CN111495337B - 基于亲水性萃取氟喹诺酮类药物的吸附剂及其制备方法和萃取方法 - Google Patents

基于亲水性萃取氟喹诺酮类药物的吸附剂及其制备方法和萃取方法 Download PDF

Info

Publication number
CN111495337B
CN111495337B CN202010322860.2A CN202010322860A CN111495337B CN 111495337 B CN111495337 B CN 111495337B CN 202010322860 A CN202010322860 A CN 202010322860A CN 111495337 B CN111495337 B CN 111495337B
Authority
CN
China
Prior art keywords
adsorbent
porous carrier
hydrophilic
extraction
hydrophilic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010322860.2A
Other languages
English (en)
Other versions
CN111495337A (zh
Inventor
王婷婷
陈易晖
仇丹
方科益
李勰
王亚娟
王灵辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University of Technology
Original Assignee
Ningbo University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University of Technology filed Critical Ningbo University of Technology
Priority to CN202010322860.2A priority Critical patent/CN111495337B/zh
Publication of CN111495337A publication Critical patent/CN111495337A/zh
Application granted granted Critical
Publication of CN111495337B publication Critical patent/CN111495337B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/89Inverse chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种基于亲水性萃取氟喹诺酮类药物的吸附剂,其特征在于:该吸附剂含有带阳离子的亲水性聚合物、磁性物以及带有阴离子的多孔性载体,所述亲水性聚合物和磁性物负载在多孔性载体表面;所述吸附剂中多孔性载体、亲水性聚合物、磁性物的三者质量比为1:0.2~1.0:1.5~4.5。与传统的氟喹诺酮类药物采用疏水性吸附相比,本发明采用能够满足亲水性吸附的吸附剂,使用有机溶剂从复杂基质中提取的氟喹诺酮类药物可以直接采用磁分散固相萃取处理,且基于亲水性磁分散固相萃取的洗脱液为水溶液或稀的有机溶剂,可以直接采用RPLC分析,与疏水性萃取相比,基于亲水性磁分散固相萃取法省去了干燥和重溶步骤,使测定更简单、准确。

Description

基于亲水性萃取氟喹诺酮类药物的吸附剂及其制备方法和萃 取方法
技术领域
本发明涉及亲水性化合物的萃取,具体涉及一种基于亲水性萃取氟喹诺酮类药物的吸附剂及其制备方法和萃取方法。
背景技术
氟喹诺酮类药物是一类人工合成的重要抗生素,具有抗菌谱广、杀菌力强、使用方便、价格低廉等特点。因其吸收快、组织分布广泛,可治疗各个系统的感染性疾病而被广泛应用于畜牧及水产养殖等领域中。然而抗生素类兽药不规范的滥用,会对农畜产品造成氟喹诺酮类药物残留污染。长期食用含抗生素残留的动物源食品后,导致人类细菌耐药性产生,严重威胁着人体健康,因此做好此类药物的检测势在必行。
由于动物源食品的基质复杂,且氟喹诺酮类药物残留的浓度低。为了从复杂基质中提取和净化氟喹诺酮类药物,人们开发了大量的样品前处理方法,包括固相萃取、基质固相分散萃取,液液萃取等。其中,磁分散固相萃取具有操作简单、萃取时间短、有机溶剂用量少的优点,且避免了传统的固相萃取小柱易堵塞以及不能重复利用的缺陷,被广泛地应用于氟喹诺酮类药物的样品前处理。吸附剂是建立磁分散固相萃取方法的关键。目前,应用于氟喹诺酮类药物分析的磁性吸附剂主要有磁性石墨烯[X.He,G.N.Wang,K.Yang,H.Z.Liu,X.J.Wu,J.P.Wang,Food Chem.2017,221,1226–1231.]、聚二甲基硅氧烷和多壁碳纳米管修饰磁性纳米颗粒[S.Xu,C.Jiang,Y.X.Lin,L.Jia,Microchim.Acta2012,179,257–264.]、苯基/四唑基功能化磁性微球[F.Xu,F.Liu,C.Wang,Y.Wei,Anal.Bioanal.Chem.2018,410,1709–1724]等。如上的磁性吸附剂主要基于疏水性吸附氟喹诺酮类药物,因此,上样前,需要将溶剂提取物干燥并重新溶解在更极性的溶剂(例如水)中,而且洗脱液需在氮气流下蒸发至干燥,并采用流动相重溶解后,进行HPLC分析。这些繁琐的步骤不仅增加了样品预处理的时间,而且增加了测定的误差。
由于氟喹诺酮类药物是一类两性分子,具有极性和亲水性。本发明将亲水作用机理引入到磁分散固相萃取中。采用有机溶剂从复杂基质中提取的氟喹诺酮类药物可以直接采用磁分散固相萃取处理。另外,基于亲水性磁分散固相萃取的洗脱液为水溶液或稀的有机溶剂,也可以直接采用RPLC分析。因此,与疏水性萃取相比,基于亲水性磁分散固相萃取法省去了干燥和重溶步骤,使测定更简单、准确。
发明内容
本发明所要解决的第一个技术问题是提供一种基于亲水性萃取氟喹诺酮类药物的吸附剂。
本发明解决上述技术问题所采用的技术方案为:一种基于亲水性萃取氟喹诺酮类药物的吸附剂,其特征在于:该吸附剂含有带阳离子的亲水性聚合物、磁性物以及带有阴离子的多孔性载体,所述亲水性聚合物和磁性物负载在多孔性载体表面;所述吸附剂中多孔性载体、亲水性聚合物、磁性物的三者质量比为1:0.2~1.0:1.5~4.5。
多孔结构的载体为亲水性聚合物和磁性物的富集提供了大量的空间,从而获得在相同重量下具有更大比表面积的吸附剂,可以显著提高对亲水性物质的吸附容量。多孔结构的载体表面带有负电荷,可以通过离子结合的方式负载亲水性聚合物和磁性物。带有阴离子的多孔性载体、带阳离子的亲水性聚合物、磁性物的三者添加质量比为1:0.2~1.0:1.5~4.5,在该控制范围内,吸附剂具有优良的吸附效果。
作为优选,所述亲水性聚合物为聚乙烯亚胺、壳聚糖、氨基葡聚糖中的一种。
作为优选,所述多孔性载体为凹凸棒土或者硅胶中的一种。
作为优选,所述磁性物的晶粒直径控制在30nm以下;所述吸附剂的比表面积控制在10~20m2/g。
本发明吸附剂中磁性物的晶粒直径控制在30nm以下,尽可能在磁性物同等重量下取得更大的比表面积,提高磁分离效果;吸附剂的比表面积控制在10~20m2/g,吸附剂的比表面积低于10m2/g,此时磁性物颗粒完全包裹多孔性载体,测不出孔隙率,不适合用于吸附亲水性小分子;当吸附剂的比表面大于20m2/g时,说明多孔性载体的磁化不完全,吸附剂不能用于磁分散固相萃取。
本发明所要解决的第二个技术问题是提供一种基于亲水性萃取氟喹诺酮类药物的吸附剂的制备方法。
本发明解决上述技术问题所采用的技术方案为:一种基于亲水性萃取氟喹诺酮类药物的吸附剂的制备方法,其特征在于:在水中加入七水合硫酸亚铁、六水合三氯化铁、多孔性载体和亲水性聚合物,所述七水合硫酸亚铁与六水合三氯化铁的摩尔比5:7~10;所述六水合三氯化铁与多孔性载体的质量比为2~5:1;所述多孔性载体与亲水性聚合物的质量比为1:0.2~1.0;所述多孔性载体与水的比为0.008~0.012g:1mL;超声分散50~120min;加入氨水,所述氨水的加入量使溶液pH在9~10之间、在60~80℃下反应1~3h生成负载在多孔性载体表面的磁性物Fe3O4
本发明选用FeSO4·7H2O和FeCl3·6H2O为Fe3O4的生成提供Fe3+和Fe2+,且两者的摩尔比控制在5:7~10,使Fe2+过量,Fe3+全部反应生成Fe3O4;六水合三氯化铁和多孔性载体的质量比为2~5:1,制备的吸附剂具有磁性,而且吸附剂的比表面积为10~20m2/g,适合于吸附亲水性小分子;当六水合三氯化铁和多孔性载体的质量比大于5,Fe3O4颗粒完全包裹多孔性载体,测不出孔隙率,且吸附剂的比表面积急剧降低,不适合用于吸附亲水性小分子;当六水合三氯化铁和多孔性载体的质量比小于2时,部分多孔性载体未被磁化,不能用于磁分散固相萃取;多孔性载体与亲水性聚合物的质量比为1:0.2~1.0,当多孔性载体与亲水性聚合物的质量比小于0.2时,所得的吸附剂没有亲水性,不适合用于吸附亲水性小分子;当多孔性载体与亲水性聚合物的质量比大于1.0时,过量的亲水性聚合物溶于溶液中,不能通过增加亲水性聚合物的量增加吸附剂的亲水性;反应条件控制在60~80℃下反应1~3h,能够控制Fe3O4的晶粒直径,Fe3O4的晶粒直径越细小其具有更大的比表面积,磁分离效果越好。
作为优选,所述多孔性载体为酸化的凹凸棒土;所述亲水性聚合物为聚乙烯亚胺。
中性的条件下,当凹凸棒土、聚乙烯亚胺、七水合硫酸亚铁(FeSO4·7H2O)和六水合三氯化铁(FeCl3·6H2O)在超声条件下水中分散时,凹凸棒土所含的羟基可以部分解离,使其表面带负电荷。带正电荷的聚乙烯亚胺、Fe2+、Fe3+通过阳离子交换的作用被吸附在凹凸棒土表面。加入氨水之后,吸附的Fe2+、Fe3+原位氧化还原反应生成Fe3O4,最后Fe3O4和聚乙烯亚胺都被负载在凹凸棒土表面。
本发明所要解决的第三个技术问题是提供一种基于亲水性萃取氟喹诺酮类药物吸附剂的萃取方法。
本发明解决上述技术问题所采用的技术方案为:一种基于亲水性萃取氟喹诺酮类药物的吸附剂的萃取方法,其特征在于:将氟喹诺酮类药物溶解在有机溶剂浓度≥95v/v%的萃取液中,与吸附剂相混合萃取,超声分散后,磁分离;倾去溶液,加入pH≥12且含有150~170mmol/L NaCl的氨水洗脱液洗脱,超声分散后,磁分离,含有氟喹诺酮类药物的洗脱液经过滤后直接用反相液相色谱进行分析。
作为优选,所述萃取液的体积1~10mL,所述洗脱液的体积0.5~1mL;所述萃取时超声温度10~20℃,时间20~30min;洗脱时,超声温度23~27℃,时间5~20min。
与现有技术相比,本发明的优点在于:
1)与传统的氟喹诺酮类药物采用疏水性吸附相比,本发明采用能够满足亲水性吸附的吸附剂,采用有机溶剂从复杂基质中提取的氟喹诺酮类药物可以直接采用磁分散固相萃取处理,且基于亲水性磁分散固相萃取的洗脱液为水溶液或稀的有机溶剂,可以直接采用RPLC分析,与疏水性萃取相比,基于亲水性磁分散固相萃取法省去了干燥和重溶步骤,使测定更简单、准确;疏水性萃取上样前,需要将溶剂提取物干燥并重新溶解在更极性的溶剂(例如水)中,而且洗脱液需在氮气流下蒸发至干燥,并采用流动相重溶解后,进行HPLC分析。这些繁琐的步骤不仅增加了样品预处理的时间,而且增加了测定的误差。
2)本发明采用带阳离子的亲水性聚合物、磁性物负载在带有阴离子的多孔性载体上,并将三者添加质量比控制为1:0.2~1.0:1.5~4.5,多孔性载体的多孔结构为亲水性聚合物和磁性物的富集提供了大量的空间,从而获得在相同重量下具有更大比表面积的吸附剂,可以显著提高对亲水性物质的吸附容量。
3)采用本发明吸附剂可以使食品中氟喹诺酮类药物的回收率≥80%。
附图说明
图1为诺氟沙星在本发明实施例1(A)和对比例(B)上的吸附等温线,以及诺氟沙星在本发明实施例1(C)和对比例(D)上的Langmuir吸附模型;
图2为本发明实施例1酸化凹凸棒土的红外光谱分析图(A)和本发明实施例1吸附剂的红外光谱分析图(B);
图3为本发明实施例1酸化凹凸棒土(A)和本发明实施例1(B)的扫描电镜图及其相应的能谱图;
图4为本发明实施例1的电镜扫描照片。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1至5为本发明吸附剂并采用本发明方法制备,具体成分见表1,具体制备工艺参数控制见表2。对比例为未掺杂凹凸棒土的聚乙烯亚胺修饰的Fe3O4吸附剂。
实施例1至5的制备方法:
在水中加入七水合硫酸亚铁、六水合三氯化铁、多孔性载体和亲水性聚合物,七水合硫酸亚铁与六水合三氯化铁的摩尔比5:7~10;六水合三氯化铁与多孔性载体的质量比为2~5:1;多孔性载体与亲水性聚合物的质量比为1:0.2~1.0;多孔性载体与水的比为0.008~0.012g:1mL;超声分散50~120min;加入氨水,氨水的加入量使溶液pH在9~10之间、在60~80℃下反应1~3h生成负载在多孔性载体表面的磁性物Fe3O4
对比例的制备方法:
在水中加入七水合硫酸亚铁、六水合三氯化铁和聚乙烯亚胺,七水合硫酸亚铁与六水合三氯化铁的摩尔比5:8;六水合三氯化铁与聚乙烯亚胺的质量比为14:1;聚乙烯亚胺与水的比为0.0025g:1mL;超声分散70min;加入氨水,氨水的加入量使溶液pH在9~10之间、在70℃下反应1.5h生成聚乙烯亚胺修饰的磁性物Fe3O4
实施例与对比所需萃取样品的制备:
1)精密称取鸡肉5.00g,依次加入30g无水硫酸钠和25mL酸化乙腈(6mol/L HCl:乙腈=1:125,v/v),用高速组织捣碎机匀浆。将匀浆样品置于带玻璃珠的三角瓶中,经摇床振荡15min(120r/min),再转入离心管中,4500r/min离心15min,取上清液。往残渣中加入20mL酸化乙腈,重复上述操作一次,合并上清液,加入2.5mL蒸馏水。用固体氢氧化钠调节pH至中性,最后,用乙腈定容至50mL,最终的乙腈浓度为95%。
2)空白加标样品的制备:
在鸡肉的提取液中加入氟喹诺酮类药物标准品,如环丙沙星、恩诺沙星、诺氟沙星,使最终的加标浓度为125、625、1250μg/kg。
实施例与对比例按照本发明的萃取方法进行萃取、洗脱:
将10mL空白加标样品与50mg吸附剂相混合,15℃超声分散20min,磁分离,倾去溶液,加入0.5mL含150~170mmol/L NaCl的氨水溶液(pH≥12)洗脱,室温超声分散10min后,磁分离,含有氟喹诺酮类药物的洗脱液经过滤后直接用反相液相色谱进行分析。
从图1(A)的吸附等温线图可见,在测定的浓度范围内,吸附容量远远未达到最大值,而图1(B)可以看出达到了最大吸附容量。为了得到本发明吸附剂的最大吸附容量,进一步采用Langmuir吸附模型分析。图1(C)和(D)的线性方程分别为y=0.0577x+0.822和y=0.132x+3.211(R2>0.99)。从斜率的倒数可以得出本发明吸附剂的吸附容量为17.33mg/g,未掺杂凹凸棒土的吸附剂的吸附容量为7.58mg/g,该结果与图1(B)的结果一致,掺杂凹凸棒土使吸附容量提高了2.3倍。
从表3中可以得出,实施例1~3在满足洗脱的条件下,鸡肉中的中每种氟喹诺酮类药物的回收率≥80%,说明本发明吸附剂对极性物质具有优异的吸附能力。实施例4和5的回收率只有15%和60%左右,说明在不满足本发明的洗脱条件下,回收率较差。对比例在满足本发明洗脱的条件下,鸡肉中的中每种氟喹诺酮类药物的回收率≤10%,说明未掺杂凹凸棒土的聚乙烯亚胺修饰的Fe3O4吸附剂的吸附率很低。
从图2中(A)与(B)的红外光谱对比图可以看出,B图中1462cm-1为C-N伸缩振动与N-H变形振动的耦合,1360cm-1为叔胺的C-N伸缩振动,两者均为聚乙烯亚胺的特征吸收,而578cm-1是磁性颗粒Fe-O伸缩振动,可以说明聚乙烯亚胺和磁性颗粒被较好地负载在凹凸棒土表面,使其具有亲水性的同时含有磁性。
从图3(A)和(B)可以看出,纤维状的酸化凹凸棒土表面包括一层颗粒状的物质,该物质即为磁性颗粒。从相应的能谱图可以看出,吸附剂比酸化凹凸棒土多了N元素,即说明聚乙烯亚胺也被成功地修饰上去,而且Fe的含量急剧升高,可以进一步说明磁性颗粒被较好地负载在凹凸棒土表面上。
图4可以看出附剂中Fe3O4晶粒直径在20nm以下,表面积为15.55m2/g,远远小于酸化凹凸棒土的比表面积(225.1m2/g),可以看出磁性颗粒较好地包覆在凹凸棒土表面。
表1为本发明实施例的成分、Fe3O4的晶粒直径及表面积
表2为本发明实施例的制备工艺参数控制
表3本发明实施例与对比例在不同洗脱条件下的氟喹诺酮类药物检测及回收率测试

Claims (4)

1.一种基于亲水性吸附剂萃取氟喹诺酮类药物的萃取方法,其特征在于:该吸附剂含有带阳离子的亲水性聚合物、磁性物以及带有阴离子的多孔性载体,所述亲水性聚合物和磁性物负载在多孔性载体表面;所述吸附剂中多孔性载体、亲水性聚合物、磁性物的三者质量比为1:0.2~1.0:1.5~4.5;所述磁性物的晶粒直径控制在30 nm以下;所述吸附剂的比表面积控制在10~20m2/g;
所述亲水性聚合物为聚乙烯亚胺、壳聚糖、氨基葡聚糖中的一种;
吸附剂的制备方法为:在水中加入七水合硫酸亚铁、六水合三氯化铁、多孔性载体和亲水性聚合物,所述七水合硫酸亚铁与六水合三氯化铁的摩尔比5:7~10;所述六水合三氯化铁与多孔性载体的质量比为2~5:1;所述多孔性载体与亲水性聚合物的质量比为1:0.2~1.0;所述多孔性载体与水的比为0.008~0.012g:1mL;超声分散50~120min;加入氨水,所述氨水的加入量使溶液pH在9~10之间、在60~80℃下反应1~3 h生成负载在多孔性载体表面的磁性物Fe3O4
氟喹诺酮类药物的萃取方法为:将氟喹诺酮类药物溶解在有机溶剂浓度≥95v/v%的萃取液中,与吸附剂相混合萃取,超声分散后,磁分离;倾去溶液,加入pH≥12且含有150~170mmol/L NaCl的氨水洗脱液洗脱,超声分散后,磁分离,含有氟喹诺酮类药物的洗脱液经过滤后直接用反相液相色谱进行分析。
2.根据权利要求1所述的基于亲水性吸附剂萃取氟喹诺酮类药物的萃取方法,其特征在于:所述多孔性载体为凹凸棒土或者硅胶中的一种。
3.根据权利要求1所述的基于亲水性吸附剂萃取氟喹诺酮类药物的萃取方法,其特征在于:所述多孔性载体为酸化的凹凸棒土;所述亲水性聚合物为聚乙烯亚胺。
4.根据权利要求1所述的基于亲水性吸附剂萃取氟喹诺酮类药物的萃取方法,其特征在于:所述萃取液的体积1~10 mL,所述洗脱液的体积0.5~1 mL;所述萃取时超声温度10~20℃,时间20~30 min;洗脱时,超声温度23~27℃,时间5~20 min。
CN202010322860.2A 2020-04-22 2020-04-22 基于亲水性萃取氟喹诺酮类药物的吸附剂及其制备方法和萃取方法 Active CN111495337B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010322860.2A CN111495337B (zh) 2020-04-22 2020-04-22 基于亲水性萃取氟喹诺酮类药物的吸附剂及其制备方法和萃取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010322860.2A CN111495337B (zh) 2020-04-22 2020-04-22 基于亲水性萃取氟喹诺酮类药物的吸附剂及其制备方法和萃取方法

Publications (2)

Publication Number Publication Date
CN111495337A CN111495337A (zh) 2020-08-07
CN111495337B true CN111495337B (zh) 2023-08-11

Family

ID=71848362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010322860.2A Active CN111495337B (zh) 2020-04-22 2020-04-22 基于亲水性萃取氟喹诺酮类药物的吸附剂及其制备方法和萃取方法

Country Status (1)

Country Link
CN (1) CN111495337B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252834B (zh) * 2021-04-09 2022-08-05 宁波工程学院 一种基于亲水作用的磁辅助基质固相分散萃取方法
TR2022014979A2 (tr) * 2022-09-30 2022-10-21 Bursa Uludag Ueniversitesi Kati faz ekstraksi̇yon kolonu
CN115508475A (zh) * 2022-11-01 2022-12-23 未名环境分子诊断(广东)有限公司 一种污水中地芬诺酯含量检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189792A (ja) * 1998-12-29 2000-07-11 Masashi Funayama リポ多糖吸着体およびリポ多糖の吸着除去方法。
CN101574645A (zh) * 2009-06-05 2009-11-11 中国科学院生态环境研究中心 磁性纳米材料萃取剂及其制备方法
CN101664669A (zh) * 2009-09-29 2010-03-10 中国科学院生态环境研究中心 羧基化的单壁碳纳米管-海藻酸固相萃取盘的制备及应用
CN104707564A (zh) * 2015-03-16 2015-06-17 环境保护部南京环境科学研究所 一种新型凹凸棒土的制备方法及其处理重金属废水的方法
CN106610409A (zh) * 2015-10-23 2017-05-03 杭州师范大学 一种壳聚糖填充微型基质固相分散方法
CN107262033A (zh) * 2017-06-30 2017-10-20 安徽工业大学 一种凹凸棒石/Fe3O4/碳复合材料的制备及应用
CN108445135A (zh) * 2018-05-23 2018-08-24 南京财经大学 一种用于多种兽药残留快速筛查的检测方法
CN108872447A (zh) * 2018-09-07 2018-11-23 宁波工程学院 基于亲水性固相萃取的甲状腺抑制剂的检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637533B2 (ja) * 2004-08-31 2011-02-23 信和化工株式会社 固相抽出用分離剤
ES2365082B1 (es) * 2010-03-08 2012-08-08 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtencion de materiales con comportamiento superparamagnetico

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189792A (ja) * 1998-12-29 2000-07-11 Masashi Funayama リポ多糖吸着体およびリポ多糖の吸着除去方法。
CN101574645A (zh) * 2009-06-05 2009-11-11 中国科学院生态环境研究中心 磁性纳米材料萃取剂及其制备方法
CN101664669A (zh) * 2009-09-29 2010-03-10 中国科学院生态环境研究中心 羧基化的单壁碳纳米管-海藻酸固相萃取盘的制备及应用
CN104707564A (zh) * 2015-03-16 2015-06-17 环境保护部南京环境科学研究所 一种新型凹凸棒土的制备方法及其处理重金属废水的方法
CN106610409A (zh) * 2015-10-23 2017-05-03 杭州师范大学 一种壳聚糖填充微型基质固相分散方法
CN107262033A (zh) * 2017-06-30 2017-10-20 安徽工业大学 一种凹凸棒石/Fe3O4/碳复合材料的制备及应用
CN108445135A (zh) * 2018-05-23 2018-08-24 南京财经大学 一种用于多种兽药残留快速筛查的检测方法
CN108872447A (zh) * 2018-09-07 2018-11-23 宁波工程学院 基于亲水性固相萃取的甲状腺抑制剂的检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵云丽 等.《体内药物分析 第4版》.中国医药科技出版社,第54页. *

Also Published As

Publication number Publication date
CN111495337A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN111495337B (zh) 基于亲水性萃取氟喹诺酮类药物的吸附剂及其制备方法和萃取方法
Lian et al. Magnetic solid-phase extraction of fluoroquinolones from water samples using titanium-based metal-organic framework functionalized magnetic microspheres
Zhuo et al. Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101 (Cr)/natural polymer composite beads
Guo et al. Exploration of functional MOFs for efficient removal of fluoroquinolone antibiotics from water
Niu et al. Preparation of a novel citric acid-crosslinked Zn-MOF/chitosan composite and application in adsorption of chromium (VI) and methyl orange from aqueous solution
Hu et al. Magnetic ordered mesoporous carbon materials for adsorption of minocycline from aqueous solution: Preparation, characterization and adsorption mechanism
Dai et al. Novel pitaya-inspired well-defined core–shell nanospheres with ultrathin surface imprinted nanofilm from magnetic mesoporous nanosilica for highly efficient chloramphenicol removal
Li et al. Integration of Fe3O4@ UiO-66-NH2@ MON core-shell structured adsorbents for specific preconcentration and sensitive determination of aflatoxins against complex sample matrix
Zhou et al. Restricted access magnetic imprinted microspheres for directly selective extraction of tetracycline veterinary drugs from complex samples
Anirudhan et al. Extraction of melamine from milk using a magnetic molecularly imprinted polymer
Hu et al. A novel core–shell magnetic nano-sorbent with surface molecularly imprinted polymer coating for the selective solid phase extraction of dimetridazole
Ren et al. Facile and green preparation of novel adsorption materials by combining sol-gel with ion imprinting technology for selective removal of Cu (II) ions from aqueous solution
Ou et al. Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion
Zeng et al. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water
Dai et al. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium
Xiao et al. Preparation of molecularly imprinted polymers on the surface of magnetic carbon nanotubes with a pseudo template for rapid simultaneous extraction of four fluoroquinolones in egg samples
Candan et al. Cadmium removal out of human plasma using ion-imprinted beads in a magnetic column
Wu et al. Synthesis of teicoplanin-modified hybrid magnetic mesoporous silica nanoparticles and their application in chiral separation of racemic compounds
Chen et al. Preparation and application of magnetic molecular imprinted polymers for extraction of cephalexin from pork and milk samples
CN106883411B (zh) 超顺磁性核壳结构介孔分子印迹聚合物的制备及作为固相萃取剂的应用
Zhao et al. Molecularly imprinted polymer coating on metal‐organic frameworks for solid‐phase extraction of fluoroquinolones from water
Anbia et al. Functionalized CMK-3 mesoporous carbon with 2-amino-5-mercapto-1, 3, 4-thiadiazole for Hg (II) removal from aqueous media
Liu et al. Preparation of a boronic acid functionalized magnetic adsorbent for sensitive analysis of fluoroquinolones in environmental water samples
Xu et al. Preparation of biocompatible molecularly imprinted film on biowaste-derived magnetic pomegranate rind carbon for protein recognition in biological sample
Yan et al. Polydopamine-based multilevel molecularly imprinted nanocomposite membranes comprising metal organic frameworks for selective recognition and separation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant