CN111484533B - 手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用 - Google Patents

手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用 Download PDF

Info

Publication number
CN111484533B
CN111484533B CN202010012689.5A CN202010012689A CN111484533B CN 111484533 B CN111484533 B CN 111484533B CN 202010012689 A CN202010012689 A CN 202010012689A CN 111484533 B CN111484533 B CN 111484533B
Authority
CN
China
Prior art keywords
phosphine
chiral
nitrogen
tridentate ligand
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010012689.5A
Other languages
English (en)
Other versions
CN111484533A (zh
Inventor
周其林
张丰华
谢建华
王立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Jiuzhou Pharmaceutical Co Ltd
Original Assignee
Zhejiang Jiuzhou Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Jiuzhou Pharmaceutical Co Ltd filed Critical Zhejiang Jiuzhou Pharmaceutical Co Ltd
Priority to CN202010012689.5A priority Critical patent/CN111484533B/zh
Publication of CN111484533A publication Critical patent/CN111484533A/zh
Priority to US17/783,648 priority patent/US20230151035A1/en
Priority to EP20912421.3A priority patent/EP4089097A4/en
Priority to PCT/CN2020/137041 priority patent/WO2021139499A1/zh
Application granted granted Critical
Publication of CN111484533B publication Critical patent/CN111484533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • C07F15/004Iridium compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/249Spiro-condensed ring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/001Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by modification in a side chain
    • C07C37/002Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by modification in a side chain by transformation of a functional group, e.g. oxo, carboxyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/34Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
    • B01J2231/3411,2-additions, e.g. aldol or Knoevenagel condensations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/189Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms containing both nitrogen and phosphorus as complexing atoms, including e.g. phosphino moieties, in one at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/04Systems containing only non-condensed rings with a four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/10Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种手性螺环膦‑氮‑膦三齿配体SpiroPNP及其铱催化剂Ir‑SpiroPNP制备方法和应用。该手性螺环膦‑氮‑膦三齿配体是具有式I所示的化合物,或其消旋体或旋光异构体,或其催化可接受的盐,主要结构特征是具有手性螺二氢茚骨架和具有大位阻取代基的膦配体。该手性螺环膦‑氮‑膦三齿配体可以由具有螺环骨架的7‑二芳/烷基膦基‑7′‑氨基‑1,1′‑螺二氢茚类化合物为手性起始原料合成。该手性螺环膦‑氮‑膦三齿配体的铱催化剂是具有式II所示的化合物,或其消旋体或旋光异构体,或其催化可接受的盐,可用于催化羰基化合物的不对称催化氢化反应,特别是在简单双烷基酮的不对称氢化反应中表现出很高的收率(>99%)和对映选择性(高达99.8%ee),具有实用价值。

Description

手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用
技术领域
本发明属于有机合成技术领域,涉及一类手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用,具体涉及一类具有螺环骨架的手性膦-氮-膦三齿配体及其铱催化剂的制备方法和在简单双烷基酮不对称催化氢化中的应用。
背景技术
过渡金属不对称催化氢化具有原子经济性高,反应条件温和,催化活性高,对映选择性好等优点,其已经成为获得手性分子最为简单方便和高效的方法之一,并且已经在手性药物分子和手性农药的工业生产中得到了广泛的应用,例如L-多巴,碳青霉素,金朵儿等。正是由于在手性控制领域做出了杰出的贡献,2001年诺贝尔化学奖授予了Konwles,Noyori和Sharpless三位教授,彰显了不对称催化合成领域本身的重要科学意义以及可能对相关领域如医药、农药、化工、材料等产生的深远影响。
在几类不饱和分子中,酮是最容易获得了一类不饱和分子,其不对称催化氢化也受到了科学家们的广泛关注。经过40多年的发展,科学家们发展出多种多样的催化体系实现了官能团化酮和芳基烷基酮的不对称催化氢化,获得了很高的催化效率和对映选择性。其关键就在于催化剂对这两类底物羰基平面的精准识别。在上述羰基底物不对称催化氢化取得巨大成就的同时,对于另一类代表性的羰基底物,即电性和位阻差异均很小的双烷基酮的高对映选择性不对称催化氢化一直是科学家的追求和梦想,但是没有得到很好的实现。如何实现像酶一样对手性的精准控制,高对映选择性不对称催化氢化双烷基酮,例如甲基乙基酮仍然是一个巨大但富有意义的挑战。针对其氢化产物在手性药物和手性农药合成中有着非常重要的用途,设计和发展新型高效的手性配体及催化剂仍然是不对称催化研究领域的难点和挑战,具有非常重要的意义。
最近,我们研究小组基于优势的手性螺环骨架,设计合成了三类结构新颖的三齿配体。第一类是手性螺环吡啶胺基膦三齿配体SpiroPAP(Xie,J.-H.;Liu,X.-Y.;Xie,J.-B.;Wang,L.-X.;Zhou,Q.-L.Angew.Chem.Int.Ed.2011,50,7329-9332),其铱络合物Ir-SpiroPAP在羰基化合物的不对称催化氢化反应中有非常突出的表现,对映选择性高达99%ee,TON可高达450万。该手性螺环吡啶胺基膦三齿配体的铱催化剂Ir-SpiroPAP对β-芳基-β-酮酸酯的不对称催化氢化也非常有效,能给出高达99%ee的映选择性,TON可以高达123万(Xie,J.-H.;Liu,X.-Y.;Yang,X.-H.;Xie,J.-B.;Wang,L.-X.;Zhou,Q.-L.Angew.Chem.Int.Ed.2012,51,201-203)。第二类是手性螺环膦-氮-硫三齿配体SpiroSAP,其铱络合物Ir-SpiroSAP在β-烷基-β-酮酸酯等羰基化合物不对称催化氢化中可以获得优秀的对映选择性(高达99.9%ee)和高达35万的转化数(Bao,D.-H.;Wu,H.-L.;Liu,C.-L.;Xie,J.-H.;Zhou,O.-L.Angew.Chem.Int.Ed.2015,54,8791-8794)。第三类是手性螺环膦-氨基-噁唑林三齿配体SpiroOAP,其铱络合物Ir-SpiroOAP在α-酮酰胺等羰基化合物不对称催化氢化中可以获得优秀的对映选择性(高达98%ee)和高达1万的转化数(Zhang,F.-H.;Wang,C.;Xie,J.-H.;Zhou,Q.-L.Adv.Synth.Catal.2019,361,2832-2835)。
简单双烷基酮,如甲基乙基酮高对映选择性不对称催化氢化的难点在于催化剂对底物羰基平面的手性识别非常困难。实现催化剂对羰基两端结构非常相似的甲基和乙基的精准识别关键在于设计出具有巨大空间位阻的手性催化剂。
发明内容
本发明的目的在于提供一类手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和在简单双烷基酮不对称催化氢化中的应用。这类手性螺环三齿配体是基于手性螺环吡啶胺基膦三齿配体的铱催化剂Ir-SpiroPAP,手性螺环膦-氮-硫三齿配体铱催化剂Ir-SpiroSAP和手性螺环膦-氨基-噁唑啉三齿配体的铱催化剂Ir-SpiroOAP在羰基化合物不对称催化氢化中结构与催化活性和对映选择性的关系设计的。在手性螺环胺基膦配体SpiroAP(Xie,J.-B.;Xie,J.-H.;Liu,X.-Y.;Kong,W.-L.;Li,S.;Zhou,Q.-L.J.Am.Chem.Soc.2010,132,4538-4539.周其林,谢建华,谢剑波,王立新CNCN101671365A)上引入新的磷原子使之成为新型膦-氮-膦三齿配体,通过在磷原子引入不同大小的取代基可以非常方便地调节金属中心周围的空间位阻大小,从而显著地提高了催化剂对底物的手性控制,并在简单双烷基酮等羰基化合物不对称催化氢化中获得了优秀的对映选择性(高达99.8%ee)和高达4300的转化数(TON),从而为催化羰基化合物不对称氢化的手性配体及其催化剂提供了一类新产品。
本发明提供的手性螺环膦-氮-膦三齿配体SpiroPNP,是具有式I的化合物或所述化合物的对映体、消旋体,或其催化可接受的盐。
Figure BSA0000199539190000021
本发明提供的手性螺环膦-氮-膦三齿配体的铱催化剂Ir-SpiroPNP,是具有式II的化合物或所述化合物的对映体、消旋体,或其催化可接受的盐。
Figure BSA0000199539190000022
其中,R1选自C1~C10的烃基、苯基、取代苯基、1-萘基、2-萘基、杂芳基或苄基,所述的苯基上的取代基为C1~C10的烃基、烷氧基,取代基数量为1~5,杂芳基为呋喃基、噻吩基或吡啶基;
R2、R3、R4、R5分别独立选自H、C1~C10烷基、苯基、取代苯基、1-萘基、2-萘基、杂芳基或苄基,所述的苯基上的取代基为C1~C10的烃基、烷氧基,取代基数量为1~5,杂芳基为呋喃基、噻吩基或吡啶基;或C1~C10烷氧基;或R2~R3、R4~R5并为C3~C7脂肪环、芳香环;R2、R3、R4、R5可以相同也可以不同;
R6、R7分别独立选自H、C1~C10烷基、C1~C10烷氧基、C1~C10脂肪胺基,n=0~3;或当n≥2时,两个相邻的R6、R7可并为C3~C7脂肪环或芳香环,R6、R7可以相同也可以不同;
R8、R9分别独立选自C1~C10烷基、C1~C10烷氧基,苯基、取代苯基、1-萘基、2-萘基、杂芳基或苄基,所述的苯基上的取代基为C1~C10的烃基、烷氧基,取代基数量为1~5,杂芳基为呋喃基、噻吩基或吡啶基;或R8和R9可通过C2~C4的碳链,含氮、氧、硫的碳链、芳香环、或杂芳香环连接成环;R8、R9可以相同也可以不同。
X可以是Cl,Br,OMe,BF4,OTf等常见的阴离子。
本发明提供的手性螺环膦-氮-膦三齿配体SpiroPNP及其铱催化剂Ir-SpiroPNP的制备方法,其特征是以具有手性螺二氢茚骨架的式4所示的消旋或光学活性的7-二芳/烷基膦基-7′-氨基-1,1′-螺二氢茚类化合物为起始原料经过下述反应式制备:
Figure BSA0000199539190000031
其中,式1、2、3、4、5、I、II中R1~R9的含义与上述一致。具有手性螺二氢茚骨架的式4所示的化合物是按文献方法制备(J.-B.Xie,J.-H.Xie,X.-Y.Liu,W.-L.Kong,S.Li,Q.-L.Zhou,J.Am.Chem.Soc.2010,132,4538;周其林,谢建华,谢剑波,王立新,CN101671365A)。
手性螺环膦-氮-膦三齿配体SpiroPNP及其铱催化剂Ir-SpiroPNP的制备方法描述如下:在有机溶剂,碱和钯催化剂存在的条件下,具有式1所示的化合物先与式2所示的化合物在反应器中反应12~24小时制备得到式3所示的化合物;在有机溶剂和还原剂存在的条件下,式3所示的化合物与式4所示的化合物经还原胺化得到式5所示的化合物;在有机溶剂和还原剂存在的条件下,式5所示的化合物发生还原反应得到式I所示的化合物;式I所示的化合物与各种铱催化剂前体在有机溶剂中络合得到式II所示的化合物。
在上述合成方法中,所述的有机溶剂可为甲醇、乙醇、丙醇、异丙醇、丁醇、四氢呋喃、甲苯、二甲苯、甲基叔丁基醚、乙醚、二氧六环、N,N-二甲基甲酰胺、二甲亚砜、二氯甲烷、氯仿、1,2-二氯乙烷中的一种或其中几种的混合溶剂;所述的还原试剂可为氢化铝锂、硼氢化钠、三乙酰氧基硼氢化钠、腈基硼氢化钠、三氯硅烷,苯硅烷等;所述的碱包括有机碱和无机碱,其中有机碱可为吡啶、三乙胺、三丁胺、N-甲基吗啡啉、N,N-二乙基异丙基胺;无机碱可为氢氧化钠、氢氧化钾、碳酸钠、碳酸钾;钯催化剂可为醋酸钯、钯碳;铱催化剂可为1,5-环辛二烯氯化铱二聚体、二(1,5-环辛二烯)二-M-甲氧基二铱。
本发明所述的手性螺环膦-氮-膦三齿配体及其铱催化剂的应用,是用于催化简单双烷基酮等羰基化合物的不对称催化氢化反应。
作为优先方案,首先使所述的手性螺环膦-氮-膦三齿配体与过渡金属盐形成配合物,然后用于催化简单双烷基酮等羰基化合物的不对称催化氢化反应。
作为优先方案,在惰性气体氛围下,将所述的手性螺环膦-氮-膦三齿配体与过渡金属盐加入有机溶剂中,在70-100℃和0.1-20atm的氢气氛围中搅拌反应10~24小时制备得到手性螺环膦-氮-膦三齿配体与过渡金属盐形成的配合物。
作为更进一步的优先方案,所述的手性螺环膦-氮-膦三齿配体与过渡金属盐的摩尔比为1∶1~2∶1,以1.2∶1~1.8∶1为最佳。
作为更优先方案,所述过渡金属盐为铱的金属盐。所述的铱金属盐为[Ir(COD)Cl]2(COD=环辛二烯)、[Ir(COD)2]BF4、[Ir(COD)2]PF6、[Ir(COD)2]SbF6或[Ir(COD)2]OTf。
作为更进一步优先方案,所述有机溶剂为甲醇、乙醇、丙醇、异丙醇、丁醇、四氢呋喃、甲苯、甲基叔丁基醚、1,4-二氧六环、N,N-二甲基甲酰胺、二甲亚砜中的一种或其中几种的混合溶剂。
作为进一步优先方案,向制备所得到的配合物溶液中加入羰基化合物和碱,在0.1-100atm的氢气氛围和0-80℃条件下进行氢化反应;所述的羰基化合物与所述配合物的摩尔比为100∶1~500000∶1。底物浓度为0.001~10.0M,碱浓度为0.005M~1.0M;所述的碱为氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、乙醇钠、乙醇钾、叔丁醇钠、叔丁醇钾、叔丁醇锂、三乙胺、三丁胺或N-甲基吗啉。
作为进一步优化方案,所述的手性螺环膦-氮-膦三齿配体选自如下化合物或所述化合物的对映体、消旋体或其催化可接受的盐:
Figure BSA0000199539190000041
作为进一步优化方案,所述的手性螺环膦-氮-膦三齿配体铱催化剂选自如下化合物或所述化合物的对映体、消旋体或其催化可接受的盐:
Figure BSA0000199539190000051
本发明提供的手性螺环膦-氮-膦三齿配体,主要结构特征是具有手性螺二氢茚骨架和具有大位阻取代基的膦配体,可作为手性配体用于铱催化简单双烷基酮等羰基化合物的不对称催化氢化反应中,即其铱催化剂在催化简单双烷基酮的不对称氢化反应中取得了很高的收率(>99%)和对映选择性(高达99.8%ee)。与现有技术相比,本发明具有如下显著的效果:
1)本发明提供的手性螺环膦-氮-膦三齿配体与过渡金属盐形成配合物后用于简单双烷基酮等羰基化合物的不对称氢化反应具有优异的对映选择性和较高催化活性。
2)本发明提供的手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法简单,特别适用于羰基化合物的不对称催化氢化,反应条件温和,效率高、适于规模化生产,具有实用价值。
3)本发明提供了多种具有重要生物活性的手性双烷基醇,这些手性双烷基醇广泛用于药物分子的工业合成中,具有重大的实用价值。
具体实施方式
下面结合实施例对本发明作进一步详细、完整的说明,列出的实施将有助于理解本发明,但不能限制本发明的内容。
实施例1:
配体Ia的合成路线:
Figure BSA0000199539190000052
在氩气氛围中,称取(R)-7′-二-(3,5-二叔丁基苯基)膦基-7′-氨基-1,1′-螺二氢茚4a(300mg,0.46mmol)于100mL干燥的Schlenk管中,注射器打入12mL无水甲醇,搅拌溶解。加入2-二苯基膦苯甲醛(176mg,0.61mmol)和冰醋酸(42μL)。室温搅拌反应3小时。打开反口塞,一次性倒入NaBH3CN(87mg,1.38mmol),反应在40度下反应15小时。反应结束后冷却至室温,体系旋干,加入二氯甲烷溶解,饱和碳酸氢钠溶液淬灭。二氯甲烷萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=30∶1)得到白色固体Ia 342mg,收率为80%。
Ia的数据:
白色固体,熔点80-82℃,
Figure BSA0000199539190000061
(c 0.5,CHCl3).
1H NMR(400MHz,CDCl3)
δ7.37-7.25(m,6H),7.25-7.22(m,3H),7.22-7.14(m,5H),7.11(dd,J=7.0,4.1Hz,1H),7.08-6.98(m,3H),6.94-6.82(m,3H),6.82-6.73(m,3H),6.63(d,J=7.3Hz,1H),6.06(d,J=7.9Hz,1H),4.32-4.15(m,1H),3.80(dd,J=15.8,5.4Hz,1H),3.66(t,J=5.3Hz,1H),3.14-2.78(m,3H),2.69(dd,J=15.6,9.1Hz,1H),2.38(dd,J=21.2,11.7Hz,1H),2.18-1.85(m,3H),1.16(s,18H),1.10(s,18H).
13C NMR(101MHz,CDCl3)
δ152.28(d,J=24.3Hz),149.82(dd,J=6.3,1.7Hz),144.15(t,J=3.1Hz),143.97(d,J=7.1Hz),143.67(d,J=22.6Hz),137.76(d,J=11.6Hz),136.50(dd,J=11.1,3.0Hz),136.24(d,J=13.2Hz),135.27(d,J=23.7Hz),134.60(d,J=15.3Hz),133.81(dd,J=19.8,9.4Hz),133.41(d,J=1.8Hz),133.20(s),131.88(d,J=3.3Hz),129.02(s),128.70(s),128.63-128.36(m),128.28(d,J=10.2Hz),128.13(s),127.93(s),126.74(d,J=23.6Hz),126.35(d,J=5.2Hz),125.69(s),121.74(d,J=41.3Hz),113.60(s),108.52(s),61.57(d,J=3.3Hz),45.28(d,J=27.1Hz),38.31(d,J=3.3Hz),36.20(s),34.69(s),31.33(d,J=4.7Hz).
31P NMR(162MHz,CDCl3)
δ-16.84(s),-17.93(s).
HR-MS(MALDI)
Calcd for C64H73NP2[M+H]+:918.5291;Found:918.5295.
实施例2:
配体Ib的合成路线:
Figure BSA0000199539190000062
中间体3a的合成:
在25mL Schlenk管中称取Pd(OAc)2(56mg),dppp(103mg),2a(310mg),置换成氩气,打入脱气后的DMSO(4.0mL),搅拌均匀,打入邻溴苯甲醛(118μL)和二异丙基乙胺(248μL),油浴加热反应至100度反应20小时。反应结束后冷却至室温,加入10mL乙酸乙酯和10mL水,乙酸乙酯萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=5∶1)得到白色固体3a 242mg,收率为66%。
中间体3a的数据:
白色固体,熔点202-204℃.
1H NMR(400MHz,CDCl3)
δ10.74(s,1H),8.15(dd,J=7.3,3.1Hz,1H),7.67(t,J=7.5Hz,1H),7.55(ddd,J=7.5,5.9,1.7Hz,1H),7.32-7.16(m,7H),2.33(s,12H).
13C NMR(101MHz,CDCl3)
δ191.49(d,J=5.8Hz),139.45(d,J=6.5Hz),138.49(d,J=13.1Hz),135.73(d,J=94.8Hz),134.07(d,J=2.8Hz),133.63(d,J=11.1Hz),132.85-132.40(m),132.10(d,J=2.3Hz),131.56(s),129.38(d,J=9.9Hz),128.69(d,J=8.8Hz),21.28(s).
31P NMR(162MHz,CDCl3)
δ31.46.
HR-MS(MALDI)
Calcd for C23H23O2P[M+H]+:363.1508;Found:363.1512.
中间体5a的合成:
在氩气氛围中,称取(R)-7′-二-(3,5-二叔丁基苯基)膦基-7′-氨基-1,1′-螺二氢茚4a(273mg,0.42mmol)于100mL干燥的Schlenk管中,注射器打入12mL无水甲醇,搅拌溶解。加入3a(200mg,0.55mmol)和冰醋酸(32μL,0.55mmol)。室温搅拌反应3小时。打开反口塞,一次性倒入NaBH3CN(160mg,2.52mmol),反应在40度下反应15小时。反应结束后冷却至室温,体系旋干,加入二氯甲烷溶解,饱和碳酸氢钠溶液淬灭。二氯甲烷萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=3∶1)得到白色固体5a 398mg,收率为95%。
中间体5a的数据:
白色固体,熔点为118-120℃,
Figure BSA0000199539190000071
(c 0.5,CHCl3).
1H NMR(400MHz,CDCl3)
δ7.38-7.23(m,8H),7.21-7.06(m,7H),7.02(t,J=7.7Hz,1H),6.96(dd,J=8.0,1.8Hz,2H),6.86(dd,J=7.3,1.7Hz,2H),6.61(d,J=7.4Hz,1H),5.87(d,J=7.9Hz,1H),4.67(dd,J=17.0,5.9Hz,1H),4.12(dd,J=17.5,5.8Hz,1H),3.74(t,J=5.6Hz,1H),3.16-2.88(m,2H),2.87-2.73(m,1H),2.52(dd,J=15.6,9.3Hz,1H),2.41-2.24(m,13H),2.03(dd,J=12.8,7.2Hz,1H),1.94(dd,J=13.1,8.5Hz,1H),1.71(dd,J=22.6,9.9Hz,1H),1.24(s,18H),1.12(s,18H).
13C NMR(101MHz,CDCl3)
δ151.70(d,J=24.0Hz),149.96(d,J=7.0Hz),149.70(d,J=5.3Hz),144.59(d,J=4.2Hz),144.19(d,J=1.7Hz),143.82(d,J=6.7Hz),138.10(dd,J=12.4,10.8Hz),137.18-136.64(m),135.38(d,J=24.1Hz),133.64(dd,J=4.9,2.6Hz),133.37(d,J=12.1Hz),133.02(d,J=12.4Hz),132.54(s),132.00(d,J=11.9Hz),131.11(d,J=2.5Hz),129.91(s),129.39(dd,J=15.2,9.8Hz),129.12(s),128.90(s),127.93(d,J=34.0Hz),127.68-127.26(m),126.85(s),125.70(s),125.60(s),121.78(d,J=53.7Hz),113.39(s),108.13(s),61.53(d,J=2.8Hz),45.82(d,J=4.6Hz),37.47(s),36.53(s),34.67(d,J=7.4Hz),31.29(d,J=3.6Hz),30.78(d,J=40.6Hz),21.29(d,J=2.8Hz).
31P NMR(162MHz,CDCl3)
δ32.16,-15.24.
HR-MS(MALDI)
Calcd for C68H81NOP2[M+H]+:990.5866;Found:990.5869.
配体Ib的合成:
将5a(348mg,0.35mmol)称入100mL封管中,置换成氩气,打入甲苯(15mL)和二异丙基乙胺(581μL,3.5mmol),在0度下将三氯硅烷(354μL)缓慢滴加至反应体系中,滴毕将反应放入120度油浴中反应24小时。反应结束后,在0度下用12N氢氧化钠溶液淬灭反应,乙酸乙酯萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=30∶1)得到白色固体Ib 130mg,收率为37%。
Ib的数据:
白色固体,熔点为87-89℃,
Figure BSA0000199539190000081
(c 0.5,CHCl3).
1H NMR(400MHz,CDCl3)
δ7.25-7.22(m,3H),7.18(t,J=7.4Hz,1H),7.13-7.06(m,1H),7.03(t,J=7.7Hz,3H),6.94(s,3H),6.87(d,J=7.7Hz,2H),6.80(t,J=6.1Hz,7H),6.62(d,J=7.4Hz,1H),6.06(d,J=7.9Hz,1H),4.20(d,J=15.7Hz,1H),3.88(dd,J=16.0,5.4Hz,1H),3.71(t,J=5.2Hz,1H),2.95(ddt,J=32.3,17.4,12.8Hz,3H),2.68(dd,J=15.6,9.2Hz,1H),2.49-2.33(m,1H),2.24(s,12H),2.17-2.03(m,2H),1.96(dd,J=22.2,10.0Hz,1H),1.17(s,18H),1.11(s,18H).
13C NMR(101MHz,CDCl3)
δ152.25(d,J=24.3Hz),149.82(t,J=5.8Hz),144.23(d,J=3.6Hz),144.14(d,J=2.5Hz),143.94(d,J=7.0Hz),143.65(d,J=22.4Hz),137.92-137.53(m),136.45(s),136.31(s),136.21(d,J=2.3Hz),136.12(s),135.40(s),135.11(d,J=10.6Hz),134.91(s),133.37(s),133.27(s),131.74(d,J=3.3Hz),131.62(d,J=4.8Hz),131.42(d,J=4.9Hz),130.45(d,J=14.4Hz),128.60(d,J=36.4Hz),128.21(s),127.95(d,J=20.8Hz),126.67(d,J=36.3Hz),126.17(d,J=5.2Hz),125.66(s),121.71(d,J=27.1Hz),113.45(s),108.52(s),61.61(d,J=3.3Hz),45.35(d,J=26.8Hz),38.29(s),36.21(s),34.69(d,J=2.2Hz),31.33(d,J=3.2Hz),30.90(d,J=38.2Hz),21.30(s).
31P NMR(162MHz,CDCl3)
δ-16.76,-17.76.
HR-MS(MALDI)
Calcd for C68H81NP2[M+H]+:974.5917;Found:974.5922.
实施例3:
配体Ic的合成路线:
Figure BSA0000199539190000091
中间体3b的合成:
在25mL Schlenk管中称取Pd(OAc)2(112mg),dppp(206mg),2b(1026mg),置换成氩气,打入脱气后的DMSO(8.0mL),搅拌均匀,打入邻溴苯甲醛(234μL)和二异丙基乙胺(496μL),油浴加热反应至100度反应20小时。反应结束后冷却至室温,加入20mL乙酸乙酯和20mL水,乙酸乙酯萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=5∶1)得到白色固体3b 752mg,收率为71%。
中间体3b的数据:
白色固体,熔点58-60℃.
1H NMR(400MHz,CDCl3)
δ10.79(s,1H),8.15(dd,J=7.5,3.2Hz,1H),7.66(t,J=7.6Hz,1H),7.61(s,2H),7.55(t,J=7.4Hz,1H),7.45(d,J=13.0Hz,4H),7.29-7.20(m,1H),1.26(s,36H).
13C NMR(101MHz,CDCl3)
δ191.52(d,J=5.5Hz),151.22(d,J=12.0Hz),139.45(d,J=6.4Hz),136.32(d,J=94.0Hz),133.41(d,J=10.7Hz),132.44(d,J=11.7Hz),131.92(d,J=3.2Hz),130.90(s),128.41(d,J=8.8Hz),126.15(d,J=2.6Hz),126.02(d,J=10.7Hz),34.93(s),31.15(s).
31P NMR(162MHz,CDCl3)
δ32.83.
HR-MS(MALDI)
Calcd for C35H47O2P[M+H]+:531.3386;Found:531.3390.
中间体5b的合成:
在氩气氛围中,称取(R)-7′-二-(3,5-二叔丁基苯基)膦基-7′-氨基-1,1′-螺二氢茚4a(550mg,0.86mmol)于100mL干燥的Schlenk管中,注射器打入12mL无水甲醇,搅拌溶解。加入3b(601mg,1.13mmol)和冰醋酸(64μL,1.13mmol)。室温搅拌反应3小时。打开反口塞,一次性倒入NaBH3CN(323mg,5.16mmol),反应在40度下反应15小时。反应结束后冷却至室温,体系旋干,加入二氯甲烷溶解,饱和碳酸氢钠溶液淬灭。二氯甲烷萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=3∶1)得到白色固体5b 980mg,收率为99%。
中间体5b的数据:
白色固体,熔点为136-138℃,
Figure BSA0000199539190000101
(c 0.5,CHCl3).
1H NMR(400MHz,CDCl3)
δ7.57(s,2H),7.40(t,J=12.0Hz,5H),7.31(s,1H),7.26-6.98(m,7H),6.93(t,J=9.2Hz,3H),6.81(d,J=6.8Hz,2H),6.54(d,J=7.1Hz,1H),5.83(d,J=7.7Hz,1H),4.86(d,J=13.2Hz,1H),4.20(d,J=16.6Hz,1H),3.78(s,1H),2.94(p,J=16.1Hz,2H),2.80-2.57(m,1H),2.33(dt,J=21.1,10.0Hz,2H),1.96(d,J=17.4Hz,1H),1.83(t,J=10.5Hz,1H),1.55(q,J=10.3Hz,1H),1.25(s,36H),1.20(s,18H),1.08(s,18H)
13C NMR(101MHz,CDCl3)
δ151.34(d,J=23.7Hz),150.87(dd,J=18.0,11.9Hz),149.98(d,J=7.5Hz),149.69(d,J=5.2Hz),144.96(d,J=3.9Hz),144.78(d,J=7.6Hz),144.23(s),143.84(d,J=6.4Hz),137.12(d,J=14.2Hz),136.71(d,J=11.2Hz),135.41(d,J=24.1Hz),133.39(d,J=11.9Hz),132.52(s),132.47(s),132.14(s),131.47(d,J=5.3Hz),130.77(d,J=2.4Hz),130.05(s),129.31(d,J=22.2Hz),129.06(s),128.04(s),127.66(d,J=18.8Hz),127.37(dd,J=9.5,5.7Hz),126.83(s),126.25(d,J=10.5Hz),125.93(s),125.83(s),125.75(s),125.52(s),125.37(d,J=12.5Hz),122.17(s),121.34(s),113.30(s),107.93(s),61.50(d,J=2.8Hz),45.99(d,J=4.6Hz),37.01(s),36.67(s),34.95(s),34.68(d,J=6.2Hz),31.30(d,J=1.2Hz),30.76(d,J=38.9Hz).
31P NMR(162MHz,CDCl3)
δ34.68,-13.84.
HR-MS(MALDI)
Calcd for C80H105NOP2[M+H]+:1158.7744;Found:1158.7748.
配体Ic的合成:
将5b(880mg,0.76mmol)称入100mL封管中,置换成氩气,打入甲苯(25mL)和二异丙基乙胺(1.3mL,7.6mmol),在0度下将三氯硅烷(775μL)缓慢滴加至反应体系中,滴毕将反应放入120度油浴中反应24小时。反应结束后,在0度下用12N氢氧化钠溶液淬灭反应,乙酸乙酯萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=30∶1)得到白色固体Ic 340mg,收率为39%。
Ic的数据:
白色固体,熔点为102-104℃,
Figure BSA0000199539190000102
(c 0.5,CHCl3).
1H NMR(400MHz,CDCl3)
δ7.40(d,J=1.8Hz,2H),7.32-7.26(m,2H),7.23(t,J=7.5Hz,1H),7.15-7.03(m,10H),6.94(dd,J=7.8,1.7Hz,2H),6.86(dd,J=7.7,1.7Hz,2H),6.80(dd,J=6.6,4.0Hz,1H),6.66(d,J=7.3Hz,1H),6.08(d,J=7.9Hz,1H),4.20(dd,J=16.3,4.3Hz,1H),4.06(dd,J=16.3,5.3Hz,1·H),3.82(t,J=5.5Hz,1H),3.17-2.86(m,3H),2.75(dd,J=15.7,9.0Hz,1H),2.48(dd,J=21.2,11.3Hz,1H),2.16-2.00(m,3H),1.27(s,36H),1.22(s,18H),1.17(s,18H).
13C NMR(101MHz,CDCl3)
δ152.23(d,J=24.3Hz),150.50-150.30(m),149.83(dd,J=6.2,4.2Hz),144.34(d,J=3.5Hz),144.13(d,J=2.5Hz),143.95(d,J=7.0Hz),143.56(d,J=22.2Hz),137.80(d,J=11.9Hz),136.36(d,J=13.1Hz),135.94(s),135.82(d,J=3.8Hz),135.61(d,J=6.3Hz),135.42(d,J=11.8Hz),135.13(s),133.37(s),133.16(s),131.81(d,J=3.2Hz),128.54(d,J=23.5Hz),128.21(s),127.94(dd,J=20.0,7.1Hz),126.88(s),126.29(s),125.96(d,J=5.3Hz),125.65(s),122.34(d,J=20.4Hz),121.70(d,J=31.3Hz),113.36(s),108.43(s),61.64(d,J=3.1Hz),45.51(d,J=26.4Hz),38.34(d,J=3.2Hz),36.23(s),34.77(d,J=9.9Hz),31.37(t,J=4.3Hz),30.93(d,J=36.6Hz).
31P NMR(162MHz,CDCl3)
δ-14.66,-17.59.
HR-MS(MALDI)
Calcd for C80H105NP2[M+H]+:1142.7795;Found:1142.7798.
实施例4:
配体Id的合成路线:
Figure BSA0000199539190000111
中间体5c的合成:
在氩气氛围中,称取(R)-7′-(二苯基膦基)-2,2′,3,3′-四氢-1,1′-螺双[茚]-7-胺4b(182mg,0.43mmol)于100mL干燥的Schlenk管中,注射器打入20mL无水甲醇,搅拌溶解。加入3b(300mg,0.57mmol)和冰醋酸(33μL,0.57mmol)。40度搅拌反应3小时。打开反口塞,一次性倒入NaBH3CN(165mg,2.58mmol),反应在40度下反应12小时。反应结束后冷却至室温,体系旋干,加入二氯甲烷溶解,饱和碳酸氢钠溶液淬灭。二氯甲烷萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=3∶1)得到白色固体5c 399mg,收率为98%。
中间体5c的数据:
白色固体,熔点为128-130℃,
Figure BSA0000199539190000112
(c 0.5,CHCl3).
1H NMR(400MHz,CDCl3)
δ7.65(s,1H),7.57(s,1H),7.41(d,J=12.9Hz,2H),7.33(d,J=12.8Hz,2H),7.26(s,1H),7.24(s,1H),7.21(d,J=6.5Hz,4H),7.13(t,J=7.5Hz,1H),7.05-6.95(m,8H),6.87(dt,J=14.8,7.5Hz,2H),6.73(t,J=7.7Hz,1H),6.56(d,J=7.3Hz,1H),5.40(d,J=7.9Hz,1H),4.33(dd,J=18.3,6.2Hz,1H),4.19(dd,J=18.3,4.4Hz,1H),3.51(t,J=5.4Hz,1H),3.15-2.76(m,4H),2.40(dd,J=22.0,10.8Hz,1H),2.29-2.08(m,3H),1.26(d,J=10.5Hz,36H).
13C NMR(101MHz,CDCl3)
δ152.23(d,J=24.9Hz),150.82(dd,J=21.3,11.8Hz),144.76(d,J=7.5Hz),143.87(d,J=2.5Hz),143.72(d,J=7.4Hz),143.53(d,J=2.5Hz),138.33(d,J=13.8Hz),136.17(d,J=13.0Hz),134.02(d,J=22.4Hz),133.73(s),133.57(s),133.38(s),133.18(s),133.06(s),132.47(s),132.13(s),131.92(d,J=3.4Hz),131.81(s),131.28(d,J=33.7Hz),129.66(s),128.67(s),127.86(d,J=6.1Hz),127.78(s),127.72(s),127.33(s),126.80(d,J=9.6Hz),125.96(dd,J=10.4,4.6Hz),125.78(s),125.53(d,J=12.3Hz),125.27(d,J=12.5Hz),113.10(s),107.66(s),61.32(d,J=3.3Hz),45.49(d,J=4.3Hz),38.80(d,J=4.8Hz),36.29(s),34.79(d,J=5.9Hz),31.12(d,J=5.2Hz).
31P NMR(162MHz,CDCl3)
δ35.57,-20.90.
HR-MS(MALDI)
Calcd for C64H73NOP2[M+H]+:934.5240;Found:934.5245.
配体Id的合成:
将5c(452mg,0.48mmol)称入100mL封管中,置换成氩气,打入甲苯(20mL)和苯硅烷(239μL,1.94mmol),室温将CF3SO2H(6.4μL)滴加至反应体系中,滴毕将反应放入120度油浴中反应24小时。反应结束后,用三乙胺淬灭反应,乙酸乙酯萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=30∶1)得到白色固体Id 228mg,收率为51%。
配体Id的数据:
白色固体,熔点为108-110℃,
Figure BSA0000199539190000121
(c 0.5,CHCl3).
1H NMR(400MHz,CDCl3)
δ7.53(s,1H),7.48(s,1H),7.34(d,J=7.4Hz,1H),7.25(d,J=3.5Hz,2H),7.23-7.00(m,16H),7.00-6.88(m,2H),6.86-6.78(m,1H),6.71(d,J=7.3Hz,1H),5.77(d,J=8.0Hz,1H),3.97(dd,J=17.0,5.1Hz,1H),3.87(dd,J=16.9,4.2Hz,1H),3.54(t,J=5.4Hz,1H),3.23-3.01(m,4H),2.70-2.48(m,2H),2.39(td,J=11.6,5.7Hz,1H),2.26(dd,J=12.7,7.2Hz,1H),1.33(d,J=12.6Hz,36H)
13C NMR(101MHz,CDCl3)
δ153.07(d,J=24.9Hz),150.68(d,J=6.8Hz),150.53(d,J=6.8Hz),144.12(s),144.09(s),144.02(s),143.58(d,J=2.2Hz),143.12(d,J=21.1Hz),139.33(d,J=13.7Hz),135.84(d,J=13.0Hz),135.35(s),135.26(s),135.10(d,J=2.2Hz),135.00(s),134.42-134.21(m),134.06(s),133.84(d,J=21.3Hz),133.11(d,J=19.0Hz),132.60(s),132.56(s),128.43(d,J=10.3Hz),128.26(s),128.16(d,J=1.8Hz),128.00(s),127.94(s),127.88(s),127.78(d,J=4.9Hz),127.52(d,J=14.8Hz),126.29(s),125.93(s),125.51(d,J=5.0Hz),122.47(d,J=9.6Hz),113.33(s),108.31(s),61.56(d,J=3.3Hz),45.23(d,J=27.3Hz),39.49(d,J=5.7Hz),36.31(s),34.84(d,J=4.7Hz),31.37(d,J=4.7Hz),30.91(s).
31P NMR(162MHz,CDCl3)
δ-13.71,-22.22.
HR-MS(MALDI)
Calcd for C64H73NP2[M+H]+:918.5291;Found:918.5295.
实施例5:
配体Ie的合成路线:
Figure BSA0000199539190000131
中间体5d的合成:
在氩气氛围中,称取(R)-7-(双(3,5-二甲基苯基)膦基)-2,2”,3,3′-四氢-1,1′-螺双[茚]-7-胺4c(300mg,0.63mmol)于100mL干燥的Schlenk管中,注射器打入30mL无水甲醇,搅拌溶解。加入3b(435mg,0.82mmol)和冰醋酸(47μL,0.82mmol)。40度搅拌反应3小时。打开反口塞,一次性倒入NaBH3CN(239mg,3.78mmol),反应在40度下反应12小时。反应结束后冷却至室温,体系旋干,加入二氯甲烷溶解,饱和碳酸氢钠溶液淬灭。二氯甲烷萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=3∶1)得到白色固体5d 545mg,收率为87%。
中间体5d的数据:
白色固体,熔点为124-126℃,
Figure BSA0000199539190000132
(c 0.5,CHCl3).
1H NMR(400MHz,CDCl3)
δ7.64(s,1H),7.56(s,1H),7.40(s,1H),7.37(s,1H),7.33(s,1H),7.30(s,1H),7.26(s,1H),7.24-7.11(m,3H),7.11-7.00(m,2H),6.87(ddd,J=21.4,14.7,7.6Hz,3H),6.69(d,J=7.5Hz,2H),6.59(t,J=6.3Hz,4H),5.55(d,J=7.9Hz,1H),4.34(dd,J=18.0,4.8Hz,1H),4.14(dd,J=17.8,5.7Hz,1H),3.47(t,J=5.4Hz,1H),3.07-2.74(m,4H),2.36(dd,J=22.0,10.5Hz,1H),2.19(s,6H),2.15-2.07(m,3H),2.05(s,6H),1.26(d,J=15.0Hz,36H).
13C NMR(101MHz,CDCl3)
δ151.95(d,J=24.3Hz),150.83(dd,J=11.2,7.4Hz),144.76(d,J=7.1Hz),144.08(d,J=19.3Hz),143.66(d,J=7.0Hz),137.87(d,J=12.6Hz),137.09(d,J=6.8Hz),136.89(d,J=6.9Hz),135.76(d,J=12.2Hz),135.11(d,J=22.9Hz),133.35(d,J=12.2Hz),133.19(s),132.64(s),132.21(s),132.02(s),131.74(s),131.56(s),131.37(s),131.19(s),129.70(d,J=14.8Hz),129.51(s),128.52(s),127.63(s),127.19(s),127.06(d,J=9.6Hz),126.14(s),125.99(d,J=8.6Hz),125.82(d,J=3.8Hz),125.59(d,J=7.4Hz),125.27(d,J=12.3Hz),113.04(s),107.73(s),61.43(s),45.04(s),38.47(s),36.48(s),34.87(d,J=7.2Hz),31.19(d,J=6.1Hz),30.67(s),21.16(s).
31P NMR(162MHz,CDCl3)
δ35.62,-20.12.
HR-MS(MALDI)
Calcd for C68H81NOP2[M+H]+:990.5866;Found:990.5868.
配体Ie的合成:
将5d(376mg,0.38mmol)称入100mL封管中,置换成氩气,打入甲苯(20mL)和苯硅烷(188μL,1.52mmol),室温将CF3SO2H(5.1μL)滴加至反应体系中,滴毕将反应放入120度油浴中反应24小时。反应结束后,用三乙胺淬灭反应,乙酸乙酯萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=30∶1)得到白色固体Id 145mg,收率为39%。
配体Ie的数据:
白色固体,熔点为115-117℃,
Figure BSA0000199539190000141
(c 0.5,CHCl3).
1H NMR(400MHz,CDCl3)
δ7.40(s,1H),7.34(s,1H),7.17(t,J=7.4Hz,1H),7.13-6.85(m,10H),6.82(s,1H),6.68(dd,J=12.9,7.1Hz,2H),6.61(d,J=8.5Hz,5H),5.70(d,J=7.9Hz,1H),3.86-3.69(m,2H),3.36(t,J=5.3Hz,1H),3.11-2.90(m,4H),2.47(td,J=20.3,10.7Hz,2H),2.35-2.21(m,1H),2.20-2.09(m,7H),2.04(s,6H),1.24(s,18H),1.20(s,18H).
13C NMR(101MHz,CDCl3)
δ152.87(d,J=24.8Hz),150.50(dd,J=10.2,6.6Hz),144.20(d,J=2.2Hz),143.89(d,J=7.7Hz),143.79(s),143.38(d,J=21.8Hz),139.12(d,J=13.0Hz),137.15(d,J=5.9Hz),136.99(d,J=8.0Hz),135.76(d,J=9.3Hz),135.34(d,J=3.4Hz),135.27(s),135.21(s),135.07(d,J=6.6Hz),134.95(s),134.11(s),132.90(s),132.80(d,J=3.0Hz),132.10(d,J=22.0Hz),130.83(d,J=19.2Hz),130.41(s),129.37(s),128.59(s),128.07(d,J=19.9Hz),127.81(d,J=5.3Hz),127.48(d,J=33.4Hz),126.24(s),125.71(s),125.51(d,J=4.8Hz),122.41(d,J=19.0Hz),113.30(s),108.37(s),61.65(d,J=2.8Hz),44.79(d,J=27.8Hz),39.41(d,J=5.4Hz),36.28(s),34.83(d,J=5.2Hz),31.37(d,J=5.7Hz),30.90(s),21.27(s).
31P NMR(162MHz,CDCl3)
δ-14.57,-22.31.
HR-MS(MALDI)
Calcd for C68H81NP2[M+H]+:974.5917;Found:974.5922.
实施例6:
配体Ij的合成路线:
Figure BSA0000199539190000151
中间体6的合成:
将4-溴苯酚(6.9g,40.0mmol)和1-金刚烷醇(15.2g,100mmol)称入350mL封管中,打入冰醋酸(40mL)和浓硫酸(4.0mL)。反应在120度油浴中反应5小时。在反应过程中产物6析出。反应结束后,冷却至室温,用乙醇洗析出的固体,得到的固体用大过量的二氯甲烷溶解,柱层析得到白色固体63.0g,收率为10%。
中间体6的数据:
1H NMR(400MHz,CDCl3)
δ1.81(m,12H),2.13(m,18H),5.35(s,1H),7.23(s,2H).
中间体7的合成:
100mL干燥的三口烧瓶中加入NaH(66mg,2.75mmol)和无水DMSO(5mL),用冰水浴将体系降至0度,剧烈搅拌防止DMSO凝固。化合物6(500mg,1.13mmol)用40mL DMSO溶解,滴加到反应体系中,滴完在0度搅拌5分钟。碘甲烷(283μL,4.52mmol)滴加至体系中,继续搅拌反应15分钟。随后将反应升至室温搅拌2小时。反应结束后冰水淬灭反应,二氯甲烷萃取,有机相合并,无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚)得到白色固体7446mg,收率为86%。
中间体7的数据:
白色固体,熔点为224-226℃.
1H NMR(400MHz,CDCl3)
δ7.30(s,2H),3.65(s,3H),2.08(s,18H),1.76(s,12H).
13C NMR(101MHz,CDCl3)
δ159.64,146.00,129.23,116.81,65.95,42.50,38.73,36.78,29.17.
HR-MS(EI)
Calcd for C27H35BrO[M]:454.1871;Found:454.1866.
中间体2c的合成:
在氩气氛围中,称取7(500mg,1.10mmol)于50mL干燥的Schlenk管中,注射器打入10mL无水四氢呋喃,搅拌溶解,丙酮液氮浴将体系降至-90度。滴加正丁基锂溶液(571μL,1.43mmol),滴加完后搅拌反应2小时。二乙基二氯膦(80μL,0.55mmol)滴加至反应体系中,滴完继续在-90度搅拌反应2小时,随后自然升至室温搅拌过夜。将反应体系降至-78度,滴加盐酸溶液(4.0mL,4.0M in dioxane),滴完升至室温搅拌反应4小时。反应结束后加入水淬灭反应。乙酸乙酯萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=3∶1)得到白色固体2c248mg,收率为56%。
中间体2c的数据:
白色固体,熔点>250℃.
1H NMR(400MHz,CDCl3)
δ8.63(s,0.5H),7.55(s,2H),7.51(s,2H),7.45(s,0.5H),3.67(s,6H),2.10-2.02(m,36H),1.74(s,24H).
13C NMR(101MHz,CDCl3)
δ164.14(d,J=3.1Hz),144.57(d,J=12.7Hz),129.06(d,J=13.1Hz),124.75(d,J=105.1Hz),66.02(s),61.67(s),44.88(s),42.50(s),38.73(s),36.70(s),29.06(s).
31P NMR(162MHz,CDCl3)
δ22.71.
HR-MS(MALDI)
Calcd for C54H71O3P[M+H]+:799.5214;Found:799.5218.
中间体3c的合成:
在50mL Schlenk管中称取Pd(OAc)2(24mg),dppp(43mg),2c(395mg),置换成氩气,打入脱气后的DMSO(10.0mL),搅拌均匀,打入邻溴苯甲醛(48μL)和二异丙基乙胺(104μL),油浴加热反应至100度反应20小时。反应结束后冷却至室温,加入20mL乙酸乙酯和20mL水,乙酸乙酯萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=5∶1)得到白色固体3c 752mg,收率为62%。
中间体3c的数据:
白色固体,熔点198-200℃.
1H NMR(400MHz,CDCl3)
δ10.81(s,1H),8.16(d,J=7.2Hz,1H),7.68(t,J=7.3Hz,1H),7.59(t,J=7.4Hz,1H),7.43(d,J=13.0Hz,4H),7.30-7.24(m,1H),3.69(s,6H),2.01(s,36H),1.71(s,24H).
13C NMR(101MHz,CDCl3)
δ190.44(d,J=5.5Hz),162.76(d,J=3.3Hz),143.23(d,J=12.4Hz),138.20(d,J=6.5Hz),134.95(d,J=94.4Hz),132.31(d,J=10.7Hz),131.35(d,J=11.7Hz),130.76(d,J=1.6Hz),128.99(d,J=11.9Hz),127.25(d,J=8.7Hz),124.42(d,J=109.3Hz),64.80(s),41.21(s),37.49(s),35.44(s),27.81(s).
31P NMR(162MHz,CDCl3)
δ33.33.
HR-MS(MALDI)
Calcd for C61H75O4P[M+H]+:903.5476;Found:903.5478.
中间体5e的合成:
在氩气氛围中,称取(R)-7′-二-(3,5-二叔丁基苯基)膦基-7′-氨基-1,1′-螺二氢茚4a(199mg,0.31mmol)于100mL干燥的Schlenk管中,注射器打入15mL无水甲醇,搅拌溶解。加入3c(420mg,0.47mmol)和冰醋酸(70μL,1.24mmol)。80度搅拌反应5小时。打开反口塞,一次性倒入NaBH3CN(117mg,1.86mmol),反应在80度下反应13小时。反应结束后冷却至室温,体系旋干,加入二氯甲烷溶解,饱和碳酸氢钠溶液淬灭。二氯甲烷萃取,合并有机相,有机相用无水硫酸镁干燥,抽滤除去干燥剂,滤液用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=3∶1)得到白色固体5e 465mg,收率为98%。
中间体5e的数据:
白色固体,熔点为205-207℃,
Figure BSA0000199539190000171
(c 0.5,CHCl3).
1H NMR(400MHz,CDCl3)
δ7.44-7.38(m,5H),7.27-6.87(m,11H),6.78(d,J=6.9Hz,2H),6.54(d,J=7.3Hz,1H),5.79(d,J=7.9Hz,1H),4.89(dd,J=17.5,5.5Hz,1H),4.29(dd,J=17.3,4.5Hz,1H),3.85(t,J=5.3Hz,1H),3.67(d,J=9.5Hz,6H),3.04-2.84(m,2H),2.81-2.63(m,1H),2.35(dt,J=30.7,10.4Hz,2H),2.02-1.98(m,36H),1.93-1.76(m,3H),1.70(d,J=8.5Hz,24H),1.20(s,18H),1.08(s,18H).
13C NMR(101MHz,CDCl3)
δ163.69(d,J=2.7Hz),163.57(d,J=2.9Hz),151.31(d,J=23.7Hz),150.09(d,J=7.5Hz),149.71(d,J=5.0Hz),145.13(d,J=4.0Hz),144.83(d,J=7.6Hz),144.26(s),144.10(d,J=8.3Hz),143.93(s),143.85(s),137.34(d,J=14.2Hz),136.55(d,J=11.2Hz),135.53(d,J=24.5Hz),133.44(d,J=11.9Hz),132.33(d,J=31.3Hz),130.75(s),130.55(d,J=11.6Hz),130.40(s),130.14(d,J=11.6Hz),129.50(d,J=22.2Hz),128.13(s),127.59(d,J=18.5Hz),127.29(dd,J=9.2,5.3Hz),127.06(d,J=9.7Hz),126.92(s),125.99(d,J=8.7Hz),125.61(s),125.49(d,J=12.7Hz),122.30(s),121.24(s),113.38(s),107.92(s),66.04(d,J=5.5Hz),61.60(d,J=2.4Hz),46.05(d,J=3.9Hz),42.61(d,J=3.5Hz),38.78(s),36.85(s),34.75(d,J=7.7Hz),31.38(s),29.21(s).
31P NMR(162MHz,CDCl3)
δ34.46,-13.68.
HR-MS(MALDI)
Calcd for C106H133NO3P2[M+H]+:1530.9833;Found:1530.9835.
配体Ij的合成:
将5e(460mg,0.40mmol)称入25mL封管中,置换成氩气,打入苯硅烷(4.0mL),将反应放入140度油浴中反应24小时。反应结束后,体系用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=30∶1)得到白色固体Ij 386mg,收率为85%。
配体Ij的数据:
白色固体,熔点为193-195℃,
Figure BSA0000199539190000172
(c 0.5,CHCl3).
1H NMR(400MHz,CDCl3)
δ7.25(s,3H),7.17(t,J=7.4Hz,lH),7.05(t,J=8.9Hz,4H),7.01-6.94(m,5H),6.87(d,J=7.7Hz,2H),6.83(d,J=7.8Hz,2H),6.72-6.64(m,lH),6.60(d,J=7.4Hz,1H),5.99(d,J=7.9Hz,1H),4.20(dd,J=16.7,5.2Hz,1H),4.07(dd,J=16.3,5.2Hz,1H),3.80(t,J=5.4Hz,1H),3.66(s,6H),3.11-2.92(m,2H),2.92-2.77(m,1H),2.66(dd,J=15.6,9.3Hz,1H),2.43(dd,J=21.8,10.9Hz,1H),2.12-2.04(m,2H),1.99(s,36H),1.93-1.85(m,1H),1.70(s,24H),1.17(s,18H),1.13(s,18H).
13C NMR(101MHz,CDCl3)
δ159.88(d,J=24.7Hz),151.03(d,J=24.3Hz),148.83(dd,J=11.0,6.4Hz),143.47(d,J=3.7Hz),143.14(d,J=2.2Hz),142.91(d,J=7.0Hz),142.51-142.31(m),142.17(s),136.42(d,J=11.8Hz),135.59(s),135.44(d,J=3.6Hz),135.26(s),134.34(d,J=23.7Hz),132.23(s),131.79(s),131.02(d,J=10.9Hz),130.82(d,J=10.6Hz),130.59(d,J=3.2Hz),129.15(d,J=8.3Hz),128.90(d,J=7.7Hz),127.54(d,J=7.6Hz),127.29(d,J=15.7Hz),126.86(d,J=20.3Hz),125.86(s),125.27(s),124.82(d,J=5.3Hz),124.59(s),120.69(d,J=5.2Hz),112.33(s),107.29(s),64.74(d,J=3.1Hz),60.62(d,J=3.3Hz),44.45(d,J=26.3Hz),41.66(s),37.59(s),35.91(s),33.71(d,J=2.4Hz),30.37(d,J=12.7Hz),28.24(s).
31P NMR(162MHz,CDCl3)
δ-16.46,-17.32.
HR-MS(MALDI)
Calcd for C106H133NO2P2[M+H]+:1514.9884;Found:1514.9886.
实施例7:
催化剂IIf的合成路线:
Figure BSA0000199539190000181
在手套箱中,将催化剂前体[Ir(COD)Cl]2(31mg),配体Ij(150mg)称入25mLSchlenk管中,打入乙醇(5mL)和二氯甲烷(2mL)。将混合液转移至氢化釜中,充入12atm的氢气,油浴70度反应24小时。反应结束后冷却至室温,缓慢释放氢气,体系用旋转蒸发仪脱除溶剂。残余物经硅胶柱层析(石油醚∶乙酸乙酯=10∶1)得到白色固体IIf 142mg,收率为86%。
催化剂IIf的数据:
1H NMR(600MHz,CDCl3)
δ7.49-7.31(m,8H),7.26-7.24(m,2H),7.22-7.00(m,7H),6.51(t,J=7.7Hz,1H),6.16(d,J=7.2Hz,1H),5.75(d,J=8.2Hz,1H),5.38(s,1H),4.87(d,J=10.2Hz,1H),4.27(d,J=12.1Hz,1H),3.64(s,3H),3.58(s,3H),3.18-2.96(m,1H),2.92(dd,J=16.1,8.1Hz,1H),2.55-2.39(m,1H),2.15(dd,J=12.0,6.8Hz,1H),2.09-1.58(m,64H),1.21(d,J=51.4Hz,36H),-22.22(ddd,J=17.0,13.5,8.3Hz,1H),-23.68-23.90(m,1H).
31P NMR(162MHz,CDCl3)
δ24.28(dd,J=366.0,12.6Hz),12.40(dd,J=366.0,16.7Hz).
HR-MS(ESI)
Calcd for C106H135IrNO2P2[M-Cl]+:1708.9592;Found:1708.9582
单晶:
Figure BSA0000199539190000191
催化剂IIf的单晶数据:
Figure BSA0000199539190000192
Figure BSA0000199539190000201
实施例8:
手性螺环膦-氮-膦三齿配体铱络合物在羰基化合物不对称催化氢化反应中的应用。
Figure BSA0000199539190000202
在手套箱中称取催化剂(R)-II,叔丁醇钾放入氢化内管中,打入溶剂正丙醇和氢化底物,将氢化内管放入氢化釜中,用氢气快速置换反应釜中的气体三次,最后调节氢气压力为8~12atm,室温下搅拌反应至氢气压力不再降低为止。缓慢释放出反应釜中的氢气,旋转蒸发仪脱除溶剂后得粗产物。经短硅胶柱过滤除去催化剂后,用薄层层析或者核磁共振分析反应的转化率和收率,高效液相色谱分析产物的光学纯度,所得氢化实验结果见表1。
表1.羰基化合物的不对称催化氢化
Figure BSA0000199539190000203
Figure BSA0000199539190000211
Figure BSA0000199539190000221
Figure BSA0000199539190000231

Claims (12)

1.一种手性螺环膦-氮-膦三齿配体SpiroPNP,是具有通式I的化合物或所述化合物的对映体、消旋体,或其催化可接受的盐;
Figure FDA0003527275590000011
其中,R1选自C1~C10的烃基、取代苯基;所述的苯基上的取代基为C1~C10的烃基、C1~C10的烷氧基;
R2、R3、R4、R5、R6、R7、R9为H;R8选自C1~C10烷基、C1~C10烷氧基,苯基、取代苯基;所述的苯基上的取代基为C1~C10的烃基、C1~C10的烷氧基。
2.一种手性螺环膦-氮-膦三齿配体的铱催化剂Ir-SpiroPNP,是具有式II的化合物或所述化合物的对映体、消旋体,或其催化可接受的盐;
Figure FDA0003527275590000012
其中,式II化合物中R1~R9的含义与权利要求1中相同,X为Cl,Br,OMe,BF4或OTf阴离子。
3.权利要求1或2中的手性螺环膦-氮-膦三齿配体SpiroPNP或其铱催化剂的合成方法,其特征是经过下述反应式制备:
Figure FDA0003527275590000013
其中,式1、2、3、4、5以及I、II中R1~R9和X的含义与权利要求1或2中相同。
4.根据权利要求3所述的手性螺环膦-氮-膦三齿配体SpiroPNP及其铱催化剂Ir-SpiroPNP的合成方法,其特征包括如下步骤:
在有机溶剂,碱和钯催化剂存在的条件下,具有式1所示的化合物先与式2所示的化合物在反应器中反应12~24小时制备得到式3所示的化合物;在有机溶剂和还原剂存在的条件下,式3所示的化合物与式4所示的化合物经还原胺化得到式5所示的化合物;在有机溶剂和还原剂存在的条件下,式5所示的化合物发生还原反应得到式I所示的化合物;式I所示的化合物与铱催化剂前体在有机溶剂中络合得到式II所示的化合物;
在上述合成方法中,所述的有机溶剂为甲醇、乙醇、丙醇、异丙醇、丁醇、四氢呋喃、甲苯、二甲苯、甲基叔丁基醚、乙醚、二氧六环、N,N-二甲基甲酰胺、二甲亚砜、二氯甲烷、氯仿或1,2-二氯乙烷中的一种或其中几种的混合溶剂;所述的还原试剂为氢化铝锂、硼氢化钠、三乙酰氧基硼氢化钠、氰基硼氢化钠、三氯硅烷或苯硅烷;所述的碱包括有机碱和无机碱,其中有机碱为吡啶、三乙胺、三丁胺、N-甲基吗啡啉或N,N-二乙基异丙基胺;无机碱为氢氧化钠、氢氧化钾、碳酸钠或碳酸钾;钯催化剂为醋酸钯或钯碳;铱催化剂前体为1,5-环辛二烯氯化铱二聚体或二(1,5-环辛二烯)二-甲氧基二铱。
5.权利要求1或2中所述的手性螺环膦-氮-膦三齿配体或铱催化剂的应用,其特征是用于催化简单双烷基酮的不对称催化氢化反应。
6.根据权利要求5中所述的手性螺环膦-氮-膦三齿配体的应用,其特征是所述的手性螺环膦-氮-膦三齿配体首先与过渡金属盐制备配合物,然后再用于催化简单双烷基酮的不对称催化氢化反应。
7.根据权利要求5中所述的应用,其特征在于所述的手性螺环膦-氮-膦三齿配体选自如下化合物的对映体、消旋体或其催化可接受的盐:
Figure FDA0003527275590000031
8.根据权利要求5中所述的应用,其特征在于所述的手性螺环膦-氮-膦三齿配体铱催化剂选自如下化合物的对映体、消旋体或其催化可接受的盐:
Figure FDA0003527275590000041
9.根据权利要求6所述的应用,其特征在于所述配合物的制备包括如下步骤:将所述的手性螺环膦-氮-膦三齿配体与过渡金属盐加入有机溶剂中,在70-100℃和0.1~20atm的氢气氛围中搅拌反应10~24小时便可得到氢化反应所需的手性催化剂;所述的手性螺环膦-氮-膦三齿配体与过渡金属盐的摩尔比为1:1~2:1;所述的过渡金属盐为[Ir(COD)Cl]2、[Ir(COD)2]BF4、[Ir(COD)2]PF6、[Ir(COD)2]SbF6或[Ir(COD)2]OTf,COD为环辛二烯。
10.根据权利要求9所述的应用,其特征在于制备的配合物可直接不脱溶或脱溶后制备成存放的固体用于催化简单双烷基酮的不对称催化氢化反应。
11.根据权利要求5中所述的应用,其特征是在有机溶剂中,以权利要求9中所制备的配合物为手性催化剂,加入羰基化合物和碱,并在0.1~100atm的氢气氛围中搅拌反应0.1~80小时得到手性醇类化合物。
12.根据权利要求11所述的应用,其特征是羰基底物与催化剂的摩尔比为100:1~500000:1,;底物浓度为0.001~10.0M;碱为氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、乙醇钠、乙醇钾、叔丁醇钠、叔丁醇钾、叔丁醇锂、三乙胺、三丁胺或N-甲基吗啉;碱浓度为0.005M~1.0M;反应温度为0~80℃。
CN202010012689.5A 2020-01-09 2020-01-09 手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用 Active CN111484533B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010012689.5A CN111484533B (zh) 2020-01-09 2020-01-09 手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用
US17/783,648 US20230151035A1 (en) 2020-01-09 2020-12-17 Preparation method for and application of chiral spirocyclic phosphine-nitrogen-phosphine tridentate ligand and iridium catalyst thereof
EP20912421.3A EP4089097A4 (en) 2020-01-09 2020-12-17 METHOD FOR THE PRODUCTION AND USE OF CHIRAL SPIROCYCLIC PHOSPHINE-NITROGEN-PHOSPHINE TRIDENTATE LIGANDS AND IRIDIUM CATALYST THEREOF
PCT/CN2020/137041 WO2021139499A1 (zh) 2020-01-09 2020-12-17 手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010012689.5A CN111484533B (zh) 2020-01-09 2020-01-09 手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用

Publications (2)

Publication Number Publication Date
CN111484533A CN111484533A (zh) 2020-08-04
CN111484533B true CN111484533B (zh) 2022-05-06

Family

ID=71791682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010012689.5A Active CN111484533B (zh) 2020-01-09 2020-01-09 手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用

Country Status (4)

Country Link
US (1) US20230151035A1 (zh)
EP (1) EP4089097A4 (zh)
CN (1) CN111484533B (zh)
WO (1) WO2021139499A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484533B (zh) * 2020-01-09 2022-05-06 浙江九洲药业股份有限公司 手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用
CN114106046A (zh) * 2020-08-31 2022-03-01 浙江九洲药业股份有限公司 噁唑啉环5-位取代的手性螺环噁唑啉-胺基膦配体及其制备方法和应用
CN112375100B (zh) * 2020-11-13 2021-12-21 珠海复旦创新研究院 手性膦氮膦三齿配体、制备方法及其应用
CN116063355A (zh) * 2021-11-03 2023-05-05 凯特立斯(深圳)科技有限公司 一种手性多齿配体及其在不对称氢化的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671365A (zh) * 2009-09-18 2010-03-17 南开大学 手性螺环胺基膦配体化合物与合成方法及其应用
CN104892672A (zh) * 2015-05-15 2015-09-09 南开大学 手性螺环膦-氮-硫三齿配体及其制备方法和应用
CN109928995A (zh) * 2019-04-08 2019-06-25 南开大学 手性螺环膦-氨基-噁唑啉三齿配体及其制备方法和应用
CN109970795A (zh) * 2019-05-05 2019-07-05 南开大学 吡啶环上4-位取代手性螺环胺基膦配体制备方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040625B (zh) * 2010-11-19 2013-09-25 浙江九洲药业股份有限公司 手性螺环吡啶胺基膦配体化合物与合成方法及其应用
CN111484533B (zh) * 2020-01-09 2022-05-06 浙江九洲药业股份有限公司 手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671365A (zh) * 2009-09-18 2010-03-17 南开大学 手性螺环胺基膦配体化合物与合成方法及其应用
CN104892672A (zh) * 2015-05-15 2015-09-09 南开大学 手性螺环膦-氮-硫三齿配体及其制备方法和应用
CN109928995A (zh) * 2019-04-08 2019-06-25 南开大学 手性螺环膦-氨基-噁唑啉三齿配体及其制备方法和应用
CN109970795A (zh) * 2019-05-05 2019-07-05 南开大学 吡啶环上4-位取代手性螺环胺基膦配体制备方法及其应用

Also Published As

Publication number Publication date
WO2021139499A1 (zh) 2021-07-15
US20230151035A1 (en) 2023-05-18
CN111484533A (zh) 2020-08-04
EP4089097A4 (en) 2024-02-14
EP4089097A1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
CN111484533B (zh) 手性螺环膦-氮-膦三齿配体及其铱催化剂的制备方法和应用
EP2641910B1 (en) Chiral spiro-pyridylamidophosphine ligand compound, synthesis method therefor and application thereof
JP4958374B2 (ja) 非対称(移動)水素化のための触媒
CN109970795B (zh) 吡啶环上4-位取代手性螺环胺基膦配体制备方法及其应用
CN110724164B (zh) 吡啶环上3-位取代手性螺环胺基膦配体制备方法及其应用
JP6218153B2 (ja) 配位子、その配位子を含む金属錯体、及びその金属錯体を用いた反応
CN101671365A (zh) 手性螺环胺基膦配体化合物与合成方法及其应用
CN112961194B (zh) 一种含面手性二茂铁的pno配体及其应用
JP4144814B2 (ja) 光学活性アルコール化合物の製造方法
CN112321628B (zh) β-二甲基苯基硅取代有机腈类化合物的制备方法
EP2836497A1 (en) Catalyst compounds
EP2752419A1 (en) Spirobenzylamine-phosphine, preparation method therefor and use thereof
CA2760386A1 (en) Cationic transition-metal arene catalysts
CN109575060B (zh) 螺环双硼催化剂的合成及其在氢化反应中的应用
CN107445999B (zh) 金属络合物、制备方法和应用及其中间体
Badillo-Gómez et al. Ruthenium complex based on [N, N, O] tridentate-2-ferrocenyl-2-thiazoline ligand for catalytic transfer hydrogenation
CN111471005A (zh) 一种吲哚-二氢化萘类化合物及其制备方法和应用
CN113004341B (zh) 一种含面手性二茂铁和轴手性联酚的pno配体及其应用
CN112300220B (zh) 手性二茂铁p,n配体衍生物及其制备方法和应用
CN115215866B (zh) 手性二胺类化合物和应用以及亚胺的不对称加成的方法
CN114085250B (zh) 一种含Ugi’s胺砌块的P-手性膦-噁唑啉配体金属络合物催化剂的制备及应用
CN114989137B (zh) 一种手性含亚胺喹啉咪唑啉类化合物及其金属络合物以及制备方法和应用
CN114591228B (zh) 一种手性苯乙烯基吡啶基亚砜及其合成方法
EP2183259B1 (en) Paracyclophane-based ligands, their preparation and use in catalysis
Singha et al. Chiral Induction in a Self‐Assembled Pd4 Coordination Cage with Chiral Guests

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201209

Address after: Jiaojiang District of Taizhou City, Zhejiang province 318000 road outside No. 99

Applicant after: Zhejiang Jiuzhou Pharmaceutical Co.,Ltd.

Address before: Study of Nankai University No. 94 Tianjin 300071 Nankai District Chemical Institute of Wei Jin Road

Applicant before: NANKAI University

GR01 Patent grant
GR01 Patent grant