CN105308269B - 形成带有冷却特征的陶瓷基复合材料构件的方法 - Google Patents

形成带有冷却特征的陶瓷基复合材料构件的方法 Download PDF

Info

Publication number
CN105308269B
CN105308269B CN201480030986.5A CN201480030986A CN105308269B CN 105308269 B CN105308269 B CN 105308269B CN 201480030986 A CN201480030986 A CN 201480030986A CN 105308269 B CN105308269 B CN 105308269B
Authority
CN
China
Prior art keywords
desired shape
air
prefabricated
forming
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480030986.5A
Other languages
English (en)
Other versions
CN105308269A (zh
Inventor
M·R·图埃切尔
M·E·诺厄
G·H·柯比
S·K·F·沃尔克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN105308269A publication Critical patent/CN105308269A/zh
Application granted granted Critical
Publication of CN105308269B publication Critical patent/CN105308269B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/131Molybdenum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/15Rare earth metals, i.e. Sc, Y, lanthanides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2106Quartz
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/211Silica
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/222Silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/228Nitrides
    • F05D2300/2282Nitrides of boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6033Ceramic matrix composites [CMC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

描述了一种用于在CMC构件(200)中形成原位特征的方法和材料。形成带有冷却特征的陶瓷基复合材料构件的方法包括:形成预制带(120),将前述预制带层叠(122)成期望的形状,将预定几何形状的耐高温的暂时的材料插入件(30)放置在期望的形状的预制带中,压紧(134)期望的形状的预制带,烧尽(138)期望的形状的预制带,熔体渗透(140)期望的形状,在烧尽或熔体渗透中的一个期间或者在烧尽或熔体渗透之后去除耐高温的插入件以形成冷却特征。

Description

形成带有冷却特征的陶瓷基复合材料构件的方法
对相关申请的交叉引用
本PCT发明申请要求已于2013年5月29日提交的题为“Methods and Materialsfor Forming In-Situ Cavities for Silicon-Based Ceramic Matrix CompositeComponents(用于在硅基陶瓷基复合材料构件中形成原位空腔的方法和材料)”的具有美国专利申请序列号61/828,273的未决临时申请的优先权和好处,该申请的全部内容通过引用被并入本文中。
技术领域
公开的实施例大体关于用于燃气轮机的陶瓷基复合材料构件。更具体地,本发明涉及用于在陶瓷基复合材料构件中形成原位空腔的方法和材料。
背景技术
在燃气轮机中,空气在压缩机中被压缩并在燃烧器中与燃料混合以用于生成向下游流过涡轮机级的热燃气。典型的燃气轮机一般拥有前端和后端,其中燃气轮机的若干核心或推进构件轴向定位在两端之间。空气入口或进气口位于发动机的前端。向后端移动,进气口后面依次是风扇、压缩机、燃烧室、和涡轮机。本领域技术人员容易明白的是附加的构件也可以被包含在发动机中,例如低压和高压压缩机,以及低压和高压涡轮机。但是,这不是详尽的列举。
压缩机和涡轮机一般包括在级内轴向叠加的翼型列。每一级包括一列周向间隔的定子导叶和围绕涡轮发动机的中心轴或轴线旋转的转子组件。在用于给飞行中的航空器供能的涡扇航空发动机配置中,多级低压涡轮机在多级高压涡轮机后面,并典型地通过第二轴连结到布置在压缩机上游的风扇。这些涡轮机级从燃气中提取能量。
定子由多个喷嘴段形成,多个喷嘴段邻接在周向末端以围绕燃气轮机发动机的轴线形成完整的环。每个喷嘴段包括在内带和外带之间延伸的一个或更多个导叶。定子喷嘴以一种使相邻的下游涡轮叶片处的提取极大化的方式引导热燃气。
涡轮机转子组件典型地包括至少一列周向间隔的转子叶片。每个转子叶片包括具有在前缘和尾缘处连接在一起的压力侧和吸力侧的翼型。每个翼型从转子叶片平台径向向外延伸。每个转子叶片还可以包括从柄部径向向内延伸的燕尾,柄部在平台和燕尾之间延伸。燕尾被用于将转子组件内的转子叶片安装到转子盘或芯轴。已知的叶片是中空的,使得内部冷却腔至少部分地由翼型、平台、柄部、和燕尾限定。
陶瓷基复合材料(CMC)具有对在燃气涡轮发动机中使用的特别的重要性,这是因为在燃气涡轮发动机中寻求更高的运行温度来提高效率。CMC材料可被用于各种构件,例如发动机的涡轮机、压缩机、和风扇区域中的翼型。CMC材料典型地包括被嵌入陶瓷基材料中的陶瓷纤维加强材料。加强材料有助于为CMC提供负荷承载功能,并且陶瓷基保护加强材料、维持纤维定向以及将负荷分散给加强材料。美国申请序列号13/780,584和13/780,306中教导了多种方法,以上两个申请通过引用并入本文中。
采用目前所使用的陶瓷基复合材料构件,特征在模制之后通过后续加工形成在零件内。加工导致材料去除以形成期望的特征,例如冷却孔口。被加工的特征在设计上受去除材料加工的制造工艺的限制。例如,在钻孔工艺中,特征一般被限制为直线特征。
克服这些和其他特征并形成带有当前利用已知的加工技术可能无法形成的改善的几何特征的模制构件是期望的。更期望的是减少或消除当前在现有的模制技术中所要求的材料去除或清理步骤。
发明内容
根据本实施例,提供了一种形成模制的陶瓷基复合材料构件的方法,其中插入件在制造期间提供在期望的形状的预制叠层中。插入件由能承受与制造工艺的热解和熔体渗透步骤相关的高温的材料制成。插入件可由比用其他方式通过已知的模制工艺可获得的更加复杂的形状形成,以提供用本领域的当前状态的工艺不容易成形的模制特征。
一种形成带有冷却特征的陶瓷基复合材料构件的方法,包括形成预制带,将预制带层叠成期望的形状,将预定几何形状的耐高温的暂时的材料插入件放置在期望的形状的预制带中,压紧期望的形状的预制带,烧尽期望的形状的预制带,熔体渗透期望的形状,在烧尽或熔体渗透中的一个期间或者在烧尽或熔体渗透之后去除耐高温的插入件以形成冷却特征。方法中的去除是机械或化学去除中的一种。方法还包括机械地清理由插入件形成的冷却特征。方法还包括形成以下中的一个的耐高温的暂时的材料插入件:氮化硼、硅石、氧化硅、涂覆氮化硼的DAP聚合物、Y2Si2O7稀土氧化物、涂覆氮化硼的氧化硅、涂覆碳的氮化硼、钼丝、高度耐火材料和金刚石粉末。方法中的放置是通过带铸放置(tape-castplacement)、预制管放置、喷涂、丝网印刷、涂覆有氮化硼的快速成型聚合物放置、以及喷射模制。方法中的去除是化学分解。当插入件是由氧化硅形成时,方法中的去除在烧尽或熔体渗透期间发生。方法中的熔体渗透包括在预定形状的烧尽预制带上插入至少2600度的熔融硅。方法还包括形成复杂的非直视性的冷却特征。
本发明内容被提供从而以简化的形式介绍在下面的具体实施方式中进一步描述的概念的选择。本发明内容不意图确认所要求保护的主题的关键特征或必要特征,也不意图用于限制所要求保护的主题的范围。本发明的特征、细节、效用和优点的更广泛的呈现在下面的本发明各种实施例的文字描述中提供,在附图中示出,并且在所附的权利要求中限定。
附图说明
通过参见下面结合附图的实施例的描述,这些示例性的实施例的上述和其他特征及优点以及获得它们的方式将变得更加清楚,并且用于形成原位空腔的方法和材料将被更好地理解,其中:
图1是示例性燃气轮机发动机的侧剖视图;
图2是形成原位空腔的方法的示意图;
图3是包括多个用于形成空腔的多个插入件的示例性试样的俯视图;
图4是包括由图3的试样形成的空腔的预制叠层的一部分的侧剖视图;以及
图5是通过在其中带有模制特征的工艺而形成的CMC构件的局部剖视图。
具体实施方式
现在将详细地参考提供的实施例,实施例的一个或更多个示例在附图中示出。每个示例通过解释而不是本公开的限制来提供。事实上,对于本领域的技术人员将会显而易见的是能在本实施例中做出各种修改和变化而不脱离本公开的范围或精神。例如,作为一个实施例的一部分描述或示出的特征能与里盖实施例一起使用以获得另一实施例。因此,意图本发明将覆盖落入所附权利要求及其等同物的范围内的这些修改和变化。
参考图1-5,描绘了用于形成原位空腔的方法和材料的各种实施例。该方法和材料被用于在陶瓷基复合材料(CMC)构件中制造空腔特征,例如创建冷却通道、槽、孔、和/或实现重量减轻和/或其他目的或功能。该方法包括一种插入到预制件中然后在熔体渗透工艺期间或之后被去除的暂时的材料。该工艺允许带有通过现有的后模制加工技术不能形成的模制到构件内的更复杂的特征(例如原位空腔)的陶瓷基复合材料构件的创建。例如,特征可包括在CMC构件内的复杂的、非直线的视觉冷却特征。另外,特征可以更容易地位于在例如期望热量减少以用于改善的冷却的表面的附近。然而这些示例不是限制性的,其他实施例可以被采用。
如本文中所使用的,术语“轴向的”或“轴向地”是指沿发动机纵向轴线的维度。结合“轴向的”或“轴向地”使用的术语“前”是指沿朝着发动机入口的方向移动,或者一个构件比另一个构件更靠近发动机入口。结合“轴向的”或“轴向地”使用的术语“后”是指沿朝着发动机喷嘴的方向移动,或者一个构件比另一个构件更靠近发动机喷嘴。
如本文中所使用的,术语“径向的”或“径向地”是指在发动机的中心纵向轴线和发动机外周之间延伸的维度。术语“近侧的”或“近侧地”本身或结合“径向的”或“径向地”的使用是指沿朝着中心纵向轴线的方向移动,或者一个构件比另一个构件更靠近中心纵向轴线。术语“远侧的”或“远侧地”本身或结合“径向的”或“径向地”的使用是指沿朝着发动机外周的方向移动,或者一个构件比另一个构件更靠近发动机外周。
如本文中所使用的术语“侧向的”或“侧向地”是指垂直于轴向和径向维度的维度。所有的方向参考(例如,径向、轴向、近侧、远侧、上侧、下侧、向上、向下、左、右、侧向、前、后、顶、底、以上、以下、竖直、水平、顺时针、逆时针)都只是用于识别的目的,以有助于读者理解本发明,而不产生限制,尤其是关于位置、定向、或本发明的使用。连接参考(例如附接、联接、连接、和结合)被广泛地解释并可以包括元件的集合之间的中间部件以及元件之间的相对移动,除非另有说明。因此,连接参考未必断定两个元件直接连接且彼此相对固定。示意图仅为了示出的目的,本文附图中所反映的尺寸、位置、顺序和相对大小可以改变。
首先参见图1,燃气涡轮发动机10的示意侧剖视图被示出,其具有空气进入推进器13的发动机入口端12,推进器13一般由包括例如低压压缩机15和高压压缩机14的多级压缩机、燃烧器16、和包括例如高压涡轮机20和低压涡轮机21的多级涡轮机限定。共同地,在运行期间推进器13提供功率。燃气轮机10可以用于航空、发电、工业、海运服务等。燃气轮机10关于发动机轴线26轴对称的,使得各种发动机构件绕该轴线旋转。在运行中,空气进入穿过发动机10的空气入口端12并移动穿过至少一个使空气压力增加的压缩级,然后被引导到燃烧器16。压缩空气与燃料混合并焚烧,从而提供向着高压涡轮机20离开燃烧室16的热燃气。在高压涡轮机20处,能量被从热燃气中提取出来,促使涡轮叶片的旋转,其继而促使轴24的旋转。轴24朝发动机的前部前进以继续驱动一个或更多个高压压缩机级14旋转。
发动机10包括两个轴24,28。轴对称的轴24从前端到后端延伸穿过涡轮发动机10。轴24由轴承沿其长度支撑。轴24可以是中空的以允许第二轴28,在其中的低压涡轮机轴的旋转。轴28在低压涡轮机21和低压压缩机15之间延伸。轴24,28两者可以围绕发动机的中心轴线26旋转。在运行期间,轴24,28与连接到轴的其他结构(诸如涡轮机20,21的转子组件、压缩机14,15和风扇18)一起旋转,以便取决于使用的领域(例如发电、工业或航空)来产生功率或推力。
仍参见图1,入口12包括涡扇18,其包括从根部径向向外延伸的示例性叶片19的周向列。涡扇18通过轴28可操作地连接到低压涡轮机21并产生用于涡轮发动机10的推力。
在涡轮机区域20,21内是被暴露给极度高温运行条件的翼型。期望在燃气涡轮发动机的这些区域中提高温度,因为相信这样的提高能导致更好的运行效率。但是在高温下运行的该期望受到发动机该区域内材料极限的约束。由于陶瓷基复合构件(CMC)比已知的金属合金更好的承受高温运行条件的能力,它们已经成为期望的使用材料。
现在参见图2,描绘了用于在CMC构件200(图4)中形成冷却特征的方法100的示意流程。首先,在步骤110,纤维112利用化学气相沉积法(“CVD”)涂覆纤维涂层。根据一些实施例,纤维112由碳化硅形成。
接下来,在步骤116,涂覆的纤维112移动穿过预浸浆料114。预浸浆料114为纤维提供额外的保护涂层。这样的预浸浆料114在制造过程期间在纤维的粘和和纤维的保护中是期望的。
在预浸浆料步骤116之后,在步骤118,纤维112打湿缠绕在例如鼓上。缠绕过程允许预浸带120(图4)的形成,其随后在步骤122中被切割成所需形状并铺叠。在步骤122铺叠预制期间,可形成期望的构件200形状。例如,如图4所示,构件200被描绘为翼型,更具体地可以包括但不限于,涡轮叶片、压缩机叶片、涡轮导叶、压缩机导叶、风扇叶片或可暴露给高温且可要求在特征中模制的各种类型(包括但不限于冷却特征)的各种特征的任一个。铺叠预制步骤122包括层叠多个预浸带结构120,以形成构件200的期望形状。层120(图4)堆叠以形成“叠层”,它是所要形成的陶瓷构件200的前体。
另外,在这样的铺叠预制步骤122期间,在步骤124,暂时的材料或插入件30以及试样32(图3)定位在预定形状的叠层200(图4)内。插入件30可以只是期望特征的形式,例如冷却孔,或者可备选地是如被描绘那样具有设置在其上的一个或更多个暂时的材料插入件30的试样32的形式。试样32和插入件30(图3)显示为叠层200的预浸层120中的层232(图4)。应当明白,尽管一列插入件230在图4中显示,但是这仅是一个横截面区域,其他试样32可以被采用。还应理解,图3的插入件30成为图4中的空腔或特征230。期望的是,各种CMC构件具有用于各种功能的内腔230(图4),包括但不限于冷却槽、孔或减重特征。例如根据一些实施例,试样32(图3)可由在碳化硅基体中的SiC纤维形成,并且插入件或暂时的材料30由相同或不同的材料形成。插入件30能以多种方式形成,诸如带铸、预制二氧化硅管、喷涂、丝网印刷、涂覆氮化硼的快速程序聚合物或喷射模制。例如,暂时的材料的插入件30可由在柔性带中被聚合物约束的暂时材料颗粒的带形成。颗粒可以是限定柔性带的聚合物粘结剂约束的耐火材料。柔性带可由带铸工艺形成,其中陶瓷浆料根据本领域技术人员已知的程序在刮刀下被拉伸。陶瓷浆料由暂时的颗粒材料、聚合物粘结剂、溶剂、分散剂、塑化剂以及现有技术中公知的用于带铸的任何其他工艺辅助剂组成。可期望的是暂时的材料30是可以在烧尽热解操作138(图2)期间或CMC叠层预制件200的熔体渗透步骤140期间熔化的低熔点金属或合金,以在预制件200中留下空腔或特征230。根据备选的实施例,暂时的材料30由在烧尽热解操作期间将不会熔化的高温材料形成。例如,这样的暂时的材料30包括但不限于,碳化硼(BN)、氧化硅(包括晶体和非晶形式;二氧化硅和一氧化硅)、涂覆有氮化硼的氧化硅、稀土元素(其中稀土选自:钪、钇、镧、铈、镨、铷、钷、钐、铕、钆、铽、钬、铒、铥、镱和镥)、涂覆有氮化硼的稀土元素、稀土氧化物、涂覆有氮化硼的稀土氧化物、稀土硅酸盐(单硅酸盐和双硅化物)、涂覆有氮化硼的稀土硅酸盐、元素钼、涂覆有氮化硼的元素钼、钼硅化物(诸如MoSi2,Mo5Si3,Mo3Si等所有形式)、涂覆有氮化硼的钼硅化物、氧化镓、氮化镓、氧化铟、氮化铟、氧化锡、氮化锡、氧化铟锡(ITO)、碱土金属硅酸盐(其中碱土金属是镁、钙、锶、钡及它们的组合),碱土金属铝酸盐、金刚石粉末、涂覆有氮化硼的金刚石粉末或涂覆有碳的氮化硼、以及它们的混合物和组合。所有的这些高温材料可以在层叠期间作为填充有高温材料粉末的柔性带来放入CMC中。备选地,所有的这些高温材料也可以在层叠期间作为紧密的柔线或非柔性的杆或管来放入CMC中。在CMC构件被熔体渗透后,这样的高温材料可能需要后续的空气热处理(以氧化高温材料)、真空热处理、惰性气体热处理、酸处理、碱处理、它们的组合,或者它们的交替组合,以便去除暂时的材料-这可以通过熔化、分解、升华、蒸发等来发生。
另外,暂时的材料30的形状可以变化。本工艺的一个优点是模制过程允许更复杂的形状230,如图4所示。插入件30(图3)可以被弯曲并被形成不同的截面或形状,而不是钻出本质上必须是直线的诸如冷却特征的空腔。额外地,或组合地,各种形状可以改变方向,如用设置在压力侧和吸力侧212,210之间(图5)并延伸到尾缘214的冷却孔口230所显示的。在实施例中,复杂的形状呈现了冷却孔口230,其沿方向改变且设置紧靠于所描绘的翼型的压力(凹)侧。此外,其他几何变型可以通过改变暂时的材料插入件30的(多个)形状或(多个)尺寸中的一个或更多个来形成在构件200中。此外,暂时的材料插入件30的放置允许插入件30的精确定位,这导致空腔230在构件200中的精确定位(图5),并且插入件30的精确定位可以更靠近或更远离期望的表面以用于温度控制。
接下来,再次参见图2,在步骤134处,构件200的层叠形式经历压紧或压实过程,例如压热器压紧过程。在压紧或压实步骤134中,出于开始固化的目的,预定形状的预制叠层200暴露于高温和高压。
熔体渗透过程需要在真空或惰性气体环境中加热层状预制件,以使粘结剂分解并产生多孔预制件200,然后用熔融硅对渗透构件。首先,构件200先经历烧尽步骤138,其中叠层200被放置在炉膛内以将基体转变为碳。该过程一般被称为热解,并也可以在高温和高压下执行。
在该烧尽步骤138之后,碳构件200经历熔体渗透步骤140。预制件200被用供应给预制件200的熔融硅熔体渗透。在熔体渗透步骤140中,熔融硅可用作用于由硅化合物(例如SiC)形成的CMC物件的渗透剂。例如,熔融硅渗入多孔的烧尽预制件200(图4),且优选地与被烧尽的叠层组件200的基体内的组分反应,以形成填充多孔以获得期望的CMC构件200的硅基陶瓷(例如碳化硅)。
在CMC构件熔体渗透之后,构件200可能需要后续的用空气热处理(以氧化高温材料)、真空热处理、惰性气体热处理、酸处理、碱处理、它们的组合,或者它们的交替组合,以便去除暂时的材料-这可以通过熔化、分解、升华、蒸发等来发生。
在这样的情况下,在CMC预制件200内形成内空腔,并且通过使用由暂时的材料形成的特定的插入件30(图3)可以阻止或者至少抑制在熔体渗透期间熔融硅渗透剂进入内空腔。插入件30可包括例如具有由各种暂时的材料30形成的期望的冷却特征形状的预定大小的试样32。如先前所指出的,暂时的材料30可以在热解或熔体渗透期间烧尽或减少。备选地,在烧尽和/或熔体渗透步骤138,140中的一者或两者期间其他材料有利地可以不被烧尽。
多种材料适合用作插入件30。可以从预制构件200上去除的材料包括对CMC预制件的非润湿性、与CMC预制件200的成分低反应或无反应、和/或在CMC预制件上执行热处理的温度下彻底可熔和可排出。在一些实施例中,暂时的材料插入件30包括但不限于氮化硼(BN)、氧化硅、涂覆有氮化硼(BN)的氧化硅、硅带、金刚石粉末、或涂覆有碳的氮化硼。这样的材料可以铸造成内空腔230的期望的形状(图5),且并入CMC预制件。根据一些实施例,插入件30由熔化的氧化硅(SiO2)形成。管具有(非限制地例如)20密耳的内径和40密耳的外径。熔体渗透过程之后,熔化的氧化硅被还原成SiO。插入件30(图3)不使预制件200(图4)的成分湿润或与其反应。此外,插入件30可在步骤138烧尽期间熔化并被允许从预制件200中排出,从而留下带有中空空腔的CMC预制件200。
额外地,或替换地,在烧尽138和熔体渗透过程140之后,在步骤142(图2),预制件200可被机械地或化学地处理以去除插入到预制形状中的暂时的材料30。在一些情况下,热处理可用于将插入件30氧化成能在酸或碱中熔化或分解的氧化物。在其他实施例中,插入件30可以在酸或碱中直接分解。在另外的实施例中,插入件30在真空热处理中升华或蒸发。在又另一实施例中,插入件可在真空热处理中被氧化并随后升华或蒸发。机械方法可以被用于机械地去除插入件,并且可以或可以不与前述方法中的任一个一起使用。多种方法可以被利用,包括暂时的材料插入件30的化学分解。另外,应注意的是例如氧化硅的某些材料可能不要求去除,这样可以在烧尽过程138或熔体渗透过程140期间被还原。在步骤142暂时的材料的机械或化学去除之后,预定形状的预制在步骤144加工。这可以包括用线清理已形成的特征230(图5),以例如保证穿过槽的适当的流。随后,在步骤148,该零件可通过非破坏性检验来尺寸检查146,并且在步骤150涂覆环境涂层。在涂覆环境障碍层涂层后,在步骤152可执行非破坏性检验的进一步步骤。
现在参见图5,描绘了例如翼型的CMC构件200的局部侧剖视图。示例性的翼型200由包含基体和增强体的复合材料形成。CMC构件200包括压力侧212和吸力侧210。这些侧210,212在前缘(未示出)和尾缘214之间沿弦向方向延伸,弦向方向是沿前缘和尾缘214之间的笔直的轴向的线限定的方向。压力侧和吸力侧212,210的弧度可取决于来自风扇18的空气流的期望的转向。构件200的吸力侧210可以是外凸的,而压力侧212可以是内凹的。
示例性的模制特征230包括各种转弯。这些非直视性特征不可能带有钻孔特征。而且,通过控制插入件30的形状和放置,随后的空腔230可以放置得更靠近或更远离翼型200的表面。这样的模制特征允许例如冷却的最优化。最优化可通过暂时的材料插入件30来获得模制特征230的形状和放置。
出于示出的目的,已经呈现了结构和方法的在前的描述。它不意图是详尽的或限制本发明为所公开的精确步骤和/或形式,根据以上教导很多修改和变型是明显可行的。本文中所描述的特征可以任意组合来组合。本文中所描述的方法的步骤可以以任意物理可行的顺序来执行。应理解,尽管已经示出和描述了方法和材料的某些实施例,但不限于此,而是将仅由附于本文的权利要求来限制。

Claims (10)

1.一种形成带有冷却特征的陶瓷基复合材料构件的方法,包括:
形成预制带;
将所述预制带层叠成期望的形状;
将预定几何形状的耐高温的暂时的材料插入件放置在所述期望的形状的所述预制带中;
压紧所述期望的形状的所述预制带;
烧尽所述期望的形状的所述预制带;
熔体渗透所述期望的形状;
在所述烧尽或所述熔体渗透中的一个期间或之后中的一个时候去除所述耐高温的插入件以形成所述冷却特征。
2.根据权利要求1所述的方法,其特征在于,形成以下中的一个的所述耐高温的暂时的材料插入件:氮化硼、硅石、氧化硅、涂覆氮化硼的DAP聚合物、Y2Si2O7稀土氧化物、钼丝、高度耐火材料和金刚石粉末。
3.根据权利要求2所述的方法,其特征在于,形成以下中的一个的所述耐高温的暂时的材料插入件:涂覆氮化硼的氧化硅、涂覆碳的氮化硼。
4.根据权利要求2或3所述的方法,其特征在于,所述放置是通过带铸放置、预制管放置、喷涂、丝网印刷、涂覆有氮化硼的快速成型聚合物放置、以及喷射模制。
5.根据权利要求1所述的方法,其特征在于,所述去除是机械或化学去除中的一种。
6.根据权利要求1所述的方法,其特征在于,所述去除是化学分解。
7.根据权利要求1所述的方法,其特征在于,当所述插入件由氧化硅形成时所述去除发生在所述烧尽或所述熔体渗透期间。
8.根据权利要求1所述的方法,其特征在于,还包括机械地清理由所述插入件形成的所述冷却特征。
9.根据权利要求1所述的方法,其特征在于,所述熔体渗透包括在预定形状的所述烧尽预制带上插入至少2600度的熔融硅。
10.根据权利要求1所述的方法,其特征在于,形成复杂的非直视性的冷却特征。
CN201480030986.5A 2013-05-29 2014-04-23 形成带有冷却特征的陶瓷基复合材料构件的方法 Active CN105308269B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361828273P 2013-05-29 2013-05-29
US61/828273 2013-05-29
PCT/US2014/035088 WO2014193565A1 (en) 2013-05-29 2014-04-23 Method of forming a ceramic matrix composite component with cooling features

Publications (2)

Publication Number Publication Date
CN105308269A CN105308269A (zh) 2016-02-03
CN105308269B true CN105308269B (zh) 2019-04-30

Family

ID=50792589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480030986.5A Active CN105308269B (zh) 2013-05-29 2014-04-23 形成带有冷却特征的陶瓷基复合材料构件的方法

Country Status (7)

Country Link
US (1) US10017425B2 (zh)
EP (1) EP3004559B1 (zh)
JP (1) JP6360162B2 (zh)
CN (1) CN105308269B (zh)
BR (1) BR112015028346A2 (zh)
CA (1) CA2913031C (zh)
WO (1) WO2014193565A1 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011043B2 (en) 2012-04-27 2018-07-03 General Electric Company Method of producing an internal cavity in a ceramic matrix composite
US10183895B2 (en) * 2014-01-10 2019-01-22 Jfe Steel Corporation Method for suppressing rear face oxidation of carbon-containing refractory, lining structure, and carbon-containing refractory
US9896954B2 (en) * 2014-10-14 2018-02-20 Rolls-Royce Corporation Dual-walled ceramic matrix composite (CMC) component with integral cooling and method of making a CMC component with integral cooling
US10024175B2 (en) * 2015-05-26 2018-07-17 Rolls-Royce Corporation Cooling holes manufactured with EBC in place
US10472976B2 (en) * 2015-06-05 2019-11-12 Rolls-Royce Corporation Machinable CMC insert
US10465534B2 (en) 2015-06-05 2019-11-05 Rolls-Royce North American Technologies, Inc. Machinable CMC insert
US10458653B2 (en) * 2015-06-05 2019-10-29 Rolls-Royce Corporation Machinable CMC insert
DE102015213090A1 (de) * 2015-07-13 2017-01-19 Siemens Aktiengesellschaft Schaufel für eine Strömungskraftmaschine und Verfahren zu deren Herstellung
DE102015213087A1 (de) * 2015-07-13 2017-01-19 Siemens Aktiengesellschaft Schaufel für eine Strömungskraftmaschine und Verfahren zu deren Herstellung
US9926796B2 (en) * 2015-07-28 2018-03-27 General Electric Company Ply, method for manufacturing ply, and method for manufacturing article with ply
US20170059159A1 (en) 2015-08-25 2017-03-02 Rolls-Royce Corporation Cmc combustor shell with integral chutes
US20170122109A1 (en) * 2015-10-29 2017-05-04 General Electric Company Component for a gas turbine engine
US10260358B2 (en) * 2015-10-29 2019-04-16 General Electric Company Ceramic matrix composite component and process of producing a ceramic matrix composite component
GB2550393A (en) * 2016-05-19 2017-11-22 Rolls Royce Plc A composite component
DE102017201505A1 (de) 2017-01-31 2018-08-02 Siemens Aktiengesellschaft rCMC-Turbinenkomponente mit komplexen Kühlstrukturen sowie Verfahren zur Herstellung dazu
FR3063725B1 (fr) * 2017-03-07 2019-04-12 Safran Ceramics Procede de realisation d'une preforme fibreuse consolidee
KR101901870B1 (ko) * 2017-03-21 2018-09-27 한국에너지기술연구원 섬유강화 세라믹 복합재료 재생냉각형 유로 형성방법, 섬유강화 세라믹 복합재료, 및 엔진 노즐
US10562210B2 (en) * 2017-03-22 2020-02-18 General Electric Company Method for forming passages in composite components
US11021779B2 (en) * 2017-05-01 2021-06-01 Rolls-Royce High Temperature Composites Inc. Sacrificial 3-dimensional weaving method and ceramic matrix composites formed therefrom
US10443410B2 (en) * 2017-06-16 2019-10-15 General Electric Company Ceramic matrix composite (CMC) hollow blade and method of forming CMC hollow blade
US11066335B2 (en) * 2017-09-06 2021-07-20 General Electric Company Articles for creating hollow structures in ceramic matrix composites
US10774005B2 (en) 2018-01-05 2020-09-15 Raytheon Technologies Corporation Needled ceramic matrix composite cooling passages
US11125087B2 (en) * 2018-01-05 2021-09-21 Raytheon Technologies Corporation Needled ceramic matrix composite cooling passages
DE102018204470A1 (de) * 2018-03-23 2019-09-26 Siemens Aktiengesellschaft Verfahren zur Herstellung eines keramischen Faserverstärkten-Matrixwerkstoff-CMC-Formkörpers mit Kühlkanälen, sowie entsprechender Formkörper
US11117838B2 (en) 2018-05-23 2021-09-14 Rolls-Royce High Temperature Composites Inc. Method of making a fiber preform for ceramic matrix composite (CMC) fabrication
US11286208B2 (en) * 2018-08-21 2022-03-29 General Electric Company Systems and methods for thermally processing CMC components
US11040915B2 (en) * 2018-09-11 2021-06-22 General Electric Company Method of forming CMC component cooling cavities
US11643948B2 (en) 2019-02-08 2023-05-09 Raytheon Technologies Corporation Internal cooling circuits for CMC and method of manufacture
US11578609B2 (en) 2019-02-08 2023-02-14 Raytheon Technologies Corporation CMC component with integral cooling channels and method of manufacture
US11384028B2 (en) * 2019-05-03 2022-07-12 Raytheon Technologies Corporation Internal cooling circuits for CMC and method of manufacture
US11365635B2 (en) 2019-05-17 2022-06-21 Raytheon Technologies Corporation CMC component with integral cooling channels and method of manufacture
US11534936B2 (en) * 2019-07-05 2022-12-27 Raytheon Technologies Corporation Method of forming cooling channels in a ceramic matrix composite component
US11286792B2 (en) 2019-07-30 2022-03-29 Rolls-Royce Plc Ceramic matrix composite vane with cooling holes and methods of making the same
US11919821B2 (en) 2019-10-18 2024-03-05 Rtx Corporation Fiber reinforced composite and method of making
US11441778B2 (en) 2019-12-20 2022-09-13 Raytheon Technologies Corporation Article with cooling holes and method of forming the same
US11180999B2 (en) 2019-12-20 2021-11-23 General Electric Company Ceramic matrix composite component and method of producing a ceramic matrix composite component
US11326470B2 (en) 2019-12-20 2022-05-10 General Electric Company Ceramic matrix composite component including counterflow channels and method of producing
US11680488B2 (en) 2019-12-20 2023-06-20 General Electric Company Ceramic matrix composite component including cooling channels and method of producing
US20210229317A1 (en) * 2020-01-23 2021-07-29 General Electric Company CMC Laminate Components Having Laser Cut Features
CN112358315A (zh) * 2020-11-27 2021-02-12 西北工业大学 一种含冷却孔道的陶瓷基复合材料制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741043A (zh) * 2010-01-26 2012-10-17 斯奈克玛 用于制造具有内部通道的复合材料叶片的方法及复合材料涡轮发动机叶片

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907949A (en) 1970-10-27 1975-09-23 Westinghouse Electric Corp Method of making tubular polycrystalline oxide body with tapered ends
US4615855A (en) 1984-03-15 1986-10-07 Programmed Composites, Inc. Process for forming composite article
US5015540A (en) 1987-06-01 1991-05-14 General Electric Company Fiber-containing composite
US5330854A (en) 1987-09-24 1994-07-19 General Electric Company Filament-containing composite
US5336350A (en) 1989-10-31 1994-08-09 General Electric Company Process for making composite containing fibrous material
US5066454A (en) 1990-06-20 1991-11-19 Industrial Materials Technology, Inc. Isostatic processing with shrouded melt-away mandrel
BR9503807A (pt) 1994-08-30 1996-09-10 Koji Hirokawa Matriz de estampagem combinação de uma matriz de estampagem com uma matriz de fundição processo de fundição processo para produzir uma matriz de estampagem produto fundido macho processo para produzir um macho e pistão oco de aluminio para um motor de combustão interna
US5628938A (en) 1994-11-18 1997-05-13 General Electric Company Method of making a ceramic composite by infiltration of a ceramic preform
US6024898A (en) 1996-12-30 2000-02-15 General Electric Company Article and method for making complex shaped preform and silicon carbide composite by melt infiltration
DE19834571C2 (de) 1998-07-31 2001-07-26 Daimler Chrysler Ag Verfahren zur Herstellung von Körpern aus faserverstärkten Verbundwerkstoffen und Verwendung des Verfahrens
US6403158B1 (en) 1999-03-05 2002-06-11 General Electric Company Porous body infiltrating method
US6627019B2 (en) 2000-12-18 2003-09-30 David C. Jarmon Process for making ceramic matrix composite parts with cooling channels
US6503441B2 (en) 2001-05-30 2003-01-07 General Electric Company Method for producing melt-infiltrated ceramic composites using formed supports
US6746755B2 (en) * 2001-09-24 2004-06-08 Siemens Westinghouse Power Corporation Ceramic matrix composite structure having integral cooling passages and method of manufacture
DE10164229B4 (de) 2001-12-31 2006-03-09 Sgl Carbon Ag Reibscheiben, Verfahren zu ihrer Herstellung und ihre Verwendung
US20040067316A1 (en) 2002-10-04 2004-04-08 Paul Gray Method for processing silicon-carbide materials using organic film formers
US7043921B2 (en) 2003-08-26 2006-05-16 Honeywell International, Inc. Tube cooled combustor
US7153464B2 (en) * 2003-12-01 2006-12-26 General Electric Company Method of making porous ceramic matrix composites
US7549840B2 (en) 2005-06-17 2009-06-23 General Electric Company Through thickness reinforcement of SiC/SiC CMC's through in-situ matrix plugs manufactured using fugitive fibers
US20070096371A1 (en) 2005-10-27 2007-05-03 General Electric Company Process of producing ceramic matrix composites
US7600979B2 (en) 2006-11-28 2009-10-13 General Electric Company CMC articles having small complex features
US7837914B2 (en) 2006-12-04 2010-11-23 General Electric Company Process of producing a composite component and intermediate product thereof
CN101224497B (zh) 2007-01-17 2010-05-26 富准精密工业(深圳)有限公司 动压轴承制造方法
US20080199661A1 (en) * 2007-02-15 2008-08-21 Siemens Power Generation, Inc. Thermally insulated CMC structure with internal cooling
US20100279845A1 (en) 2009-04-30 2010-11-04 General Electric Company Process of producing ceramic matrix composites
NL2004209C2 (en) 2010-02-08 2011-08-09 Rgs Dev B V Apparatus and method for the production of semiconductor material foils.
US8980435B2 (en) 2011-10-04 2015-03-17 General Electric Company CMC component, power generation system and method of forming a CMC component
US9663404B2 (en) 2012-01-03 2017-05-30 General Electric Company Method of forming a ceramic matrix composite and a ceramic matrix component
CN102527601B (zh) 2012-03-02 2013-12-11 西安石油大学 一种雾化器喷头防堵涂层的制备方法
US10011043B2 (en) 2012-04-27 2018-07-03 General Electric Company Method of producing an internal cavity in a ceramic matrix composite
US10450235B2 (en) 2012-04-27 2019-10-22 General Electric Company Method of producing an internal cavity in a ceramic matrix composite and mandrel therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741043A (zh) * 2010-01-26 2012-10-17 斯奈克玛 用于制造具有内部通道的复合材料叶片的方法及复合材料涡轮发动机叶片

Also Published As

Publication number Publication date
US10017425B2 (en) 2018-07-10
CN105308269A (zh) 2016-02-03
EP3004559B1 (en) 2020-01-15
CA2913031C (en) 2021-09-21
CA2913031A1 (en) 2014-12-04
BR112015028346A2 (pt) 2017-07-25
EP3004559A1 (en) 2016-04-13
JP2016522348A (ja) 2016-07-28
WO2014193565A1 (en) 2014-12-04
US20160115086A1 (en) 2016-04-28
JP6360162B2 (ja) 2018-07-18

Similar Documents

Publication Publication Date Title
CN105308269B (zh) 形成带有冷却特征的陶瓷基复合材料构件的方法
US9663404B2 (en) Method of forming a ceramic matrix composite and a ceramic matrix component
CN109196186B (zh) 陶瓷基复合翼型冷却
US20100021643A1 (en) Method of Forming a Turbine Engine Component Having a Vapor Resistant Layer
CN109072701B (zh) 陶瓷基复合翼型冷却
CN109424371A (zh) 用于燃气涡轮发动机的流径组件及其组装方法
US11952902B2 (en) Environmental barrier multi-phase abradable coating
CN104507677A (zh) 用于航空器燃气涡轮发动机的陶瓷中心体及制造方法
EP3378846B1 (en) Method for forming passages in composite components
CA3015091C (en) Bond coatings having a molten silicon-phase contained between refractory layers
CN109982838B (zh) 含镓和/或铟的组合物及其形成方法
CA3015155C (en) Bond coatings having a silicon-phase contained within a refractory phase
EP3885534B1 (en) Airfoil with buffer layer to absorb thermal mismatch
EP2965837B1 (en) Method including fiber reinforced casting article
JP6724089B2 (ja) バリアコーティング用液体ボンドコーティング
US20240217889A1 (en) Repair of a silicon-based bondcoat
EP4397645A1 (en) Repair of a silicon-based bondcoat
CN117301260A (zh) 复合部件和防止在再渗透过程中从渗透部件流出的方法
CA3182075A1 (en) Bond coat including coarse oxygen getter particles
CA3185580A1 (en) Bond coat including metal oxides and oxygen getters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant