引入到最终CMC制品中。
可利用多个心轴和遵循本文中描述的方法在CMC预成型件中形成多个腔室。形成在CMC制品中的单个腔室或多个腔室可出于减轻重量和/或作为冷却槽/孔或多个冷却槽/孔的目的而利用。
虽然已经按照特定实施例描述了本发明,但是显而易见的是,其它形式可被本领域技术人员采用。因此,应当理解,本发明不受限于具体公开的实施例。还应当理解,以上使用的措词和用语出于公开本发明和实施例的目的,并且不必用作对本发明的范围的限制。因此,本发明的范围将仅由下列权利要求限制。

Claims (20)

1.一种形成具有至少一个内腔室的CMC制品的方法,所述方法包括:
通过将CMC预成型件放置在至少一个心轴上而将至少一个心轴并入到所述CMC预成型件中,其中所述CMC预成型件包括呈包括增强材料的带状结构形式的多个预浸料坯层,CMC基质材料的前体,以及粘合剂;
使所述CMC预成型件经受热处理,其中,所述至少一个心轴熔化以形成熔融材料,其从所述CMC预成型件排出以在所述CMC预成型件内留下至少一个内腔室,其中所述热处理为烧制过程;以及
利用包括陶瓷材料的粉末的浆料涂覆所述至少一个内腔室的表面,所述陶瓷材料的粉末呈现对浸渗剂的低可润湿性,以防止在所述CMC预成形件的进一步处理期间防止所述浸渗剂进入所述内腔室。
2.根据权利要求1所述的方法,其特征在于,所述心轴由锡或锡合金构成。
3.根据权利要求1所述的方法,其特征在于,所述至少一个心轴不具有润湿所述CMC预成型件的组分并且/或者与所述CMC预成型件的组分反应的材料。
4.根据权利要求1所述的方法,其特征在于,所述方法还包括回收所述熔融材料和由所述熔融材料形成另一个心轴。
5.根据权利要求1所述的方法,其特征在于,所述陶瓷材料是不可润湿的。
6.根据权利要求1所述的方法,其特征在于,所述陶瓷材料为氮化硼。
7.根据权利要求6所述的方法,其特征在于,所述氮化硼的平均颗粒大小为大约0.5微米至1.0微米。
8.根据权利要求1所述的方法,其特征在于,所述CMC预成形件在并入步骤中是未固化的并且被放置在所述至少一个心轴的表面上。
9.根据权利要求8所述的方法,其特征在于,所述热处理在烧制过程前包括固化步骤。
10.一种形成具有至少一个内腔室的CMC制品的方法,所述方法包括:
通过将CMC预成型件放置在至少一个心轴上而将至少一个心轴并入到CMC预成型件中,其中所述CMC预成型件包括呈包括期望的增强材料的带状结构形式的多个预浸料坯层,CMC基质材料的前体,以及粘合剂,所述至少一个心轴由不润湿所述CMC预成型件的任何组分并且与所述CMC预成型件的任何组分不反应的材料构成;
使所述CMC预成型件经受烧制过程,其中,所述至少一个心轴熔化以形成熔融材料,其不润湿所述CMC预成型件,不与所述CMC预成型件的组分反应,并且从所述CMC预成型件排出以在所述CMC预成型件中留下至少一个内腔室;
利用包括陶瓷材料的粉末的浆料涂覆所述至少一个内腔室的表面,所述陶瓷材料的粉末呈现对浸渗剂的低可润湿性,以防止在所述CMC预成形件的进一步处理期间防止所述浸渗剂进入所述内腔室;以及
利用浸渗剂熔渗所述CMC预成型件以形成具有所述至少一个内腔室的所述CMC制品。
11.根据权利要求10所述的方法,其特征在于,所述至少一个心轴的材料为元素锡。
12.根据权利要求10所述的方法,其特征在于,所述至少一个心轴的材料为锡合金。
13.根据权利要求10所述的方法,其特征在于,所述陶瓷材料不能够被所述浸渗剂润湿。
14.根据权利要求10所述的方法,其特征在于,所述陶瓷材料为氮化硼。
15.根据权利要求14所述的方法,其特征在于,所述氮化硼的平均颗粒大小为大约0.5微米至1.0微米。
16.根据权利要求10所述的方法,其特征在于,所述至少一个内腔室为冷却槽或孔。
17.根据权利要求10所述的方法,其特征在于,所述CMC制品为翼型构件。
18.根据权利要求10所述的方法,其特征在于,所述CMC制品基于至少一种硅化合物。
19.根据权利要求18所述的方法,其特征在于,所述浸渗剂为硅,并且所述至少一种硅化合物为SiC。
20.根据权利要求10所述的方法,其特征在于,所述CMC预成型件在并入步骤中是未固化的并且被放置在所述至少一个心轴的表面上。
CN202010092132.7A 2012-04-27 2013-04-26 在陶瓷基质复合材料中产生内腔室的方法 Pending CN111499390A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261639617P 2012-04-27 2012-04-27
US61/639617 2012-04-27
US13/780,584 US10011043B2 (en) 2012-04-27 2013-02-28 Method of producing an internal cavity in a ceramic matrix composite
US13/780584 2013-02-28
CN201310149114.8A CN103539458A (zh) 2012-04-27 2013-04-26 在陶瓷基质复合材料中产生内腔室的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201310149114.8A Division CN103539458A (zh) 2012-04-27 2013-04-26 在陶瓷基质复合材料中产生内腔室的方法

Publications (1)

Publication Number Publication Date
CN111499390A true CN111499390A (zh) 2020-08-07

Family

ID=48143216

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010092132.7A Pending CN111499390A (zh) 2012-04-27 2013-04-26 在陶瓷基质复合材料中产生内腔室的方法
CN201310149114.8A Pending CN103539458A (zh) 2012-04-27 2013-04-26 在陶瓷基质复合材料中产生内腔室的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201310149114.8A Pending CN103539458A (zh) 2012-04-27 2013-04-26 在陶瓷基质复合材料中产生内腔室的方法

Country Status (6)

Country Link
US (1) US10011043B2 (zh)
EP (1) EP2657210B1 (zh)
JP (2) JP6538296B2 (zh)
CN (2) CN111499390A (zh)
BR (1) BR102013010234A2 (zh)
CA (1) CA2813350C (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308269B (zh) 2013-05-29 2019-04-30 通用电气公司 形成带有冷却特征的陶瓷基复合材料构件的方法
WO2015147958A2 (en) * 2014-01-17 2015-10-01 General Electric Company Ceramic matrix composite turbine blade squealer tip with flare and method thereof
US20170122109A1 (en) * 2015-10-29 2017-05-04 General Electric Company Component for a gas turbine engine
US10562210B2 (en) * 2017-03-22 2020-02-18 General Electric Company Method for forming passages in composite components
US9931818B1 (en) 2017-04-05 2018-04-03 General Electric Company Method for forming CMC article
JP6968667B2 (ja) * 2017-11-08 2021-11-17 三菱重工業株式会社 セラミックス複合材料部品の製造方法
US11578609B2 (en) 2019-02-08 2023-02-14 Raytheon Technologies Corporation CMC component with integral cooling channels and method of manufacture
US11643948B2 (en) 2019-02-08 2023-05-09 Raytheon Technologies Corporation Internal cooling circuits for CMC and method of manufacture
US11384028B2 (en) 2019-05-03 2022-07-12 Raytheon Technologies Corporation Internal cooling circuits for CMC and method of manufacture
US11365635B2 (en) 2019-05-17 2022-06-21 Raytheon Technologies Corporation CMC component with integral cooling channels and method of manufacture
US11441778B2 (en) 2019-12-20 2022-09-13 Raytheon Technologies Corporation Article with cooling holes and method of forming the same
US20230174433A1 (en) * 2021-12-03 2023-06-08 Raytheon Technologies Corporation Ceramic matrix composite article and method of making the same

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907949A (en) * 1970-10-27 1975-09-23 Westinghouse Electric Corp Method of making tubular polycrystalline oxide body with tapered ends
US4615855A (en) * 1984-03-15 1986-10-07 Programmed Composites, Inc. Process for forming composite article
JPS62227603A (ja) 1986-03-31 1987-10-06 日本碍子株式会社 セラミツクス焼結体の製造方法及び該製造方法に用いるための成形型
JPS62256605A (ja) 1986-04-30 1987-11-09 マツダ株式会社 セラミツク成形品の製造法
US5015540A (en) 1987-06-01 1991-05-14 General Electric Company Fiber-containing composite
US5330854A (en) 1987-09-24 1994-07-19 General Electric Company Filament-containing composite
JPH01198343A (ja) 1988-02-02 1989-08-09 Toray Ind Inc 筒状炭素・炭素複合材料の製造方法
US5336350A (en) 1989-10-31 1994-08-09 General Electric Company Process for making composite containing fibrous material
US5066454A (en) * 1990-06-20 1991-11-19 Industrial Materials Technology, Inc. Isostatic processing with shrouded melt-away mandrel
US5177039A (en) * 1990-12-06 1993-01-05 Corning Incorporated Method for making ceramic matrix composites
JPH07195147A (ja) 1993-12-29 1995-08-01 Masaru Nemoto 成形用特殊中子を用いた成形方法
US5725044A (en) 1994-08-30 1998-03-10 Hirokawa; Koji Casting method using a forming die
US5628938A (en) 1994-11-18 1997-05-13 General Electric Company Method of making a ceramic composite by infiltration of a ceramic preform
US6024898A (en) 1996-12-30 2000-02-15 General Electric Company Article and method for making complex shaped preform and silicon carbide composite by melt infiltration
US5910095A (en) * 1997-02-21 1999-06-08 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite marine engine riser elbow
US6001436A (en) 1997-05-12 1999-12-14 Northrop Grumman Corporation Ceramic matrix composite turbocharger housing
DE19834571C2 (de) 1998-07-31 2001-07-26 Daimler Chrysler Ag Verfahren zur Herstellung von Körpern aus faserverstärkten Verbundwerkstoffen und Verwendung des Verfahrens
US6280550B1 (en) 1998-12-15 2001-08-28 General Electric Company Fabrication of composite articles having an infiltrated matrix
US6403158B1 (en) * 1999-03-05 2002-06-11 General Electric Company Porous body infiltrating method
US6627019B2 (en) * 2000-12-18 2003-09-30 David C. Jarmon Process for making ceramic matrix composite parts with cooling channels
US6503441B2 (en) 2001-05-30 2003-01-07 General Electric Company Method for producing melt-infiltrated ceramic composites using formed supports
US6746755B2 (en) 2001-09-24 2004-06-08 Siemens Westinghouse Power Corporation Ceramic matrix composite structure having integral cooling passages and method of manufacture
DE10164229B4 (de) 2001-12-31 2006-03-09 Sgl Carbon Ag Reibscheiben, Verfahren zu ihrer Herstellung und ihre Verwendung
US20040067316A1 (en) 2002-10-04 2004-04-08 Paul Gray Method for processing silicon-carbide materials using organic film formers
US7043921B2 (en) 2003-08-26 2006-05-16 Honeywell International, Inc. Tube cooled combustor
US7153464B2 (en) 2003-12-01 2006-12-26 General Electric Company Method of making porous ceramic matrix composites
US7549840B2 (en) 2005-06-17 2009-06-23 General Electric Company Through thickness reinforcement of SiC/SiC CMC's through in-situ matrix plugs manufactured using fugitive fibers
US20070096371A1 (en) * 2005-10-27 2007-05-03 General Electric Company Process of producing ceramic matrix composites
US7600979B2 (en) * 2006-11-28 2009-10-13 General Electric Company CMC articles having small complex features
US7837914B2 (en) * 2006-12-04 2010-11-23 General Electric Company Process of producing a composite component and intermediate product thereof
CN101224497B (zh) 2007-01-17 2010-05-26 富准精密工业(深圳)有限公司 动压轴承制造方法
US20080199661A1 (en) 2007-02-15 2008-08-21 Siemens Power Generation, Inc. Thermally insulated CMC structure with internal cooling
DE102007057198B4 (de) 2007-11-28 2017-04-20 Daimler Ag Verfahren zur Herstellung eines Faserverbund-Hohlkörpers mit kraftfluss- und spannungsoptimierter Faserausrichtung
US20100279845A1 (en) 2009-04-30 2010-11-04 General Electric Company Process of producing ceramic matrix composites
FR2955609B1 (fr) 2010-01-26 2012-04-27 Snecma Aube composite a canaux internes
NL2004209C2 (en) 2010-02-08 2011-08-09 Rgs Dev B V Apparatus and method for the production of semiconductor material foils.
US20130011271A1 (en) * 2011-07-05 2013-01-10 United Technologies Corporation Ceramic matrix composite components
US8980435B2 (en) 2011-10-04 2015-03-17 General Electric Company CMC component, power generation system and method of forming a CMC component
US9663404B2 (en) 2012-01-03 2017-05-30 General Electric Company Method of forming a ceramic matrix composite and a ceramic matrix component
CN102527601B (zh) 2012-03-02 2013-12-11 西安石油大学 一种雾化器喷头防堵涂层的制备方法
US9050769B2 (en) * 2012-04-13 2015-06-09 General Electric Company Pre-form ceramic matrix composite cavity and method of forming and method of forming a ceramic matrix composite component
US10450235B2 (en) * 2012-04-27 2019-10-22 General Electric Company Method of producing an internal cavity in a ceramic matrix composite and mandrel therefor
CN105308269B (zh) 2013-05-29 2019-04-30 通用电气公司 形成带有冷却特征的陶瓷基复合材料构件的方法
CA2924053C (en) * 2013-09-20 2018-07-17 General Electric Company Ceramic matrix composites made by chemical vapor infiltration and methods of manufacture thereof
WO2015147958A2 (en) * 2014-01-17 2015-10-01 General Electric Company Ceramic matrix composite turbine blade squealer tip with flare and method thereof
US9896954B2 (en) * 2014-10-14 2018-02-20 Rolls-Royce Corporation Dual-walled ceramic matrix composite (CMC) component with integral cooling and method of making a CMC component with integral cooling
US10400612B2 (en) * 2015-12-18 2019-09-03 Rolls-Royce Corporation Fiber reinforced airfoil

Also Published As

Publication number Publication date
CN103539458A (zh) 2014-01-29
BR102013010234A2 (pt) 2017-07-11
US10011043B2 (en) 2018-07-03
US20130285296A1 (en) 2013-10-31
CA2813350A1 (en) 2013-10-27
JP2019202932A (ja) 2019-11-28
JP2013230680A (ja) 2013-11-14
JP6538296B2 (ja) 2019-07-03
EP2657210B1 (en) 2015-07-01
EP2657210A1 (en) 2013-10-30
CA2813350C (en) 2020-05-26

Similar Documents

Publication Publication Date Title
CA2813350C (en) Method of producing an internal cavity in a ceramic matrix composite
EP2657209B1 (en) Method of producing an internal cavity in a ceramic matrix composite and mandrel therefor
JP6411894B2 (ja) セラミックマトリックス複合材を製造する方法およびそれによって形成されたセラミックマトリックス複合材
JP2013256436A5 (zh)
US6428740B2 (en) Method of removing cores from ceramic matrix composite articles
US5571758A (en) Nitrogen-reacted silicon carbide material
CN102924106A (zh) 一种碳-碳化硅复合材料的制备方法及其产品
CA3077612A1 (en) Method for producing a hollow part made of a ceramic matrix composite material
CN110382444B (zh) 用于生产固结的纤维预制件的方法
EP2567948B1 (en) Method for modifying composite articles
US7588179B2 (en) Bonding of carbon fibers to metal inserts for use in composites
US10723660B2 (en) Carbon yielding resin for melt infiltration
EP3568382B1 (en) Melt infiltration with siga and/or siin alloys

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200807

WD01 Invention patent application deemed withdrawn after publication