CN111458586A - Batch synchronous detection method and system for multi-interval in-situ line protection device of intelligent substation - Google Patents
Batch synchronous detection method and system for multi-interval in-situ line protection device of intelligent substation Download PDFInfo
- Publication number
- CN111458586A CN111458586A CN202010300539.4A CN202010300539A CN111458586A CN 111458586 A CN111458586 A CN 111458586A CN 202010300539 A CN202010300539 A CN 202010300539A CN 111458586 A CN111458586 A CN 111458586A
- Authority
- CN
- China
- Prior art keywords
- line protection
- interval
- output
- unit
- synchronous detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004224 protection Effects 0.000 title claims abstract description 197
- 238000001514 detection method Methods 0.000 title claims abstract description 83
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 50
- 238000011065 in-situ storage Methods 0.000 title claims description 10
- 238000012360 testing method Methods 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000004891 communication Methods 0.000 claims description 59
- 238000013507 mapping Methods 0.000 claims description 31
- 230000003287 optical effect Effects 0.000 claims description 30
- 238000005070 sampling Methods 0.000 claims description 18
- 230000002159 abnormal effect Effects 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 11
- 230000011664 signaling Effects 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 230000016507 interphase Effects 0.000 claims description 5
- 230000007547 defect Effects 0.000 claims description 4
- 238000012423 maintenance Methods 0.000 abstract description 15
- 238000010276 construction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011217 control strategy Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0423—Input/output
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/16—File or folder operations, e.g. details of user interfaces specifically adapted to file systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
本发明公开了一种智慧变电站多间隔就地化线路保护装置批量同步检测方法及系统,本发明方法包括搭建测试环境,将各个间隔的就地化线路保护装置分别与批量同步检测系统相连,根据预设的模型库和规则库创建执行用例模板库,批量同步检测系统根据执行用例模板库中执行用例的预设内容进行顺序执行,模拟各个间隔的就地化线路保护装置的单相接地故障和相间短路故障,采用闭环控制的方式同时对不同间隔的就地化线路保护装置进行故障分析判别获取对应的检测结果,汇总生成检测报告。本发明能够实现多间隔就地化线路保护装置的批量同频自动检修测试,不仅提升自动检测效率,还能真实模拟现场运行环境,保证了电网的安全可靠运行。
The invention discloses a method and system for batch synchronous detection of multi-interval on-site line protection devices in smart substations. The method includes building a test environment, connecting the on-site line protection devices in each interval with the batch synchronous detection system respectively, and according to the following steps: The preset model library and rule library create an execution use case template library, and the batch synchronous detection system executes sequentially according to the preset content of the execution use case in the execution use case template library, simulating the single-phase ground fault and For phase-to-phase short-circuit faults, the closed-loop control method is used to simultaneously analyze and determine the faults of the localized line protection devices at different intervals to obtain the corresponding detection results, and summarize and generate a detection report. The invention can realize the batch and same-frequency automatic maintenance test of the multi-interval on-site line protection device, which not only improves the automatic detection efficiency, but also can truly simulate the on-site operation environment and ensure the safe and reliable operation of the power grid.
Description
技术领域technical field
本发明涉及智慧变电站就地化线路保护装置的检测技术,具体涉及一种智慧变电站多间隔就地化线路保护装置批量同步检测方法及系统。The invention relates to a detection technology of an in-situ line protection device of a smart substation, in particular to a batch synchronous detection method and system of a multi-interval in-situ line protection device of a smart substation.
背景技术Background technique
国家电网公司自2009年启动智能变电站试点建设之后,截止目前,国内建设约5000多座智能变电站,包括第一代智能变电站和第二代智能站。智能变电站由于高度的系统集成化、合理的结构布局,在经济节能环保等方面取得了一定的成效。然而,在实际的运用中,也暴露了不少问题。特别是在智能变电站的运维检修方面,繁重的检修工作量和高额的检修成本极大的制约着智能变电站的发展。为了实现电网供电高可靠和变电站运检高效的目标,国家电网公司在2018年启动就地化保护的智慧变电站试点建设工作。就地化保护智慧变电站的控制核心设备是就地化保护,即实现二次保护就地化,保护功能模块化,整站控制智能化。就地化保护装置是保护电网安全的关键部件之一,如何对数量庞大的二次就地化保护装置进行有效检测、监控和管理是就地化保护智慧变电站安全稳定运行亟待解决的关键问题。Since the State Grid Corporation of China started the pilot construction of smart substations in 2009, up to now, more than 5,000 smart substations have been built in China, including first-generation smart substations and second-generation smart substations. Due to the high degree of system integration and reasonable structural layout, smart substations have achieved certain results in terms of economy, energy conservation and environmental protection. However, in practical application, many problems have also been exposed. Especially in the operation and maintenance of smart substations, the heavy maintenance workload and high maintenance costs greatly restrict the development of smart substations. In order to achieve the goals of high reliability of grid power supply and efficient operation and inspection of substations, State Grid Corporation of China started the pilot construction of smart substations with local protection in 2018. In-situ protection The core control equipment of the smart substation is in-situ protection, that is, to realize the localization of secondary protection, modularization of protection functions, and intelligent control of the whole station. In-situ protection device is one of the key components to protect power grid security. How to effectively detect, monitor and manage a large number of secondary in-situ protection devices is a key issue that needs to be solved urgently to protect the safe and stable operation of smart substations.
针对220kv及以上电压等级就地化线路保护,采样数据为模拟量采样,线路间隔较多,而在其检修调试方面,存在以下问题:①就地化线路保护装置无液晶显示结构,采用传统继保测试仪+管理机的手动检测模式进行相关功能检修调试,使用测试设备、工具种类多,操作繁琐,自动化程度低;②220kv及以上电压等级的线路间隔分支多,且线路保护均采用双套配置,导致就地化线路保护装置数量庞大,一套一套分别进行测试测试效率低,不利于现场运行;③线路保护多间隔运行与母线保护之间存在失灵联跳等互锁关系,单间隔线路保护测试无法就多条线路间隔的相互影响关系及与母线保护的配合关系做整体的检修验证,无法真实展示现场实际运行工况。For the localized line protection with voltage levels of 220kv and above, the sampling data is analog sampling, and the line interval is large. However, in terms of its maintenance and debugging, there are the following problems: 1. The localized line protection device has no liquid crystal display structure, and adopts the traditional relay system. The manual detection mode of the tester + management machine is used for the maintenance and debugging of related functions. There are many types of test equipment and tools, the operation is cumbersome, and the degree of automation is low; ② The lines with voltage levels of 220kv and above have many branches, and the line protection adopts double sets of configuration , resulting in a large number of localized line protection devices, and it is inefficient to test one set and one set separately, which is not conducive to on-site operation; ③ There is an interlocking relationship such as failure and jumping between the line protection multi-bay operation and the busbar protection, and the single-bay line The protection test cannot perform the overall maintenance verification on the mutual influence relationship of multiple line intervals and the cooperation relationship with the busbar protection, and cannot truly display the actual operating conditions on site.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题: 针对多间隔就地化线路保护装置在检修调试中存在的问题,提供一种智慧变电站多间隔就地化线路保护装置批量同步检测方法及系统,本发明能够实现多间隔就地化线路保护装置的批量同频自动检修测试,不仅提升自动检测效率,还能真实模拟现场运行环境,保证了电网的安全可靠运行。The technical problem to be solved by the present invention: Aiming at the problems existing in the maintenance and debugging of the multi-interval on-site line protection device, a method and system for batch synchronization detection of the multi-interval on-site line protection device in a smart substation are provided. The batch and same-frequency automatic maintenance test of the interval localized line protection device not only improves the automatic detection efficiency, but also simulates the on-site operating environment, ensuring the safe and reliable operation of the power grid.
为了解决上述技术问题,本发明采用的技术方案为:In order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is:
一种智慧变电站多间隔就地化线路保护装置批量同步检测方法,实施步骤包括:A method for batch synchronous detection of multi-interval on-site line protection devices in a smart substation, the implementation steps include:
1)搭建测试环境,将各个间隔的就地化线路保护装置分别与批量同步检测系统相连,且各个间隔的就地化线路保护装置采用独立的数据源,所述批量同步检测系统包括上位机和多个综合电子信息输出控制设备,所述综合电子信息输出控制设备包括开出量接口、开入量接口、光数字通讯接口和多个小信号输出接口,所述小信号输出接口的前端串接有功率放大器,所述功率放大器包括电压输出模块和电流输出模块;1) Build a test environment, connect the localized line protection devices of each interval with the batch synchronous detection system, and the localized line protection devices of each interval use an independent data source, and the batch synchronous detection system includes the host computer and A plurality of integrated electronic information output control devices, the integrated electronic information output control device includes an open-output interface, an open-input interface, an optical digital communication interface and a plurality of small signal output interfaces, the front ends of the small signal output interfaces are connected in series There is a power amplifier, and the power amplifier includes a voltage output module and a current output module;
2)根据基于预测控制理论预设的用于批量同步检测的模型库和规则库创建用于批量同步检测的执行用例模板库,所述模型库包括各个综合电子信息输出控制设备的输出量、各个间隔的就地化线路保护装置输出的MMS报文之间的通道映射,所述规则库包括各个综合电子信息输出控制设备的输出量、各个间隔的就地化线路保护装置的比对规则;2) Create an execution use case template library for batch synchronous detection based on the preset model library and rule library for batch synchronous detection based on predictive control theory. The model library includes the output of each integrated electronic information output control device, each The channel mapping between the MMS messages output by the localized line protection devices at intervals, the rule base includes the output of each integrated electronic information output control device, and the comparison rules of the localized line protection devices at each interval;
3)所述批量同步检测系统根据执行用例模板库中执行用例的预设内容进行顺序执行,模拟各个间隔的就地化线路保护装置的单相接地故障和相间短路故障,采用闭环控制的方式同时对不同间隔的就地化线路保护装置进行故障分析判别并获取对应的检测结果;3) The batch synchronous detection system performs sequential execution according to the preset content of the execution use case in the execution use case template library, and simulates the single-phase ground fault and phase-to-phase short-circuit fault of the localized line protection device at each interval, and adopts a closed-loop control method at the same time. Perform fault analysis and judgment on localized line protection devices at different intervals and obtain corresponding detection results;
4)将各个间隔的就地化线路保护装置的测试结果汇总,并生成检测报告。4) Summarize the test results of the localized line protection devices at each interval, and generate a test report.
可选地,所述模型库中各个综合电子信息输出控制设备的输出量包括模拟量电压电流、开出量位置、开入量采集、光数字通讯地址四个类别,且被实例化处理建立了对应的模拟量电压电流实例、开出量位置实例、开入量采集实例、通讯地址实例,各个间隔的就地化线路保护装置的输出的MMS报文包括遥测量、遥信、保护逻辑、MMS通讯IP四个分类,且被实例化处理建立了对应的遥测量实例、遥信实例、保护逻辑实例、通讯IP实例,各个综合电子信息输出控制设备的模拟量电压电流实例、开出量位置实例、开入量采集实例、通讯地址实例以及各个间隔的就地化线路保护装置的遥测量实例、遥信实例、保护逻辑实例、通讯IP实例之间建立有握手映射关系。Optionally, the output of each integrated electronic information output control device in the model library includes four categories of analog voltage and current, binary output position, binary input acquisition, and optical digital communication address, and is established by instantiation processing. Corresponding analog voltage and current instances, binary output location instances, binary input acquisition instances, and communication address instances. The MMS messages output by the localized line protection device at each interval include remote measurement, remote signaling, protection logic, and MMS. Communication IP is classified into four categories, and is instantiated to establish corresponding remote measurement instances, remote signaling instances, protection logic instances, communication IP instances, analog voltage and current instances, and output position instances of each integrated electronic information output control device. , A handshake mapping relationship is established among the instances of binary input data collection, communication address instances, and remote measurement instances, remote signaling instances, protection logic instances, and communication IP instances of the localized line protection device at each interval.
可选地,所述规则库包括:多间隔就地化线路保护电压采样通道一致性规则,包含各个间隔的就地化线路保护装置的电压采集通道与各个综合电子信息输出控制设备的电压输出端口之间的通道映射,以及各个间隔的就地化线路保护装置的电压采集通道与上送上位机的遥测报文的映射;多间隔就地化线路保护电流采样通道一致性规则,包含各个间隔的就地化线路保护装置的电流采集通道与各个综合电子信息输出控制设备的电流输出端口之间的通道映射,以及各个间隔的就地化线路保护装置的电流采集通道与上送上位机的遥测报文的映射;多间隔就地化线路保护断路器位置采样一致性规则,包含各个间隔的就地化线路保护装置的断路器位置采集通道与各个综合电子信息输出控制设备的开出量输出端口之间的通道映射,以及各个间隔的就地化线路保护装置的断路器位置采集通道与上送上位机的遥信报文的映射;多间隔就地化线路保护跳闸出口采样一致性规则,包含各个间隔的就地化线路保护装置的跳闸出口与各个综合电子信息输出控制设备的开入量输入端口之间的通道映射,以及各个间隔的就地化线路保护装置的跳闸出口与上送上位机的保护动作逻辑的映射。Optionally, the rule base includes: multi-interval localized line protection voltage sampling channel consistency rules, including voltage acquisition channels of localized line protection devices at various intervals and voltage output ports of each integrated electronic information output control device. The mapping between the channels, as well as the mapping between the voltage acquisition channel of the localized line protection device at each interval and the telemetry message sent to the upper computer; the consistency rule of the current sampling channel of the multi-interval localized line protection, including the Channel mapping between the current acquisition channel of the localized line protection device and the current output ports of each integrated electronic information output control device, as well as the current acquisition channel of the localized line protection device at each interval and the telemetry report sent to the host computer Mapping of the text; multi-interval localized line protection circuit breaker position sampling consistency rules, including the circuit breaker position acquisition channel of each interval localized line protection device and the output port of each integrated electronic information output control device. The mapping between the channels, as well as the mapping between the circuit breaker position acquisition channel of the localized line protection device at each interval and the remote signaling message sent to the upper computer; the sampling consistency rule of the tripping outlet of the multi-interval localized line protection, including each The channel mapping between the trip outlet of the localized line protection device of the interval and the binary input port of each integrated electronic information output control device, and the tripping outlet of the localized line protection device of each interval and the upper computer Mapping of protection action logic.
可选地,步骤3)中对不同间隔的就地化线路保护装置同时进行故障分析判别获取对应的检测结果时,针对某一个间隔i的就地化线路保护装置的处理步骤包括:首先判断该间隔i的就地化线路保护装置是否成功识别单相接地故障和相间短路故障,如果不能成功识别单相接地故障和相间短路故障,则判定该间隔的就地化线路保护装置为异常状态Si_N1并记录异常内容,否则判断该间隔i的就地化线路保护装置的故障相别、跳闸出口、动作时间是否正确,如果不正确则判定该间隔i的就地化线路保护装置为异常状态Si_N2并记录异常内容,否则判定该间隔i的就地化线路保护装置为正常状态Si_N3,从而得到该间隔i的就地化线路保护装置的测试结果。Optionally, in step 3), when performing fault analysis and judgment on the localized line protection devices of different intervals at the same time to obtain corresponding detection results, the processing steps for the localized line protection devices of a certain interval i include: firstly judging the Whether the localized line protection device of the interval i successfully identifies the single-phase ground fault and the interphase short-circuit fault, if it cannot successfully identify the single-phase grounding fault and the interphase short-circuit fault, it is determined that the localized line protection device of this interval is in the abnormal state Si_N1 and Record the abnormal content, otherwise judge whether the fault phase, trip exit, and operation time of the localized line protection device of the interval i are correct. Abnormal content, otherwise it is determined that the localized line protection device of this interval i is in the normal state Si_N3, so as to obtain the test result of the localized line protection device of this interval i.
可选地,步骤4)中还包括针对状态异常的就地化线路保护装置进行消缺处理的步骤。Optionally, step 4) further includes the step of performing defect elimination processing for the localized line protection device in an abnormal state.
此外,本发明还提供一种用于应用前述智慧变电站多间隔就地化线路保护装置批量同步检测方法的检测系统,包括上位机和多个综合电子信息输出控制设备,所述综合电子信息输出控制设备包括开出量接口、开入量接口、光数字通讯接口和多个小信号输出接口,所述小信号输出接口的前端串接有功率放大器,所述功率放大器包括电压输出模块和电流输出模块。In addition, the present invention also provides a detection system for applying the aforementioned method for batch synchronous detection of multi-interval localized line protection devices in smart substations, comprising a host computer and a plurality of integrated electronic information output control devices, the integrated electronic information output control The device includes an open-output interface, an open-input interface, an optical digital communication interface and a plurality of small signal output interfaces. The front end of the small signal output interface is connected in series with a power amplifier, and the power amplifier includes a voltage output module and a current output module. .
可选地,所述综合电子信息输出控制设备包括核心控制单元、小信号输出单元、光数字通讯单元、开出量单元、开入量单元和电源单元,所述核心控制单元分别与小信号输出单元、光数字通讯单元、开出量单元、开入量单元相连,所述电源单元的输出端分别与核心控制单元、小信号输出单元、光数字通讯单元、开出量单元、开入量单元相连,所述小信号输出单元具有多个小信号输出接口。Optionally, the integrated electronic information output control device includes a core control unit, a small signal output unit, an optical digital communication unit, a binary output unit, an binary input unit and a power supply unit, and the core control unit is respectively connected with the small signal output unit. unit, optical digital communication unit, binary output unit, binary input unit, the output end of the power supply unit is respectively connected with the core control unit, small signal output unit, optical digital communication unit, binary output unit, binary input unit connected, the small-signal output unit has a plurality of small-signal output interfaces.
可选地,所述核心控制单元包括依次相连的D/A模块、FPGA模块、控制模块、通讯模块,所述D/A模块的输出端与小信号输出单元相连,所述FPGA模块的输出端分别与光数字通讯单元、开出量单元、开入量单元相连。Optionally, the core control unit includes a D/A module, an FPGA module, a control module, and a communication module that are connected in sequence, the output end of the D/A module is connected to the small signal output unit, and the output end of the FPGA module is connected. They are respectively connected with the optical digital communication unit, the binary output unit and the binary input unit.
可选地,所述核心控制单元集成在母电路板上,所述小信号输出单元、光数字通讯单元、开出量单元、开入量单元、电源单元均为分别插设安装在母电路板上的不同子电路板上。Optionally, the core control unit is integrated on the mother circuit board, and the small signal output unit, optical digital communication unit, binary output unit, binary input unit, and power supply unit are respectively inserted and installed on the mother circuit board. on different sub-boards.
可选地,所述控制模块包括相互连接的ARM处理器和DSP处理器,其中ARM处理器与FPGA模块相连,DSP处理器与通讯模块相连。Optionally, the control module includes an ARM processor and a DSP processor that are connected to each other, wherein the ARM processor is connected to the FPGA module, and the DSP processor is connected to the communication module.
和现有技术相比,本发明具有下述优点:通过级联同步控制和独立同频模型预测的判别的方法来解决智能变电站多间隔就地化线路保护装置无法实现批量自动检测的问题,最大程度提升线路保护装置一键自动测试效率,消除影响智能变电站安全运行的不稳定因素,本发明能够实现多间隔就地化线路保护装置的批量同频自动检修测试,不仅提升自动检测效率,还能真实模拟现场运行环境,保证了电网的安全可靠运行。Compared with the prior art, the present invention has the following advantages: the problem that the multi-interval localized line protection device of the intelligent substation cannot realize batch automatic detection is solved by the method of cascading synchronous control and independent same-frequency model prediction. The one-key automatic test efficiency of the line protection device can be greatly improved, and the unstable factors affecting the safe operation of the intelligent substation can be eliminated. The real simulation of the on-site operating environment ensures the safe and reliable operation of the power grid.
附图说明Description of drawings
图1为本发明实施例方法的基本流程图。FIG. 1 is a basic flowchart of a method according to an embodiment of the present invention.
图2为本发明实施例方法的详细流程图。FIG. 2 is a detailed flowchart of a method according to an embodiment of the present invention.
图3为本发明实施例中模型库和规则库的构建示意图。FIG. 3 is a schematic diagram of the construction of a model library and a rule library in an embodiment of the present invention.
图4为本发明实施例中检测系统的结构示意图。FIG. 4 is a schematic structural diagram of a detection system in an embodiment of the present invention.
图5为本发明实施例中综合电子信息输出控制设备的结构示意图。FIG. 5 is a schematic structural diagram of an integrated electronic information output control device in an embodiment of the present invention.
具体实施方式Detailed ways
下文将以4个间隔就地化线路保护装置的批量同步检测为例,对本发明智慧变电站多间隔就地化线路保护装置批量同步检测方法及系统进行进一步的详细说明。毫无疑问,本发明智慧变电站多间隔就地化线路保护装置批量同步检测方法及系统并不限于应用于4个间隔就地化线路保护装置的批量同步检测。The method and system for batch synchronous detection of multi-interval localized line protection devices in smart substations of the present invention will be further described in detail below by taking the batch synchronous detection of 4-interval localized line protection devices as an example. Undoubtedly, the method and system for batch synchronization detection of multi-interval localized line protection devices in smart substations of the present invention are not limited to being applied to batch synchronization detection of four-interval localized line protection devices.
如图1和图2所示,本实施例中智慧变电站多间隔就地化线路保护装置批量同步检测方法的实施步骤包括:As shown in FIG. 1 and FIG. 2 , the implementation steps of the batch synchronous detection method for multi-interval localized line protection devices in smart substations in this embodiment include:
1)搭建测试环境,将各个间隔的就地化线路保护装置分别与批量同步检测系统相连,且各个间隔的就地化线路保护装置采用独立的数据源,批量同步检测系统包括上位机1和多个综合电子信息输出控制设备2,综合电子信息输出控制设备2包括开出量接口、开入量接口、光数字通讯接口和多个小信号输出接口,小信号输出接口的前端串接有功率放大器3,功率放大器3包括电压输出模块和电流输出模块;1) Build a test environment, connect the localized line protection devices at each interval with the batch synchronous detection system, and use independent data sources for the localized line protection devices in each interval. The batch synchronous detection system includes the
2)根据基于预测控制理论预设的用于批量同步检测的模型库和规则库创建用于批量同步检测的执行用例模板库,模型库包括各个综合电子信息输出控制设备2的输出量、各个间隔的就地化线路保护装置输出的MMS报文之间的通道映射,规则库包括各个综合电子信息输出控制设备2的输出量、各个间隔的就地化线路保护装置的比对规则;2) Create an execution use case template library for batch synchronous detection based on the preset model library and rule library for batch synchronous detection based on predictive control theory. The model library includes the output of each integrated electronic information
3)批量同步检测系统根据执行用例模板库中执行用例的预设内容进行顺序执行,模拟各个间隔的就地化线路保护装置的单相接地故障和相间短路故障,采用闭环控制的方式同时对不同间隔的就地化线路保护装置进行故障分析判别并获取对应的检测结果;3) The batch synchronous detection system executes sequentially according to the preset content of the execution use case in the execution use case template library, simulates the single-phase ground fault and phase-to-phase short-circuit fault of the localized line protection device at each interval, and adopts the closed-loop control method to simultaneously detect different Interval localized line protection devices carry out fault analysis and judgment and obtain corresponding detection results;
4)将各个间隔的就地化线路保护装置的测试结果汇总,并生成检测报告。4) Summarize the test results of the localized line protection devices at each interval, and generate a test report.
批量同步检测系统包括上位机1和多个综合电子信息输出控制设备2,多个综合电子信息输出控制设备2通过级联方式能够实现多台设备同步输出,实现多组模拟量、开关量和光数字信号的控制。利用0-10V交流电压输出信号驱动6路电压6路电流功率放大器输出,保证不同间隔就地化线路保护模拟量采样数据独立控制。模拟量电压电流信号和开关量信号采用点对点模式分别与不同间隔进行物理连接,光数字通讯接口通过网络交换通讯原理分别与不同间隔的IEC61850通讯接口相连接,实现MMS报文的信息交互。综合电子信息输出控制设备2的光数字通讯接口分别与不同间隔的就地化线路保护的IEC61850通讯端口进行连接,通过MMS客户端以模型召唤形式主动获取不同间隔就地化线路保护装置的实际采样数据、断路器位置采集和保护相关事件报告等内容,以数据预设模式主动修改不同间隔的就地化线路保护装置的保护动作定值和压板等信息,通过同步控制输出和同步控制检测的闭环测试模式实现多间隔就地化线路保护的保护逻辑相关的功能与性能同步自动检测。每个间隔的就地化线路保护装置独立配置一套功率放大器3,电压电流输出通道与就地化线路保护装置采用点对点模式进行物理连接,整个系统硬件以一对多模式的级联控制来实现独立控制各间隔所对应的功率放大器输出,在时钟同步信号的辅助下可进行硬件系统功率放大器输出的最大化扩展,实现智能变电站所有间隔的就地化线路保护装置的模拟量采样信号同步输出。每个间隔就地化线路保护装置配置8路独立开出量接点和8路开入量接点,开出量接点用于模拟就地化线路保护装置的断路器位置采集,开入量接点用于采集订阅就地化线路保护装置的三相跳闸出口和重合闸出口位置等。同步自动检测系统的开关量通道与不同间隔的就地化线路保护装置采用点对点模式进行物理连接,整个系统硬件以一对多模式的级联控制来实现独立控制各间隔所对应的开出量板卡输出和开入量板卡跳闸位置订阅,在时钟同步信号的辅助下可进行硬件系统的开关量输出通道和开关量输入通道最大化扩展,以模型预设和结果预判的形式完成智能变电站所有间隔的就地化线路保护装置的独立控制检测,最终实现所有间隔就地化线路保护的全部保护逻辑功能和性能自动检测。The batch synchronous detection system includes a
本实施例步骤2)中通过模型预测的方法构建控制检测模型,使自动检测系统硬件结构同时对多间隔套就地化线路保护进行批量同步功能性能测试。自动检测系统设定故障模型,控制硬件系统独立对不同间隔就地化线路保护输出相关采样信号,同时对间隔的就地化线路保护分别预设握手映射模型和结果判定规则,采用闭环控制原理同时对不同间隔的就地化线路保护同时进行故障分析判别,最终在一对多的独立控制策略下结合闭环自动仿真测试技术实现多间隔就地化线路保护装置的批量同步自动检测。In step 2) of this embodiment, a control detection model is constructed by the method of model prediction, so that the hardware structure of the automatic detection system can simultaneously perform batch synchronization function performance test on the localized line protection of multiple bays. The automatic detection system sets the fault model, and the control hardware system independently outputs relevant sampling signals for the localized line protection at different intervals. At the same time, the fault analysis and judgment are carried out for the localized line protection of different intervals, and finally the batch synchronous automatic detection of multi-interval localized line protection devices is realized under the one-to-many independent control strategy combined with the closed-loop automatic simulation test technology.
如图3所示,模型库中各个综合电子信息输出控制设备2的输出量包括模拟量电压电流、开出量位置、开入量采集、光数字通讯地址四个类别,且被实例化处理建立了对应的模拟量电压电流实例、开出量位置实例、开入量采集实例、通讯地址实例,各个间隔的就地化线路保护装置的输出的MMS报文包括遥测量、遥信、保护逻辑、MMS通讯IP四个分类,且被实例化处理建立了对应的遥测量实例、遥信实例、保护逻辑实例、通讯IP实例,各个综合电子信息输出控制设备2的模拟量电压电流实例、开出量位置实例、开入量采集实例、通讯地址实例以及各个间隔的就地化线路保护装置的遥测量实例、遥信实例、保护逻辑实例、通讯IP实例之间建立有握手映射关系。As shown in Figure 3, the output of each integrated electronic information
如图3所示,规则库包括:多间隔就地化线路保护电压采样通道一致性规则,包含各个间隔的就地化线路保护装置的电压采集通道与各个综合电子信息输出控制设备2的电压输出端口之间的通道映射,以及各个间隔的就地化线路保护装置的电压采集通道与上送上位机1的遥测报文的映射;多间隔就地化线路保护电流采样通道一致性规则,包含各个间隔的就地化线路保护装置的电流采集通道与各个综合电子信息输出控制设备2的电流输出端口之间的通道映射,以及各个间隔的就地化线路保护装置的电流采集通道与上送上位机1的遥测报文的映射;多间隔就地化线路保护断路器位置采样一致性规则,包含各个间隔的就地化线路保护装置的断路器位置采集通道与各个综合电子信息输出控制设备2的开出量输出端口之间的通道映射,以及各个间隔的就地化线路保护装置的断路器位置采集通道与上送上位机1的遥信报文的映射;多间隔就地化线路保护跳闸出口采样一致性规则,包含各个间隔的就地化线路保护装置的跳闸出口与各个综合电子信息输出控制设备2的开入量输入端口之间的通道映射,以及各个间隔的就地化线路保护装置的跳闸出口与上送上位机1的保护动作逻辑的映射。As shown in Figure 3, the rule base includes: multi-interval localized line protection voltage sampling channel consistency rules, including the voltage acquisition channels of the localized line protection devices at each interval and the voltage output of each integrated electronic information output control device 2 The channel mapping between ports, as well as the mapping between the voltage acquisition channel of the localized line protection device at each interval and the telemetry message sent to the upper computer 1; the consistency rule of the current sampling channel of the multi-interval localized line protection, including each Channel mapping between the current acquisition channel of the localized line protection device at intervals and the current output ports of each integrated electronic information output control device 2, as well as the current acquisition channel of the localized line protection device of each interval and the upper computer 1 mapping of telemetry messages; multi-interval localized line protection circuit breaker position sampling consistency rules, including the circuit breaker position acquisition channel of each interval localized line protection device and the opening of each integrated electronic information output control device 2 The channel mapping between the output ports, and the mapping between the circuit breaker position acquisition channel of the localized line protection device at each interval and the remote signaling message sent to the host computer 1; the sampling of the multi-interval localized line protection tripping outlet Consistency rules, including the channel mapping between the trip outlet of the localized line protection device of each bay and the binary input port of each integrated electronic information output control device 2, and the trip of the localized line protection device of each bay The mapping between the exit and the protection action logic sent to the upper computer 1.
如图2所示,步骤3)中对不同间隔的就地化线路保护装置同时进行故障分析判别获取对应的检测结果时,针对某一个间隔i的就地化线路保护装置的处理步骤包括:首先判断该间隔i的就地化线路保护装置是否成功识别单相接地故障和相间短路故障,如果不能成功识别单相接地故障和相间短路故障,则判定该间隔的就地化线路保护装置为异常状态Si_N1并记录异常内容,否则判断该间隔i的就地化线路保护装置的故障相别、跳闸出口、动作时间是否正确,如果不正确则判定该间隔i的就地化线路保护装置为异常状态Si_N2并记录异常内容,否则判定该间隔i的就地化线路保护装置为正常状态Si_N3,从而得到该间隔i的就地化线路保护装置的测试结果。如图2所示,步骤4)中还包括针对状态异常的就地化线路保护装置进行消缺处理(图3中表示为保护功能修正)的步骤。As shown in Figure 2, in step 3), when fault analysis and judgment are performed simultaneously on the localized line protection devices at different intervals to obtain the corresponding detection results, the processing steps for the localized line protection devices at a certain interval i include: first Determine whether the localized line protection device of the interval i successfully identifies the single-phase ground fault and the phase-to-phase short-circuit fault. If the single-phase grounding fault and the phase-to-phase short-circuit fault cannot be successfully identified, the localized line protection device of the interval is judged to be in an abnormal state. Si_N1 and record the abnormal content, otherwise judge whether the fault phase, trip exit, and action time of the localized line protection device of this interval i are correct, if not, judge that the localized line protection device of this interval i is in an abnormal state Si_N2 And record the abnormal content, otherwise it is determined that the localized line protection device of this interval i is in the normal state Si_N3, so as to obtain the test result of the localized line protection device of this interval i. As shown in FIG. 2 , step 4) also includes the step of eliminating defects (represented as protection function correction in FIG. 3 ) for the localized line protection device in an abnormal state.
本实施例中智慧变电站多间隔就地化线路保护装置批量同步检测方法利用模型预设控制理论构建相关的模型库和规则库。对于模型库的构建,采用一对多控制策略,针对多间隔就地化线路保护装置批量自动测试,自动检测系统整体结构按对象、类和实例化的模式构建模型,对象分为受控对象和被测对象,不同间隔创建不同被测对象。受控对象的类处理和实例化处理包含模拟量电压电流、开出量位置、开入量位置、光数字通讯,被测对象的类处理和实例化处理包含遥测、遥信、包含逻辑、MMS通讯IP地址,受控对象和被控对象采用点对点模式进行独立握手映射;对于规则库的构建,采用点对点的模式实现同步自动检测系统硬件结构电压、电流输出通道、开出量接点、开入量接点通道分别与多间隔就地化线路保护进行映射,构建自动检测系统硬件输出对被测就地化线路保护数字比对的规则。最终结合模型预测控制理论,通过构建控制模型库、设定判别规则、检测结果提前预设和检测结果综合研判的方式形成闭环控制的就地化线路保护装置批量同步自动检测;多间隔就地化线路保护装置采用独立的数据源结构和控制结构,保证不同间隔的就地化线路保护的故障类型的唯一性和独立性。同步自动检测系统采用独立数据源结构独立同步模拟不同间隔就地化线路保护装置的单相接地故障和相间短路故障,MMS客户端获取事件报告模块和开入量获取跳闸出口位置接点模块采用点对点模式分别同时获取不同间隔的就地化线路保护的事件报告和跳闸出口位置等信息,根据模型预测控制理论,采用一致性同步比对方法确认不同间隔的就地化线路保护的自动检测结果是否正确。当不同间隔就地化线路保护检测结果一致且符合结果判断预期时,则多间隔的就地化线路保护相关功能和性能一致且正确;当不同间隔的就地化线路保护中出现部分间隔的检测结果与结果判断预期不同时,则该间隔的就地化线路保护中相关功能和性能存在缺陷,缺陷内容通过具体不同的设备和内容可主动识别;最终,实现不同间隔的就地化线路保护功能和性能的批量同步自动检测。综上所述,本实施例中智慧变电站多间隔就地化线路保护装置批量同步检测方法主要应用在智慧变电站多间隔就地化线路保护的同步批量检修测试和多台就地化线路保护的批量工厂化同步检测,其采用模型预测的控制理论实现了多台就地化线路保护的同步自动检测,同时,在时钟同步的基础上,可以进一步扩展同时被自动检测的就地化线路保护的个数。本实施例中智慧变电站多间隔就地化线路保护装置批量同步检测方法为批量多间隔就地化线路保护的功能和性能同步自动测试检修提供了一种新的手段,该技术可应用在其他类型的多套二次保护装置同步自动检测上,极大提高了就地化智能变电站检修维护效率,保证了电网的安全可靠运行。In this embodiment, the batch synchronization detection method of the multi-interval localized line protection device of the smart substation uses the model preset control theory to construct the relevant model library and rule library. For the construction of the model library, the one-to-many control strategy is adopted to automatically test the multi-interval localized line protection devices in batches. Measured objects, create different measured objects at different intervals. Class processing and instantiation processing of controlled objects include analog voltage and current, binary output position, binary input position, optical digital communication. Communication IP address, controlled object and controlled object use point-to-point mode for independent handshake mapping; for the construction of rule base, point-to-point mode is used to realize synchronous automatic detection of system hardware structure voltage, current output channel, binary output contact, binary input The contact channels are respectively mapped with the multi-interval localized line protection, and the rules for the digital comparison of the measured localized line protection by the hardware output of the automatic detection system are constructed. Finally, combined with the theory of model predictive control, a closed-loop control localized line protection device batch synchronous automatic detection is formed by constructing a control model library, setting judgment rules, presetting detection results in advance, and comprehensively researching and judging detection results; multi-interval localization The line protection device adopts an independent data source structure and control structure to ensure the uniqueness and independence of the fault types of the localized line protection at different intervals. The synchronous automatic detection system adopts an independent data source structure to independently and synchronously simulate single-phase ground faults and phase-to-phase short-circuit faults of localized line protection devices at different intervals. The event reports and trip exit locations of localized line protection at different intervals are obtained at the same time. According to the model predictive control theory, the consistent synchronization comparison method is used to confirm whether the automatic detection results of localized line protection at different intervals are correct. When the detection results of localized line protection at different intervals are consistent and meet the judgment expectations of the results, the relevant functions and performance of multi-interval localized line protection are consistent and correct; When the result is different from the expected result, the relevant functions and performance of the localized line protection of the interval are defective, and the defect content can be actively identified through specific different devices and contents; finally, the localized line protection function of different intervals is realized. Automatic detection of batch synchronization and performance. To sum up, the batch synchronous detection method of the multi-interval localized line protection device of the smart substation in this embodiment is mainly applied to the synchronous batch maintenance test of the multi-interval localized line protection of the smart substation and the batch of multiple localized line protections. Factory synchronization detection, which adopts the control theory of model prediction to realize the synchronization and automatic detection of multiple localized line protections. number. In this embodiment, the batch synchronous detection method of the multi-interval localized line protection device of the smart substation provides a new method for the automatic test and maintenance of the function and performance of the multi-interval localized line protection in batches. This technology can be applied to other types of The synchronous automatic detection of multiple sets of secondary protection devices has greatly improved the maintenance and maintenance efficiency of local intelligent substations, and ensured the safe and reliable operation of the power grid.
如图4所示,本实施例还提供一种用于前述智慧变电站多间隔就地化线路保护装置批量同步检测方法的检测系统,包括上位机1和多个综合电子信息输出控制设备2,综合电子信息输出控制设备2包括开出量接口、开入量接口、光数字通讯接口和多个小信号输出接口,小信号输出接口的前端串接有功率放大器3,功率放大器3包括电压输出模块和电流输出模块。As shown in FIG. 4 , this embodiment also provides a detection system for the aforementioned method for batch synchronous detection of multi-interval on-site line protection devices in smart substations, including a
如图5所示,综合电子信息输出控制设备2包括核心控制单元21、小信号输出单元22、光数字通讯单元23、开出量单元24、开入量单元25和电源单元26,核心控制单元21分别与小信号输出单元22、光数字通讯单元23、开出量单元24、开入量单元25相连,电源单元26的输出端分别与核心控制单元21、小信号输出单元22、光数字通讯单元23、开出量单元24、开入量单元25相连,小信号输出单元22具有多个小信号输出接口。As shown in FIG. 5, the integrated electronic information
为了便于综合电子信息输出控制设备2的安装维护,本实施例中核心控制单元21集成在母电路板上,小信号输出单元22、光数字通讯单元23、开出量单元24、开入量单元25、电源单元26均为分别插设安装在母电路板上的不同子电路板上,从而便于安装维护,且易于扩展。In order to facilitate the installation and maintenance of the integrated electronic information
核心控制单元21是整个测试系统的核心部件,如图5所示,核心控制单元21包括依次相连的D/A模块211、FPGA模块212、控制模块213、通讯模块214,D/A模块211的输出端与小信号输出单元26相连,FPGA模块212的输出端分别与光数字通讯单元22、开出量单元23、开入量单元24相连。The
本实施例中,控制模块213包括相互连接的ARM处理器和DSP处理器,其中ARM处理器与FPGA模块212相连,DSP处理器与通讯模块214相连,通过上述方式,能够提高测试和通信之间的并行度,有利于提高测试的精度。控制模块213通过ARM+DSP完成所有数据的计算处理,对外通过通讯模块214(以太网通讯口或WIFI模块)实现多套硬件设备(多间隔就地化线路保护装置)的级联控制,实现输出端口的无限扩展;对内通过FPGA模块212实现光数字通讯单元23的MMS报文通讯、开出量单元24的输出状态控制和开入量单元25的通道状态采集,通过D/A模块211实现控制小信号输出单元22输出0~10V交流电压小信号的输出。In this embodiment, the
本实施例中,小信号输出单元22具备12路交流模拟量输出通道,一块小信号输出单元22可配合一台功率放大器3实现6路0~130V交流电压和6路0~30A电流输出,一套测试系统可以配置不低于3个小信号输出单元22,多套小信号输出单元22在外部时钟的辅助下可进行级联同步输出,实现多台功率放大器3的同步输出,保证多间隔就地化线路保护装置的模拟量采集信号独立输出控制从而实现就地化线路保护装置的批量同步自动检测。In this embodiment, the small
本实施例中,光数字通讯单元23具备10路光纤通讯接口,具备交换机转发功能,能够在不同IP地址下通过IEC61850协议与多间隔的就地化线路保护装置进行MMS报文通讯,主动分间隔获取就地化线路保护装置的保护动作定值、压板、事件报告等信息,远程对各间隔就地化线路保护装置的保护动作定值、压板等进行修改,辅助自动测试系统完成就地化线路保护装置的批量自动检测。In this embodiment, the optical
本实施例中,开出量单元24具备16路开关量接点,开出量接点采用继电器结构,能够以串入220V直流电源的模式为多间隔就地化线路保护独立提供断路器位置信息.In this embodiment, the
本实施例中,开入量单元25具备16路开关量接点,开入量接点采用光耦结构,闭合及断开时间不超过100ns,快速开入量接点能够及时分别订阅到不同间隔的就地化线路保护装置的三相跳闸出口和重合闸出口接点位置,辅助测试系统完成多间隔的就地化线路保护装置的批量自动检测。In this embodiment, the
本实施例中,电源单元26采用AC220电源供电,其将交流电源转换为5V直流电源,5V直流电源为其他单元提供供电电源。In this embodiment, the
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions under the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principle of the present invention should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010300539.4A CN111458586B (en) | 2020-04-16 | 2020-04-16 | Batch synchronization detection method and system for multi-interval localized line protection devices in smart substations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010300539.4A CN111458586B (en) | 2020-04-16 | 2020-04-16 | Batch synchronization detection method and system for multi-interval localized line protection devices in smart substations |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111458586A true CN111458586A (en) | 2020-07-28 |
CN111458586B CN111458586B (en) | 2022-09-16 |
Family
ID=71682691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010300539.4A Active CN111458586B (en) | 2020-04-16 | 2020-04-16 | Batch synchronization detection method and system for multi-interval localized line protection devices in smart substations |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111458586B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112286522A (en) * | 2020-10-23 | 2021-01-29 | 许昌许继软件技术有限公司 | Multi-interval function configuration method and device for centralized station terminal |
CN112964954A (en) * | 2021-03-03 | 2021-06-15 | 国网江苏省电力有限公司无锡供电分公司 | Multi-interval protection batch test method based on hardware serial number replacement |
CN114089120A (en) * | 2021-11-25 | 2022-02-25 | 国网陕西省电力公司西咸新区供电公司 | Intelligent substation secondary voltage loop fault diagnosis positioning device and method |
CN114123484A (en) * | 2021-10-08 | 2022-03-01 | 河北省送变电有限公司 | A comprehensive fault diagnosis instrument and fault diagnosis method for secondary equipment of intelligent substation |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020173927A1 (en) * | 2001-05-21 | 2002-11-21 | Benton Vandiver | System for testing of intelligent electronic devices with digital communications |
US20100241902A1 (en) * | 2009-02-17 | 2010-09-23 | Scott Gilbertson | System and method for performing automated testing of protective relay equipment |
CN102598629A (en) * | 2009-06-03 | 2012-07-18 | Abb技术有限公司 | Method and system for publishing data from intelligent electronic devices |
CN103023149A (en) * | 2012-12-12 | 2013-04-03 | 天津市电力公司 | Intelligent power distribution terminal and intelligent power distribution system based on IEC61850 |
CN103245855A (en) * | 2013-04-23 | 2013-08-14 | 国家电网公司 | Digital simulation based method and system for testing relay protection function of intelligent substation |
CN103530824A (en) * | 2013-11-07 | 2014-01-22 | 南京国电南自轨道交通工程有限公司 | Method for producing knowledge base of intelligent warning system of transformer substation based on template base |
CN104535861A (en) * | 2014-12-23 | 2015-04-22 | 国网四川省电力公司阿坝供电公司 | General template for automated relay protection tester and instantiation method of general template |
CN105929277A (en) * | 2016-05-10 | 2016-09-07 | 东南大学 | Method and system for standardizing automatic testing schemes of replay protection device |
CN106033102A (en) * | 2015-03-13 | 2016-10-19 | 南京南瑞继保工程技术有限公司 | Relay protection test method and system |
CN107515344A (en) * | 2017-10-18 | 2017-12-26 | 南京能云电力科技有限公司 | Test system and method for a kind of whole station information intelligent of digital transformer substation to point |
CN107786000A (en) * | 2017-10-18 | 2018-03-09 | 南京能云电力科技有限公司 | The intelligent generation method of digital relay protection tester configuration file |
CN108414849A (en) * | 2018-01-16 | 2018-08-17 | 国网浙江宁波市鄞州区供电有限公司 | Intelligent substation automatization test system and method |
CN108802517A (en) * | 2018-03-06 | 2018-11-13 | 许继集团有限公司 | A kind of test method and system of site protective device |
CN109030971A (en) * | 2018-04-12 | 2018-12-18 | 广东电网有限责任公司 | A kind of method that flexible direct current FT3 message template library is formed |
CN109406993A (en) * | 2018-10-11 | 2019-03-01 | 国网江苏省电力有限公司电力科学研究院 | Relay protection automatic test approach, apparatus and system based on recorded wave file playback |
CN109613906A (en) * | 2018-11-08 | 2019-04-12 | 国网湖南省电力有限公司 | The third-generation intelligent substation measurement and control sub-machine test system and its application method |
CN109872112A (en) * | 2017-12-05 | 2019-06-11 | 国家电网公司 | Automatic closed-loop detection method and device for intelligent substation |
CN110687375A (en) * | 2019-10-11 | 2020-01-14 | 南京能云电力科技有限公司 | Parallel automatic test system and method for relay protection device |
CN110824279A (en) * | 2019-11-15 | 2020-02-21 | 上海思源弘瑞自动化有限公司 | Automatic testing system and method for relay protection device |
-
2020
- 2020-04-16 CN CN202010300539.4A patent/CN111458586B/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020173927A1 (en) * | 2001-05-21 | 2002-11-21 | Benton Vandiver | System for testing of intelligent electronic devices with digital communications |
US20100241902A1 (en) * | 2009-02-17 | 2010-09-23 | Scott Gilbertson | System and method for performing automated testing of protective relay equipment |
CN102598629A (en) * | 2009-06-03 | 2012-07-18 | Abb技术有限公司 | Method and system for publishing data from intelligent electronic devices |
CN103023149A (en) * | 2012-12-12 | 2013-04-03 | 天津市电力公司 | Intelligent power distribution terminal and intelligent power distribution system based on IEC61850 |
CN103245855A (en) * | 2013-04-23 | 2013-08-14 | 国家电网公司 | Digital simulation based method and system for testing relay protection function of intelligent substation |
CN103530824A (en) * | 2013-11-07 | 2014-01-22 | 南京国电南自轨道交通工程有限公司 | Method for producing knowledge base of intelligent warning system of transformer substation based on template base |
CN104535861A (en) * | 2014-12-23 | 2015-04-22 | 国网四川省电力公司阿坝供电公司 | General template for automated relay protection tester and instantiation method of general template |
CN106033102A (en) * | 2015-03-13 | 2016-10-19 | 南京南瑞继保工程技术有限公司 | Relay protection test method and system |
CN105929277A (en) * | 2016-05-10 | 2016-09-07 | 东南大学 | Method and system for standardizing automatic testing schemes of replay protection device |
CN107515344A (en) * | 2017-10-18 | 2017-12-26 | 南京能云电力科技有限公司 | Test system and method for a kind of whole station information intelligent of digital transformer substation to point |
CN107786000A (en) * | 2017-10-18 | 2018-03-09 | 南京能云电力科技有限公司 | The intelligent generation method of digital relay protection tester configuration file |
CN109872112A (en) * | 2017-12-05 | 2019-06-11 | 国家电网公司 | Automatic closed-loop detection method and device for intelligent substation |
CN108414849A (en) * | 2018-01-16 | 2018-08-17 | 国网浙江宁波市鄞州区供电有限公司 | Intelligent substation automatization test system and method |
CN108802517A (en) * | 2018-03-06 | 2018-11-13 | 许继集团有限公司 | A kind of test method and system of site protective device |
CN109030971A (en) * | 2018-04-12 | 2018-12-18 | 广东电网有限责任公司 | A kind of method that flexible direct current FT3 message template library is formed |
CN109406993A (en) * | 2018-10-11 | 2019-03-01 | 国网江苏省电力有限公司电力科学研究院 | Relay protection automatic test approach, apparatus and system based on recorded wave file playback |
CN109613906A (en) * | 2018-11-08 | 2019-04-12 | 国网湖南省电力有限公司 | The third-generation intelligent substation measurement and control sub-machine test system and its application method |
CN110687375A (en) * | 2019-10-11 | 2020-01-14 | 南京能云电力科技有限公司 | Parallel automatic test system and method for relay protection device |
CN110824279A (en) * | 2019-11-15 | 2020-02-21 | 上海思源弘瑞自动化有限公司 | Automatic testing system and method for relay protection device |
Non-Patent Citations (4)
Title |
---|
LI ZHONGQING 等: "Sampled data synchronization scheme for relay protection in smart substation", 《2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY》 * |
卜强生 等: "就地化保护装置流水线测试系统研制", 《电力系统自动化》 * |
李刚 等: "智能变电站就地化保护仿真测试系统设计与探讨", 《电力系统保护与控制》 * |
秦昌嵩 等: "一种就地化保护装置自动测试系统", 《电工技术》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112286522A (en) * | 2020-10-23 | 2021-01-29 | 许昌许继软件技术有限公司 | Multi-interval function configuration method and device for centralized station terminal |
CN112964954A (en) * | 2021-03-03 | 2021-06-15 | 国网江苏省电力有限公司无锡供电分公司 | Multi-interval protection batch test method based on hardware serial number replacement |
CN112964954B (en) * | 2021-03-03 | 2023-02-28 | 国网江苏省电力有限公司无锡供电分公司 | A Multi-interval Protection Batch Test Method Based on Hardware Serial Number Replacement |
CN114123484A (en) * | 2021-10-08 | 2022-03-01 | 河北省送变电有限公司 | A comprehensive fault diagnosis instrument and fault diagnosis method for secondary equipment of intelligent substation |
CN114123484B (en) * | 2021-10-08 | 2023-10-10 | 河北省送变电有限公司 | Comprehensive fault diagnosis instrument and fault diagnosis method for secondary equipment of intelligent substation |
CN114089120A (en) * | 2021-11-25 | 2022-02-25 | 国网陕西省电力公司西咸新区供电公司 | Intelligent substation secondary voltage loop fault diagnosis positioning device and method |
Also Published As
Publication number | Publication date |
---|---|
CN111458586B (en) | 2022-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111458586B (en) | Batch synchronization detection method and system for multi-interval localized line protection devices in smart substations | |
CN105785199B (en) | Multifunctional ligand electric terminals integrated test system and its working method | |
CN104133146B (en) | A kind of feeder automation fault handling logic on-the-spot test method | |
CN113343446B (en) | Data analysis and verification method and system for transformer substation monitoring system | |
CN103414251B (en) | A kind of substation network communication analogue system based on IEC61850 | |
CN108872752A (en) | A kind of power distribution automation device detection system and its method | |
CN102565585A (en) | Method for building intelligent substation relay protection cooperation simulation testing system | |
CN103679350A (en) | Power grid switching operation ticket automatic generating system and method | |
CN103105550A (en) | Detection method and detection system of intelligent relay protection device | |
CN103076520A (en) | Dynamic analogue simulation detection platform and analogue simulation method for secondary system of intelligent substation | |
CN109613906B (en) | Third-generation intelligent substation measurement and control submachine test system and application method thereof | |
CN103713214A (en) | Intelligent transformer station relay protection closed loop test system | |
CN103176084A (en) | Intelligent substation simulation system in panoramic replace mode and integration testing method for intelligent substation simulation system | |
CN208721998U (en) | Station-level acceptance system of intelligent substation based on panoramic simulation | |
CN106771760B (en) | Distributed FA function diagnosis method based on master station simulation | |
CN112711829A (en) | Intelligent substation secondary equipment batch production intelligent maintenance system | |
CN101739877A (en) | Simulation training system of 10KV typical customer distribution room | |
CN113364120B (en) | Method, device and equipment for checking control process of intelligent substation and storage medium | |
CN104104151B (en) | The cut-in method of distribution terminal facility information | |
CN110865263A (en) | A virtual test method for smart substation based on minimum test system | |
CN201839095U (en) | Intelligent transformer substation testing and simulation system | |
CN104505941A (en) | Monitoring system and simulating running system for intelligent substation network | |
CN111458585B (en) | Automatic detection method and device for localized line protection device based on automatic construction of use cases | |
CN201319052Y (en) | Auto-switch-on integrated tester | |
CN206178129U (en) | WAMS capability test system based on RTDS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |