CN111458390A - 一种Fe3O4修饰电极材料的制备方法和用途 - Google Patents

一种Fe3O4修饰电极材料的制备方法和用途 Download PDF

Info

Publication number
CN111458390A
CN111458390A CN202010282007.2A CN202010282007A CN111458390A CN 111458390 A CN111458390 A CN 111458390A CN 202010282007 A CN202010282007 A CN 202010282007A CN 111458390 A CN111458390 A CN 111458390A
Authority
CN
China
Prior art keywords
solution
microemulsion
electrode material
alkali
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010282007.2A
Other languages
English (en)
Other versions
CN111458390B (zh
Inventor
陈龙
邵培源
范长春
魏婷婷
史玉琳
杨振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shihezi University
Original Assignee
Shihezi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shihezi University filed Critical Shihezi University
Priority to CN202010282007.2A priority Critical patent/CN111458390B/zh
Publication of CN111458390A publication Critical patent/CN111458390A/zh
Application granted granted Critical
Publication of CN111458390B publication Critical patent/CN111458390B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种Fe3O4修饰电极材料的制备方法和用途,该方法先将Fe3+/Fe2+水溶液以及碱溶液分别与表面活性剂和有机溶剂组成的有机相溶液混合形成两个微乳液,再将Fe3+/Fe2+微乳液逐步滴加进碱微乳液中,在表面活性剂形成的胶束中经反应、成核、生长、聚结得到Fe3O4胶体,经抽滤、真空干燥得到Fe3O4粉体材料,再分散在无水乙醇‑Nafion溶液中得到Fe3O4修饰电极材料,将该修饰电极材料用于葡萄糖检测,检测灵敏度可达1830μA/mM cm2,最低检测限达到0.4μM,检测范围达到10μM‑100mM,其电流响应高、稳定性好,能提高对葡萄糖的检测效率、准确度和灵敏度,拓宽葡萄糖检测的线性区间,并且实现较低的检出限。并具有粒径较小、分布均匀,形貌可控,且葡萄糖检测性能良好等优点。

Description

一种Fe3O4修饰电极材料的制备方法和用途
技术领域
本发明涉及一种Fe3O4修饰电极材料的制备方法和用途。
背景技术
葡萄糖是人体内最重要的单糖,也是临床医学总体评估人体健康的重要指标,血糖浓度的动态监测是实现糖尿病管理的有效途径。而利用电化学分析法(electrochemicalanalysis)可以非常准确快捷地实现对血糖浓度的动态检测。电化学分析法是应用电化学原理和技术,利用化学电池内被分析溶液的组成及含量与其电化学性质的关系而建立起来的一类分析方法。其特点是灵敏度高,选择性好,设备简单,操作方便,应用范围广。
由过渡金属氧化物所制得的无酶型葡萄糖传感器由于成本低,稳定,安全,环保,电性能好,氧化还原性能好,受到了人们的广泛关注。在检测葡萄糖的过程中,无酶葡萄糖传感器电极以表面的化学颗粒作为催化剂氧化葡萄糖,是影响葡萄糖氧化速率的主要因素,不同的修饰材料所制备的不同修饰电极的特性也大不相同,所以电极材料尤为关键。
纳米级Fe3O4粉体材料具有优异的生物相容性,超顺磁性,更大的矫顽力等特点,可广泛应用于催化、磁流体、纳米医学、数据存储、环境整治、化学传感器以及光子晶体等领域。近年来,纳米Fe3O4的形状控制合成受到越来越多的关注,其催化、光学、电学、磁性、化学等方面表现出了显著的形状依赖性。由于其优良的电化学活性,催化性能好,生物相容性好,高电导率,可调节的表面结构和合适的表面电荷等特性,作为高效葡萄糖传感器电极具有极大的研究价值,可为实现非酶葡萄糖传感器的大规模商品化生产的实际应用提供参考。
近年来发展出了多种制备纳米Fe3O4的方法,总体上可以分为固相法(干法)和液相法(湿法)两大类。不同的方法,其反应原理、反应设备和反应条件有很大区别,其产物的形貌及性质也不尽相同。固相法的典型特征是以固相物质作为反应物,不经过溶液过程而制备出目标产物的方法。热分解方法和球磨方法是研究较多的纳米Fe3O4的固相制备方法;而液相法则以液态体系为反应前驱体系,经过沉淀、脱水和结晶等过程,制备得到纳米Fe3O4。其中,共沉淀法、水(溶剂)热法等是研究较多的制备纳米Fe3O4的液相方法。球磨方法和热分解法,能耗高且制备出的Fe3O4的颗粒大。共沉淀法制备周期短、条件温和、成本低且工艺设备操作简单,是制备纳米Fe3O4的主流方法,但传统的共沉淀法制备纳米Fe3O4粉体材料,对成核和结晶过程的控制模糊,晶体生长过程往往伴随着晶核的聚集,导致产品团聚现象明显,颗粒粒径大小分布不均。水(溶剂)热法需要在高温高压环境下,对设备要求极高。基于以上问题,我们发明了用双微乳液法合成用于葡萄糖检测的Fe3O4修饰电极材料的制备方法。
发明内容
本发明目的在于,提供了一种Fe3O4修饰电极材料的制备方法和用途,该方法采用双微乳液法,先将Fe3+/Fe2+水溶液以及碱溶液分别与表面活性剂和有机溶剂组成的有机相溶液混合形成两个微乳液,再将Fe3+/Fe2+微乳液逐步滴加进碱微乳液中,在表面活性剂形成的胶束中经反应、成核、生长、聚结得到Fe3O4胶体;然后经抽滤、真空干燥得到纳米级Fe3O4粉体材料,再将Fe3O4粉体材料分散在无水乙醇-Nafion溶液中得到Fe3O4修饰电极材料;该材料用于葡萄糖检测,检测灵敏度可达1830μA/mM cm2,最低检测限达到0.4μM,检测范围达到10μM-100mM,其电流响应高、稳定性好,能提高对葡萄糖的检测效率和准确度。将其应用于葡萄糖的检测可有效提高葡萄糖检测的灵敏度,拓宽葡萄糖检测的线性区间,并且可以实现较低的检出限。该方法得到的Fe3O4具有粒径较小、分布均匀,形貌可控,稳定性强,且葡萄糖检测性能良好等优点。
本发明所述的一种Fe3O4修饰电极材料的制备方法,采用双微乳液法,具体操作按下列步骤进行:
制备混合盐微乳液:
a、按摩尔比为1:2称量FeCl2·4H2O和FeCl3·6H2O,加入去离子水混合溶解,搅拌均匀,配制成浓度为0.3-4mol/L的Fe3+/Fe2+混合盐溶液A;
b、按体积比1.0-3.0∶1.5-5.0∶5.0-16.0分别称取曲拉通X-100,正庚醇和正庚烷,混合搅拌配制成有机相溶液B;
c、然后将溶液A缓慢滴加到溶液B中,磁力搅拌1-2h,形成Fe3+/Fe2+混合盐微乳液C;
制备碱微乳液:
d、按照碱和Fe3+/Fe2+混合盐摩尔比1.2-2.0:1称取碱类沉淀剂,常温下加入去离子水搅拌溶解得到0.3-4mol/L碱溶液D,其中碱类沉淀剂为氢氧化钠、氨水或碳酸氢铵;
e、将步骤d得到的碱溶液D逐滴加入到步骤b中得到的有机相溶液B中,磁力搅拌2-4h,形成碱微乳液E;
制备Fe3O4粉体材料:
f、将步骤c中得到的微乳液C逐滴滴入步骤e中得到的微乳液E内,反应温度0-60℃,反应2-6h,然后将其静置、洗涤、离心、干燥、研磨,得到纳米级Fe3O4粉体材料;
制备Fe3O4修饰电极材料:
g、将步骤f得到的浓度为5-20mg/mL的Fe3O4粉体材料,分散在Nafion质量分数为0.1-1wt%的无水乙醇-Nafion溶液中,超声分散均匀,再将其滴加到打磨好的玻碳电极上,形成形貌为球形颗粒,粒径在100nm的Fe3O4修饰电极材料。
步骤a、步骤b和步骤d中Fe3+/Fe2+混合盐溶液和碱溶液与曲拉通X-100的摩尔比分别为0.2-1.0和0.1-0.5。
步骤b中曲拉通X-100由十六烷基三甲基溴化铵、司盘80或吐温80替换。
所述方法获得的Fe3O4修饰电极材料在制备葡萄糖检测中的应用。
本发明所述的一种Fe3O4修饰电极材料的制备方法和用途,其特点为:
制备出的纳米级Fe3O4粉体材料,粒径分布均匀,球形性好,磁性能优异,在磁记录材料、磁流体、催化、医药、颜料等方面具有广泛的应用;
方便快捷地制备出纳米级的磁性Fe3O4粉体材料,且制备方法简单,设备要求低,适合于大批量生产,是一种具有广阔前景的制备方法。
附图说明
图1为本发明实施例2所制备的Fe3O4材料的扫描电子显微镜照片(SEM);
图2为本发明实施例2所制备的Fe3O4材料的X射线衍射图(XRD)。
具体实施方式
实施例1
制备混合盐微乳液:
a、按摩尔比为1:2称量FeCl2·4H2O和FeCl3·6H2O,加入去离子水混合溶解,搅拌均匀,配制成浓度为0.3mol/L的Fe3+/Fe2+混合盐溶液A;
b、同时按体积比1.0∶1.5∶5.0分别量取曲拉通X-100,正庚醇和正庚烷,将其混合搅拌配制成有机相溶液B,其中Fe3+/Fe2+混合盐溶液与曲拉通X-100的摩尔比为0.2;
c、然后将溶液A缓慢滴加到溶液B中,磁力搅拌1h,形成Fe3+/Fe2+混合盐微乳液C;
制备氢氧化钠微乳液:
d、按照氢氧化钠和步骤a得到的Fe3+/Fe2+混合盐的摩尔比1.2:1称取分析纯氢氧化钠,常温下加入去离子水搅拌溶解得到0.3mol/L氢氧化钠溶液D;
e、将步骤d得到的氢氧化钠溶液D逐滴加入到步骤b中得到的有机相溶液B中,磁力搅拌2h,形成氢氧化钠微乳液E;其中,氢氧化钠溶液与曲拉通X-100的摩尔比为0.1;
制备Fe3O4粉体材料:
f、将步骤c中得到的微乳液C逐滴滴入步骤e中得到的氢氧化钠微乳液E内,反应温度60℃,反应2h,然后将其静置、洗涤、离心、干燥、研磨,得到形貌为球形颗粒的纳米级Fe3O4粉体材料,粒径在90nm;
制备Fe3O4修饰电极材料:
g、将步骤f得到的浓度为5mg/mL的Fe3O4粉体材料,分散在Nafion质量分数为0.1wt%的无水乙醇-Nafion溶液中,超声分散均匀,再将其滴加到打磨好的玻碳电极上,形成形貌为球形颗粒,粒径在100nm的Fe3O4修饰电极材料。
实施例2
制备混合盐微乳液:
按照摩尔比为1:2称量FeCl2·4H2O和FeCl3·6H2O,加入去离子水混合溶解,搅拌均匀,配制成4mol/L的Fe3+/Fe2+混合盐溶液A;
b、同时按照体积比3.0:5.0:16.0分别量取曲拉通X-100,正庚醇和正庚烷,将其混合搅拌配制成有机相溶液B,其中Fe3+/Fe2+混合盐溶液与曲拉通X-100的摩尔比为1.0;
c、然后将步骤a中得到的溶液A缓慢滴加到步骤b得到的溶液B中,磁力搅拌2h,形成Fe3+/Fe2+混合盐微乳液C;
制备氢氧化钠微乳液:
d、按照氢氧化钠和Fe3+/Fe2+混合盐摩尔比2.0:1称取分析纯氢氧化钠试剂,常温下加入去离子水搅拌溶解得到4mol/L氢氧化钠溶液D,其中氢氧化钠溶液与曲拉通X-100的摩尔比为0.5;
e、将步骤d得到的碱溶液D逐滴加入到步骤b中得到的有机相溶液B中,磁力搅拌4h,形成氢氧化钠微乳液E;
制备Fe3O4粉体材料:
f、将步骤c中得到的微乳液C逐滴滴入步骤e中得到的氢氧化钠微乳液E内,反应温度0℃,反应6h,然后将其静置、洗涤、离心、干燥、研磨,得到形貌为球形颗粒的纳米级Fe3O4粉体材料,粒径在85nm;
制备Fe3O4修饰电极材料:
g、将步骤f得到的浓度为20mg/mL的Fe3O4粉体材料,分散在Nafion质量分数为1wt%的无水乙醇-Nafion溶液中,超声分散均匀,再将其滴加到打磨好的玻碳电极上,形成形貌为球形颗粒,粒径在100nm的Fe3O4修饰电极材料。
实施例3
制备混合盐微乳液:
a、按照摩尔比为1:2称量FeCl2·4H2O和FeCl3·6H2O,加入去离子水混合溶解,搅拌均匀,配制成1.0mol/L的Fe3+/Fe2+混合盐溶液A;
b、同时按照体积比为1.5:2.5:8.0分别量取十六烷基三甲基溴化铵,正庚醇和正庚烷,将其混合搅拌配制成有机相溶液B,其中Fe3+/Fe2+混合盐溶液与十六烷基三甲基溴化铵的摩尔比为0.4;
c、然后将溶液A缓慢滴加到溶液B中,磁力搅拌1-2h,形成Fe3+/Fe2+混合盐微乳液C;
制备氨水微乳液:
d、按照氨水和Fe3+/Fe2+混合盐摩尔比1.4:1量取氨水,常温下加入去离子水搅拌溶解的到1.0mol/L氨水溶液D,其中氨水溶液与十六烷基三甲基溴化铵的摩尔比为0.2;
e、将步骤d得到的氨水溶液D逐滴加入到步骤b中得到的有机相溶液B中,磁力搅拌3h,形成氨水微乳液E;
制备Fe3O4粉体材料:
f、将步骤c中得到的微乳液C逐滴滴入步骤e中得到的氨水微乳液E内,反应温度50℃,反应3h,然后将其静置、洗涤、离心、干燥、研磨,得到形貌为球形颗粒的纳米级Fe3O4粉体材料,粒径在105nm;
制备Fe3O4修饰电极材料:
g、将步骤f得到的浓度为10mg/mL的Fe3O4粉体材料,分散在Nafion质量分数为0.3wt%的无水乙醇-Nafion溶液中,超声分散均匀,再将其滴加到打磨好的玻碳电极上,形成形貌为球形颗粒,粒径在100nm的Fe3O4修饰电极材料。
实施例4
制备混合盐微乳液:
a、按照摩尔比为1:2称量FeCl2·4H2O和FeCl3·6H2O,加入去离子水混合溶解,搅拌均匀,配制成2.0mol/L的Fe3+/Fe2+混合盐溶液A;
b、同时按照体积比为2.0:3.5:11分别量取司盘80,正庚醇和正庚烷,将其混合搅拌配制成有机相溶液B,其中Fe3+/Fe2+混合盐溶液与司盘80的摩尔比为0.6;
c、然后将溶液A缓慢滴加到溶液B中,磁力搅拌2h,形成Fe3+/Fe2+混合盐微乳液C;
制备碳酸氢铵微乳液:
d、按照碳酸氢铵和Fe3+/Fe2+混合盐摩尔比1.6:1取碳酸氢铵,常温下加入去离子水搅拌溶解得到2.0mol/L碳酸氢铵溶液D,其中碳酸氢铵溶液与司盘80的摩尔比为0.3;
e、将步骤d得到的碳酸氢铵溶液D逐滴加入到步骤b中得到的有机相溶液B中,磁力搅拌3h,形成碳酸氢铵微乳液E;
制备Fe3O4粉体材料:
f、将步骤c中得到的微乳液C逐滴滴入步骤e中得到的碳酸氢铵微乳液E内,反应温度4℃,反应4h,然后将其静置、洗涤、离心、干燥、研磨,得到形貌为球形颗粒的纳米级Fe3O4粉体材料,粒径在95nm;
制备Fe3O4修饰电极材料:
g、将步骤f得到的浓度为15mg/mL的Fe3O4粉体材料,分散在Nafion质量分数为0.6wt%的无水乙醇-Nafion溶液中,超声分散均匀,再将其滴加到打磨好的玻碳电极上,形成形貌为球形颗粒,粒径在100nm的Fe3O4修饰电极材料。
实施例5
制备混合盐微乳液:
a、按照摩尔比为1:2称量FeCl2·4H2O和FeCl3·6H2O,加入去离子水混合溶解,搅拌均匀,配制成3.0mol/L的Fe3+/Fe2+混合盐溶液A;
b、同时按照体积比为2.5:4.5:14分别量取吐温80,正庚醇和正庚烷,将其混合搅拌配制成有机相溶液B,其中Fe3+/Fe2+混合盐溶液与吐温80的摩尔比为0.8;
c、然后将溶液A缓慢滴加到溶液B中,磁力搅拌1.5h,形成Fe3+/Fe2+混合盐微乳液C;
制备碳酸氢铵和氨水微乳液:
d、按照碳酸氢铵及氨水和Fe3+/Fe2+混合盐摩尔比1.8:1取氨水及碳酸氢铵,常温下加入去离子水搅拌溶解得到3mol/L碳酸氢铵及氨水溶液D,其中氨水及碳酸氢铵混合溶液与吐温80的摩尔比为0.4;
e、将步骤d得到的碳酸氢铵及氨水溶液D逐滴加入到步骤b中得到的有机相溶液B中,磁力搅拌3h,形成碳酸氢铵及氨水微乳液E;
制备Fe3O4粉体材料:
f、将步骤c中得到的微乳液C逐滴滴入步骤e中得到的碳酸氢铵及氨水微乳液E内,反应温度2℃,反应5h,然后将其静置、洗涤、离心、干燥、研磨,得到形貌为球形颗粒的纳米级Fe3O4粉体材料,粒径在110nm;
制备Fe3O4修饰电极材料:
g、将步骤f得到的浓度为18mg/mL的Fe3O4分散在Nafion质量分数为0.8wt%的无水乙醇-Nafion溶液中,超声分散均匀,再将其滴加到打磨好的玻碳电极上,形成形貌为球形颗粒,粒径在100nm的Fe3O4修饰电极材料。
实施例6
将实施例1-5得到的任意一种Fe3O4修饰电极材料,分散修饰在玻碳电极上用于葡萄糖检测,以Fe3O4/GCE修饰电极检测无酶葡萄糖:
利用Fe3O4/GCE修饰电极材料组装无酶葡萄糖电化学传感器,将Fe3O4/GCE修饰电极材料作为工作电极,将饱和Ag/AgCl电极作为参比电极,将铂丝电极作为辅助电极,组成三电极体系,用于葡萄糖浓度的电化学测定;
进行葡萄糖浓度的电化学测定时,首先将三电极体系中Fe3O4/GCE修饰电极材料工作电极放置在不少于50mL的浓度为0.01-1M NaOH溶液中,并通入氧气,并在0.4-0.6V恒电位下,记录电流-时间(it)曲线,当电流达到稳态后,用微量进样器加葡萄糖溶液样品到NaOH溶液中,记录时间-电流响应;在不同葡萄糖溶液浓度下测得传感器对葡萄糖的电流响应值,并在NaOH溶液中葡萄糖浓度为10μM-100mM范围内,得到电流与葡萄糖浓度的线性关系曲线,利用该线性关系曲线及相应的线性方程,测定葡萄糖溶液试样的浓度,从而完成对葡萄糖浓度的电化学测定,检测限为0.4-1.8μM,灵敏度最高为896-1830μA/mM cm2
根据Fe3O4/GCE修饰电极无酶葡萄糖电化学传感器,在检测葡萄糖过程中,对于存在色氨酸、甘氨酸、尿酸、盐酸多巴胺以及抗坏血酸干扰物情况下的葡萄糖溶液样品,Fe3O4/GCE修饰电极对干扰物的电流响应不会影响葡萄糖的检测。

Claims (4)

1.一种Fe3O4修饰电极材料的制备方法,其特征在于该方法采用双微乳液法,具体操作按下列步骤进行:
制备混合盐微乳液:
a、按摩尔比为1:2称量FeCl2·4H2O和FeCl3·6H2O,加入去离子水混合溶解,搅拌均匀,配制成浓度为0.3-4 mol/L的Fe3+/Fe2+混合盐溶液A;
b、按体积比1.0-3.0∶1.5-5.0∶5.0-16.0分别称取曲拉通X-100,正庚醇和正庚烷,混合搅拌配制成有机相溶液B;
c、然后将溶液A缓慢滴加到溶液B中,磁力搅拌1-2 h,形成Fe3+/Fe2+混合盐微乳液C;
制备碱微乳液:
d、按照碱和Fe3+/Fe2+混合盐摩尔比1.2-2.0:1称取碱类沉淀剂,常温下加入去离子水搅拌溶解得到0.3-4 mol/L碱溶液D,其中碱类沉淀剂为氢氧化钠、氨水或碳酸氢铵;
e、将步骤d得到的碱溶液D逐滴加入到步骤b中得到的有机相溶液B中,磁力搅拌2-4 h,形成碱微乳液E;
制备Fe3O4粉体材料:
f、将步骤c中得到的微乳液C逐滴滴入步骤e中得到的微乳液E内,反应温度0-60℃,反应2-6 h,然后静置、洗涤、离心、干燥、研磨,得到纳米级Fe3O4粉体材料;
制备Fe3O4修饰电极材料:
g、将步骤f得到的浓度为5-20 mg/mL的Fe3O4粉体材料,分散在Nafion质量分数为0.1-1wt%的无水乙醇-Nafion溶液中,超声分散均匀,再将其滴加到打磨好的玻碳电极上,形成形貌为球形颗粒,粒径在100 nm的Fe3O4修饰电极材料。
2.根据权利要求1所述的一种Fe3O4修饰电极材料的制备方法,其特征在于步骤a、步骤b和步骤d中Fe3+/Fe2+混合盐溶液和碱溶液与曲拉通X-100的摩尔比分别为0.2-1.0和0.1-0.5。
3.根据权利要求1所述一种Fe3O4修饰电极材料的制备方法,其特征在于步骤b中曲拉通X-100应由十六烷基三甲基溴化铵、司盘80或吐温80替换。
4.一种权利要求1所述方法获得的Fe3O4修饰电极材料在制备葡萄糖检测中的应用。
CN202010282007.2A 2020-04-11 2020-04-11 一种Fe3O4修饰电极材料的制备方法和用途 Active CN111458390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010282007.2A CN111458390B (zh) 2020-04-11 2020-04-11 一种Fe3O4修饰电极材料的制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010282007.2A CN111458390B (zh) 2020-04-11 2020-04-11 一种Fe3O4修饰电极材料的制备方法和用途

Publications (2)

Publication Number Publication Date
CN111458390A true CN111458390A (zh) 2020-07-28
CN111458390B CN111458390B (zh) 2023-05-19

Family

ID=71677208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010282007.2A Active CN111458390B (zh) 2020-04-11 2020-04-11 一种Fe3O4修饰电极材料的制备方法和用途

Country Status (1)

Country Link
CN (1) CN111458390B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087827A (ja) * 2005-09-22 2007-04-05 Kyushu Institute Of Technology 電極触媒、および、その製造方法
CN100999349A (zh) * 2007-01-12 2007-07-18 湖南大学 一种银/磁纳米颗粒及其制备方法
CN103439395A (zh) * 2013-09-18 2013-12-11 桂林理工大学 利用Fe3O4磁性纳米粒子高灵敏度的快速检测血液中的对乙酰氨基酚的方法
CN103811746A (zh) * 2014-02-20 2014-05-21 新乡锦润科技有限公司 利用微乳液制备纳米三元复合锂离子正极材料的方法
CN103926297A (zh) * 2014-05-04 2014-07-16 扬州大学 一种复合材料的葡萄糖传感器的制备方法
CN104993123A (zh) * 2015-06-02 2015-10-21 中国东方电气集团有限公司 一种锂离子电池镍钴锰酸锂正极材料反相微乳液辅助制备方法
CN107576702A (zh) * 2017-09-06 2018-01-12 重庆医科大学 一种用于血清中galectin‑3浓度检测的电化学传感器制备方法
CN109437324A (zh) * 2018-09-17 2019-03-08 石河子大学 一种利用微反应器制备的尖晶石结构材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087827A (ja) * 2005-09-22 2007-04-05 Kyushu Institute Of Technology 電極触媒、および、その製造方法
CN100999349A (zh) * 2007-01-12 2007-07-18 湖南大学 一种银/磁纳米颗粒及其制备方法
CN103439395A (zh) * 2013-09-18 2013-12-11 桂林理工大学 利用Fe3O4磁性纳米粒子高灵敏度的快速检测血液中的对乙酰氨基酚的方法
CN103811746A (zh) * 2014-02-20 2014-05-21 新乡锦润科技有限公司 利用微乳液制备纳米三元复合锂离子正极材料的方法
CN103926297A (zh) * 2014-05-04 2014-07-16 扬州大学 一种复合材料的葡萄糖传感器的制备方法
CN104993123A (zh) * 2015-06-02 2015-10-21 中国东方电气集团有限公司 一种锂离子电池镍钴锰酸锂正极材料反相微乳液辅助制备方法
CN107576702A (zh) * 2017-09-06 2018-01-12 重庆医科大学 一种用于血清中galectin‑3浓度检测的电化学传感器制备方法
CN109437324A (zh) * 2018-09-17 2019-03-08 石河子大学 一种利用微反应器制备的尖晶石结构材料及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HUI LV 等: "Self-Assembled Mace-Like Fe3O4 Nanostructures as a Lithium-Air Battery Cathode Material", 《AUSTRALIAN JOURNAL OF CHEMISTRY》 *
TING-TING WEI 等: "Synthesis and formation mechanism of monodisperse Mn-Co-Ni-O spinel nanocrystallines", 《ADVANCED POWDER TECHNOLOGY》 *
刘帅朋: "改进型共沉淀法制备四氧化三铁磁粉的工艺优化与表征", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑》 *
张晓婷: "过渡金属氧化物/碳纳米管复合负极材料的制备及电性能研究", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑》 *
焦建国: "氧化铁基纳米棒(颗粒)的可控合成与磁性能研究", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑》 *
王铭纬 等: "一种快速可控制备纳米粒子的新方法——瞬时纳米沉淀法研究进展", 《石河子大学学报:自然科学版》 *

Also Published As

Publication number Publication date
CN111458390B (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
Wang et al. An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure
Ma et al. Preparation of spinel nickel-cobalt oxide nanowrinkles/reduced graphene oxide hybrid for nonenzymatic glucose detection at physiological level
Rani et al. Watsonia meriana flower like Fe3O4/reduced graphene oxide nanocomposite for the highly sensitive and selective electrochemical sensing of dopamine
Fang et al. Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine
Wang et al. Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods
Xiao et al. Macro-/meso-porous NiCo 2 O 4 synthesized by template-free solution combustion to enhance the performance of a nonenzymatic amperometric glucose sensor
Zhang et al. Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor
Ni et al. In-situ growth of Co 3 O 4 nanoparticles on mesoporous carbon nanofibers: a new nanocomposite for nonenzymatic amperometric sensing of H 2 O 2
Song et al. A hollow urchin-like α-MnO 2 as an electrochemical sensor for hydrogen peroxide and dopamine with high selectivity and sensitivity
Tashkhourian et al. A new bifunctional nanostructure based on Two-Dimensional nanolayered of Co (OH) 2 exfoliated graphitic carbon nitride as a high performance enzyme-less glucose sensor: Impedimetric and amperometric detection
Zhao et al. Synthesis, growth mechanism of different Cu nanostructures and their application for non-enzymatic glucose sensing
Wen et al. Flake-like Cu2O on TiO2 nanotubes array as an efficient nonenzymatic H2O2 biosensor
Pal et al. A highly efficient non-enzymatic glucose biosensor based on a nanostructured NiTiO 3/NiO material
Ikram et al. Crystalline growth of tungsten trioxide (WO 3) nanorods and their development as an electrochemical sensor for selective detection of vitamin C
Feng et al. Electrochemical sensor based on N-doped carbon dots decorated with manganese oxide nanospheres for simultaneous detection of p-aminophenol and paracetamol
CN105628764A (zh) 一种检测尿酸的电化学传感器及其制备和应用
Biswas et al. Sol-gel synthesis of cubic titanium dioxide nanoparticle using poly (ethylene glycol) as a capping agent: voltammetric simultaneous determination of uric acid and guanine
Hussein et al. A sensitive non-enzymatic electrochemical glucose sensor based on a ZnO/Co 3 O 4/reduced graphene oxide nanocomposite
Peng et al. Co3O4-chitosan/biomass-derived porous carbon molecularly imprinted polymer integrated electrode for selective detection of glucose
Wang et al. Electrochemical study of hydrogen peroxide detection on MnO2 micromaterials
Hasanpour et al. NiMnO3 nanoparticles anchored on graphene quantum dot: Application in sensitive electroanalysis of dobutamine
Liu et al. The dependence of Cu2O morphology on different surfactants and its application for non-enzymatic glucose detection
CN111154110A (zh) 二维框架结构电极材料及其制备方法、电化学无酶葡萄糖传感器及其制备方法、应用
Habibi et al. A thioridazine hydrochloride electrochemical sensor based on zeolitic imidazolate framework-67-functionalized bio-mobile crystalline material-41 carbon quantum dots
Dai et al. Sensitive and selective electrochemical sensor for the detection of dopamine by using AuPd@ Fe2O3 nanoparticles as catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant