CN111458150B - 一种基于加表的高可靠性轨控推力器故障判别方法 - Google Patents

一种基于加表的高可靠性轨控推力器故障判别方法 Download PDF

Info

Publication number
CN111458150B
CN111458150B CN202010245757.2A CN202010245757A CN111458150B CN 111458150 B CN111458150 B CN 111458150B CN 202010245757 A CN202010245757 A CN 202010245757A CN 111458150 B CN111458150 B CN 111458150B
Authority
CN
China
Prior art keywords
rail
during
thrust
control
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010245757.2A
Other languages
English (en)
Other versions
CN111458150A (zh
Inventor
刘赟
张召弟
黄军
郭雯婷
方圆
李建文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aerospace Control Technology Institute
Original Assignee
Shanghai Aerospace Control Technology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aerospace Control Technology Institute filed Critical Shanghai Aerospace Control Technology Institute
Priority to CN202010245757.2A priority Critical patent/CN111458150B/zh
Publication of CN111458150A publication Critical patent/CN111458150A/zh
Application granted granted Critical
Publication of CN111458150B publication Critical patent/CN111458150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/96Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by specially adapted arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明公开了一种基于加表的高可靠性轨控推力器故障判别方法,具体可以包括如下至少三个方面的判别:1、轨控推力器测试时故障判别;2、恒推力轨控时故障判别;3、恒加速度轨控时故障判别。该方法基于轨控推力器喷气期间的加速度测量值,通过与标称值进行分级比较,实现高可靠性的快速推力器故障判别,计算简单,易于工程应用。

Description

一种基于加表的高可靠性轨控推力器故障判别方法
技术领域
本发明属于在轨推进系统故障诊断技术领域,尤其涉及一种基于加表的高可靠性轨控推力器故障判别方法。
背景技术
现有的在轨推进系统故障诊断方法事先通过大量样本数据建立故障判别模型,再根据过程采集数据获取误差统计量进行故障判别,但在实际应用时,推进系统敏感器的布置数量有限且采集的测量信息计算误差较大,通过现有诊断方法进行判别可能与实际不符,出现错判和虚判,为了在轨控期间进行实时高可靠性判别,需要采取一定的技术途径来保证推力器故障判别的实时性与高可靠性。
发明内容
本发明的技术解决问题:克服现有技术的不足,提供一种了基于加表的高可靠性轨控推力器故障判别方法,实现了对轨控推力器执行故障情况的实时、可靠判别。
为了解决上述技术问题,本发明公开了一种基于加表的高可靠性轨控推力器故障判别方法,包括:
计算测试喷气期间的速度增量和角速度增量;
估计测试喷气期间的轨控推力和干扰力矩;
根据计算得到的测试喷气期间的速度增量和角速度增量、以及估计的测试喷气期间的轨控推力和干扰力矩,进行轨控推力器测试喷气期间的故障判别。
在上述基于加表的高可靠性轨控推力器故障判别方法中,计算测试喷气期间的速度增量和角速度增量,包括:
对轨控推力器测试喷气期间的测量加速度进行积分,得到测试喷气期间的速度增量dvot
Figure BDA0002433933520000021
其中,tc表示控制周期时长,i表示测试喷气期间的周期数,k0表示测试喷气开始时的周期数,kn表示测试喷气结束时的周期数,aot(i)表示测试喷气期间轨控推力方向第i周期的加速度测量值;
根据轨控推力器测试喷气前后的Y轴和Z轴的角速度变化量,计算得到Y轴的角速度增量dωot_y和Z轴的角速度增量dωot_z
ot_y=ωot_y(kn)-ωot_y(k0)
ot_z=ωot_z(kn)-ωot_z(k0)
其中,ωot_y(i)表示第i周期Y轴角速度测量值,ωot_z(i)表示第i周期的Z轴角速度测量值,轨控推力所在方向为X轴。
在上述基于加表的高可靠性轨控推力器故障判别方法中,估计测试喷气期间的轨控推力和干扰力矩,包括:
由测试喷气开始时的飞行器质量m(k0)和测试喷气期间的速度增量dvot,计算得到测试喷气期间的轨控推力估计值Fot_est
Figure BDA0002433933520000022
其中,dtot表示喷气测试的理论喷气输出时长;
由喷气时飞行器惯量、Y轴的角速度增量dωot_y和Z轴的角速度增量dωot_z,计算得到Y轴的干扰力矩估计值Test_y和Z轴的干扰力矩估计值Test_z
Figure BDA0002433933520000023
Figure BDA0002433933520000024
其中,Iyy和Izz分别表示喷气时飞行器Y轴的主惯量和Z轴的主惯量。
在上述基于加表的高可靠性轨控推力器故障判别方法中,根据计算得到的测试喷气期间的速度增量和角速度增量、以及估计的测试喷气期间的轨控推力和干扰力矩,进行轨控推力器测试喷气期间的故障判别,包括:
Fot_est、Test_y和Test_z满足以下任一条件时,确定轨控推力器故障:
条件一:Fot_estot·F0
条件二:Test_y>Ty0
条件三:Test_z>Tz0
其中,αot∈(0,1),表示测试喷气期间的轨控推力故障判断比例阈值;F0表示轨控推力器的额定推力;Ty0表示Y轴的干扰力矩判断阈值;Tz0表示Z轴的干扰力矩判断阈值。
本发明公开了一种基于加表的高可靠性轨控推力器故障判别方法,包括:
计算恒推力轨控期间的动量增量;
估计恒推力轨控期间的轨控推力;
根据计算得到的恒推力轨控期间的动量增量和估计的恒推力轨控期间的轨控推力,进行轨控推力器恒推力轨控期间的故障判别。
在上述基于加表的高可靠性轨控推力器故障判别方法中,计算恒推力轨控期间的动量增量,包括:
根据恒推力轨控期间的飞行器质量和加速度,计算恒推力轨控期间的动量增量dMfc
Figure BDA0002433933520000031
其中,tc表示控制周期时长,j表示恒推力轨控期间的周期数,j0表示恒推力轨控开始时的周期数,pn表示恒推力轨控结束时的周期数,mfc(j)表示恒推力轨控期间第j周期的飞行器质量,afc(j)表示恒推力轨控期间轨控推力方向第j周期的加速度测量值。
在上述基于加表的高可靠性轨控推力器故障判别方法中,估计恒推力轨控期间的轨控推力,包括:
确定恒推力轨控期间的轨控时长dtfc
dtfc=tc·(j-p0)
由恒推力轨控期间的动量增量dMfc和轨控时长dtfc,计算得到当前轨控推力估计值Ffc_est
Figure BDA0002433933520000041
在上述基于加表的高可靠性轨控推力器故障判别方法中,根据计算得到的恒推力轨控期间的动量增量和估计的恒推力轨控期间的轨控推力,进行轨控推力器恒推力轨控期间的故障判别,包括:
Ffc_est满足以下任一条件时,确定轨控推力器故障:
条件一:dtfc1≤dtfc<dtfc2时,Ffc_estfc1·Ffc0
条件二:dtfc2≤dtfc<dtfc3时,Ffc_estfc2·Ffc0
条件三:dtfc3≤dtfc时,Ffc_estfc3·Ffc0
其中,dtfc1、dtfc2和dtfc3分别表示恒推力轨控期间的三级故障判断时间点设定值,0<dtfc1<dtfc2<dtfc3;αfc1、αfc2和αfc3分别表示恒推力轨控期间的三级轨控推力故障判断比例阈值,0<αfc1fc2fc3<1;Ffc0表示恒推力轨控期间的标称推力。
本发明公开了一种基于加表的高可靠性轨控推力器故障判别方法,包括:
计算恒加速度轨控期间的速度增量;
估计恒加速度轨控期间的平均加速度;
根据计算得到的恒加速度轨控期间的速度增量和估计的恒加速度轨控期间的平均加速度,进行轨控推力器恒加速度轨控期间的故障判别。
在上述基于加表的高可靠性轨控推力器故障判别方法中,计算恒加速度轨控期间的速度增量,包括:
对恒加速度轨控期间的测量加速度进行积分,得到恒加速度轨控期间的速度增量dvac
Figure BDA0002433933520000051
其中,tc表示控制周期时长,l表示恒加速度轨控期间的周期数,qo表示恒加速度轨控开始时的周期数,qn表示恒加速度轨控结束时的周期数,aac(l)表示恒加速度轨控期间轨控推力方向第l周期的加速度测量值。
在上述基于加表的高可靠性轨控推力器故障判别方法中,估计恒加速度轨控期间的平均加速度,包括:
确定恒加速度轨控期间的轨控时长dtac
dtac=tc·(l-q0)
由恒加速度轨控期间的速度增量dvac和轨控时长dtac,计算得到恒加速度轨控期间的平均加速度估计值aac_est
Figure BDA0002433933520000052
在上述基于加表的高可靠性轨控推力器故障判别方法中,根据计算得到的恒加速度轨控期间的速度增量和估计的恒加速度轨控期间的平均加速度,进行轨控推力器恒加速度轨控期间的故障判别,包括:
aac_est满足以下任一条件时,确定轨控推力器故障:
条件一:dtac1≤dtac<dtac2时,aac_estac1·aac0
条件二:dtac2≤dtac<dtac3时,aac_estac2·aac0
条件三:dtac3≤dtac时,aac_estac3·aac0
其中,dtac1、dtac2和dtac3分别表示恒加速度轨控期间的三级故障判断时间点设定值,0<dtac1<dtac2<dtac3;αac1、αac2和αac3分别表示恒加速度轨控期间的三级轨控推力故障判断比例阈值,0<αac1ac2ac3<1;表示恒加速度轨控期间的标称加速度值。
本发明具有以下优点:
(1)本发明公开了一种基于加表的高可靠性轨控推力器故障判别方法,基于轨控推力器喷气期间的加速度测量值,通过与标称值进行分级比较,实现高可靠性的快速推力器故障判别,无需基于大量数据样本建立故障判别模型,算法简单;无需在燃料储箱布置敏感器采集储箱温度、压力等物理参数,易于工程应用。
(2)本发明公开了一种基于加表的高可靠性轨控推力器故障判别方法,适用于不同的轨控推力器喷气模式,适用范围广。
(3)本发明公开了一种基于加表的高可靠性轨控推力器故障判别方法,轨控期间,可定义不同的喷气时长和相应阈值进行分级判断,能在实时性和可靠性上进行灵活选择。
附图说明
图1是本发明实施例中一种基于加表的高可靠性轨控推力器故障判别方法的步骤流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明公开的实施方式作进一步详细描述。
本发明公开了一种基于加表的高可靠性轨控推力器故障判别方法,具体可以包括如下至少三个方面的判别:1、轨控推力器测试时故障判别;2、恒推力轨控时故障判别;3、恒加速度轨控时故障判别。
如图1,在本实施例中,在进行轨控推力器故障判别之前,需要先对轨控推力器的喷气模式进行判断,根据判断结果选择相应的故障判别方案进行故障判别。
优选的,当轨控推力器的喷气模式为测试喷气模式时,进行轨控推力器测试时故障判别,具体流程如下:
步骤11,计算测试喷气期间的速度增量和角速度增量。
对轨控推力器测试喷气期间的测量加速度进行积分,得到测试喷气期间的速度增量dvot
Figure BDA0002433933520000061
根据轨控推力器测试喷气前后的Y轴和Z轴的角速度变化量,计算得到Y轴的角速度增量dωot_y和Z轴的角速度增量dωot_z
ot_y=ωot_y(kn)-ωot_y(k0) dωot_z=ωot_z(kn)-ωot_z(k0)
其中,tc表示控制周期时长,i表示测试喷气期间的周期数,k0表示测试喷气开始时的周期数,kn表示测试喷气结束时的周期数,aot(i)表示测试喷气期间轨控推力方向第i周期的加速度测量值,ωot_y(i)表示第i周期Y轴角速度测量值,ωot_z(i)表示第i周期的Z轴角速度测量值,轨控推力所在方向为X轴。
步骤12,估计测试喷气期间的轨控推力和干扰力矩。
由测试喷气开始时的飞行器质量m(k0)和测试喷气期间的速度增量dvot,计算得到测试喷气期间的轨控推力估计值Fot_est
Figure BDA0002433933520000071
由喷气时飞行器惯量、Y轴的角速度增量dωot_y和Z轴的角速度增量dωot_z,计算得到Y轴的干扰力矩估计值Test_y和Z轴的干扰力矩估计值Test_z
Figure BDA0002433933520000072
Figure BDA0002433933520000073
其中,dtot表示喷气测试的理论喷气输出时长,Iyy和Izz分别表示喷气时飞行器Y轴的主惯量和Z轴的主惯量。
步骤13,根据计算得到的测试喷气期间的速度增量和角速度增量、以及估计的测试喷气期间的轨控推力和干扰力矩,进行轨控推力器测试喷气期间的故障判别。
Fot_est、Test_y和Test_z满足以下任一条件时,确定轨控推力器故障:
条件一:Fot_estot·F0
条件二:Test_y>Ty0
条件三:Test_z>Tz0
其中,αot∈(0,1),表示测试喷气期间的轨控推力故障判断比例阈值;F0表示轨控推力器的额定推力;Ty0表示Y轴的干扰力矩判断阈值;Tz0表示Z轴的干扰力矩判断阈值。
优选的,当轨控推力器的喷气模式为恒推力模式时,进行恒推力轨控时故障判别,具体流程如下:
步骤21,计算恒推力轨控期间的动量增量。
根据恒推力轨控期间的飞行器质量和加速度,计算恒推力轨控期间的动量增量dMfc
Figure BDA0002433933520000081
其中,tc表示控制周期时长,j表示恒推力轨控期间的周期数,j0表示恒推力轨控开始时的周期数,pn表示恒推力轨控结束时的周期数,mfc(j)表示恒推力轨控期间第j周期的飞行器质量,afc(j)表示恒推力轨控期间轨控推力方向第j周期的加速度测量值。
步骤22,估计恒推力轨控期间的轨控推力。
确定恒推力轨控期间的轨控时长dtfc
dtfc=tc·(j-p0)
由恒推力轨控期间的动量增量dMfc和轨控时长dtfc,计算得到当前轨控推力估计值Ffc_est
Figure BDA0002433933520000082
步骤23,根据计算得到的恒推力轨控期间的动量增量和估计的恒推力轨控期间的轨控推力,进行轨控推力器恒推力轨控期间的故障判别。
Ffc_est满足以下任一条件时,确定轨控推力器故障:
条件一:dtfc1≤dtfc<dtfc2时,Ffc_estfc1·Ffc0
条件二:dtfc2≤dtfc<dtfc3时,Ffc_estfc2·Ffc0
条件三:dtfc3≤dtfc时,Ffc_estfc3·Ffc0
其中,dtfc1、dtfc2和dtfc3分别表示恒推力轨控期间的三级故障判断时间点设定值,0<dtfc1<dtfc2<dtfc3;αfc1、αfc2和αfc3分别表示恒推力轨控期间的三级轨控推力故障判断比例阈值,0<αfc1fc2fc3<1;Ffc0表示恒推力轨控期间的标称推力。
优选的,当轨控推力器的喷气模式为恒加速度模式时,进行恒加速度轨控时故障判别,具体流程如下:
步骤31,计算恒加速度轨控期间的速度增量。
对恒加速度轨控期间的测量加速度进行积分,得到恒加速度轨控期间的速度增量dvac
Figure BDA0002433933520000091
其中,tc表示控制周期时长,l表示恒加速度轨控期间的周期数,qo表示恒加速度轨控开始时的周期数,qn表示恒加速度轨控结束时的周期数,aac(l)表示恒加速度轨控期间轨控推力方向第l周期的加速度测量值。
步骤32,估计恒加速度轨控期间的平均加速度。
确定恒加速度轨控期间的轨控时长dtac
dtac=tc·(l-q0)
由恒加速度轨控期间的速度增量dvac和轨控时长dtac,计算得到恒加速度轨控期间的平均加速度估计值aac_est
Figure BDA0002433933520000092
步骤33,根据计算得到的恒加速度轨控期间的速度增量和估计的恒加速度轨控期间的平均加速度,进行轨控推力器恒加速度轨控期间的故障判别。
aac_est满足以下任一条件时,确定轨控推力器故障:
条件一:dtac1≤dtac<dtac2时,aac_estac1·aac0
条件二:dtac2≤dtac<dtac3时,aac_estac2·aac0
条件三:dtac3≤dtac时,aac_estac3·aac0
其中,dtac1、dtac2和dtac3分别表示恒加速度轨控期间的三级故障判断时间点设定值,0<dtac1<dtac2<dtac3;αac1、αac2和αac3分别表示恒加速度轨控期间的三级轨控推力故障判断比例阈值,0<αac1ac2ac3<1;表示恒加速度轨控期间的标称加速度值。
综上所述,本发明公开了一种基于加表的高可靠性轨控推力器故障判别方法,基于轨控推力器喷气期间的加速度测量值,通过与标称值进行分级比较,实现高可靠性的快速推力器故障判别,计算简单,易于工程应用。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。
本发明说明书中未作详细描述的内容属于本领域技术人员的公知技术。

Claims (12)

1.一种基于加表的高可靠性轨控推力器故障判别方法,其特征在于,包括:
当轨控推力器的喷气模式为测试喷气模式时:
计算测试喷气期间的速度增量和角速度增量;
根据计算得到的测试喷气期间的速度增量和角速度增量,估计测试喷气期间的轨控推力和干扰力矩;
根据估计的测试喷气期间的轨控推力和干扰力矩,进行轨控推力器测试喷气期间的故障判别。
2.根据权利要求1所述的基于加表的高可靠性轨控推力器故障判别方法,其特征在于,计算测试喷气期间的速度增量和角速度增量,包括:
对轨控推力器测试喷气期间的测量加速度进行积分,得到测试喷气期间的速度增量dvot
Figure FDA0003232308720000011
其中,tc表示控制周期时长,i表示测试喷气期间的周期数,k0表示测试喷气开始时的周期数,kn表示测试喷气结束时的周期数,aot(i)表示测试喷气期间轨控推力方向第i周期的加速度测量值;
根据轨控推力器测试喷气前后的Y轴和Z轴的角速度变化量,计算得到Y轴的角速度增量dωot_y和Z轴的角速度增量dωot_z
ot_y=ωot_y(kn)-ωot_y(k0)
ot_z=ωot_z(kn)-ωot_z(k0)
其中,ωot_y(i)表示第i周期Y轴角速度测量值,ωot_z(i)表示第i周期的Z轴角速度测量值,轨控推力所在方向为X轴。
3.根据权利要求2所述的基于加表的高可靠性轨控推力器故障判别方法,其特征在于,估计测试喷气期间的轨控推力和干扰力矩,包括:
由测试喷气开始时的飞行器质量m(k0)和测试喷气期间的速度增量dvot,计算得到测试喷气期间的轨控推力估计值Fot_est
Figure FDA0003232308720000021
其中,dtot表示喷气测试的理论喷气输出时长;
由喷气时飞行器惯量、Y轴的角速度增量dωot_y和Z轴的角速度增量dωot_z,计算得到Y轴的干扰力矩估计值Test_y和Z轴的干扰力矩估计值Test_z
Figure FDA0003232308720000022
Figure FDA0003232308720000023
其中,Iyy和Izz分别表示喷气时飞行器Y轴的主惯量和Z轴的主惯量。
4.根据权利要求3所述的基于加表的高可靠性轨控推力器故障判别方法,其特征在于,根据计算得到的测试喷气期间的速度增量和角速度增量、以及估计的测试喷气期间的轨控推力和干扰力矩,进行轨控推力器测试喷气期间的故障判别,包括:
Fot_est、Test_y和Test_z满足以下任一条件时,确定轨控推力器故障:
条件一:Fot_estot·F0
条件二:Test_y>Ty0
条件三:Test_z>Tz0
其中,αot∈(0,1),表示测试喷气期间的轨控推力故障判断比例阈值;F0表示轨控推力器的额定推力;Ty0表示Y轴的干扰力矩判断阈值;Tz0表示Z轴的干扰力矩判断阈值。
5.根据权利要求1所述的基于加表的高可靠性轨控推力器故障判别方法,其特征在于,还包括:
当轨控推力器的喷气模式为恒加速度模式时:
计算恒推力轨控期间的动量增量;
根据计算得到的恒推力轨控期间的动量增量,估计恒推力轨控期间的轨控推力;
根据估计的恒推力轨控期间的轨控推力,进行轨控推力器恒推力轨控期间的故障判别。
6.根据权利要求5所述的基于加表的高可靠性轨控推力器故障判别方法,其特征在于,计算恒推力轨控期间的动量增量,包括:
根据恒推力轨控期间的飞行器质量和加速度,计算恒推力轨控期间的动量增量dMfc
Figure FDA0003232308720000031
其中,tc表示控制周期时长,j表示恒推力轨控期间的周期数,p0 表示恒推力轨控开始时的周期数,pn表示恒推力轨控结束时的周期数,mfc(j)表示恒推力轨控期间第j周期的飞行器质量,afc(j)表示恒推力轨控期间轨控推力方向第j周期的加速度测量值。
7.根据权利要求6所述的基于加表的高可靠性轨控推力器故障判别方法,其特征在于,估计恒推力轨控期间的轨控推力,包括:
确定恒推力轨控期间的轨控时长dtfc
dtfc=tc·(j-p0)
由恒推力轨控期间的动量增量dMfc和轨控时长dtfc,计算得到当前轨控推力估计值Ffc_est
Figure FDA0003232308720000032
8.根据权利要求7所述的基于加表的高可靠性轨控推力器故障判别方法,其特征在于,根据计算得到的恒推力轨控期间的动量增量和估计的恒推力轨控期间的轨控推力,进行轨控推力器恒推力轨控期间的故障判别,包括:
Ffc_est满足以下任一条件时,确定轨控推力器故障:
条件一:dtfc1≤dtfc<dtfc2时,Ffc_estfc1·Ffc0
条件二:dtfc2≤dtfc<dtfc3时,Ffc_estfc2·Ffc0
条件三:dtfc3≤dtfc时,Ffc_estfc3·Ffc0
其中,dtfc1、dtfc2和dtfc3分别表示恒推力轨控期间的三级故障判断时间点设定值,0<dtfc1<dtfc2<dtfc3;αfc1、αfc2和αfc3分别表示恒推力轨控期间的三级轨控推力故障判断比例阈值,0<αfc1fc2fc3<1;Ffc0表示恒推力轨控期间的标称推力。
9.根据权利要求1所述的基于加表的高可靠性轨控推力器故障判别方法,其特征在于,还包括:
当轨控推力器的喷气模式为恒推力模式时:
计算恒加速度轨控期间的速度增量;
根据计算得到的恒加速度轨控期间的速度增量,估计恒加速度轨控期间的平均加速度;
根据估计的恒加速度轨控期间的平均加速度,进行轨控推力器恒加速度轨控期间的故障判别。
10.根据权利要求9所述的基于加表的高可靠性轨控推力器故障判别方法,其特征在于,计算恒加速度轨控期间的速度增量,包括:
对恒加速度轨控期间的测量加速度进行积分,得到恒加速度轨控期间的速度增量dvac
Figure FDA0003232308720000041
其中,tc表示控制周期时长,l表示恒加速度轨控期间的周期数,qo表示恒加速度轨控开始时的周期数,qn表示恒加速度轨控结束时的周期数,aac(l)表示恒加速度轨控期间轨控推力方向第l周期的加速度测量值。
11.根据权利要求10所述的基于加表的高可靠性轨控推力器故障判别方法,其特征在于,估计恒加速度轨控期间的平均加速度,包括:
确定恒加速度轨控期间的轨控时长dtac
dtac=tc·(l-q0)
由恒加速度轨控期间的速度增量dvac和轨控时长dtac,计算得到恒加速度轨控期间的平均加速度估计值aac_est
Figure FDA0003232308720000051
12.根据权利要求11所述的基于加表的高可靠性轨控推力器故障判别方法,其特征在于,根据计算得到的恒加速度轨控期间的速度增量和估计的恒加速度轨控期间的平均加速度,进行轨控推力器恒加速度轨控期间的故障判别,包括:
aac_est满足以下任一条件时,确定轨控推力器故障:
条件一:dtac1≤dtac<dtac2时,aac_estac1·aac0
条件二:dtac2≤dtac<dtac3时,aac_estac2·aac0
条件三:dtac3≤dtac时,aac_estac3·aac0
其中,dtac1、dtac2和dtac3分别表示恒加速度轨控期间的三级故障判断时间点设定值,0<dtac1<dtac2<dtac3;αac1、αac2和αac3分别表示恒加速度轨控期间的三级轨控推力故障判断比例阈值,0<αac1ac2ac3<1;aac0表示恒加速度轨控期间的标称加速度值。
CN202010245757.2A 2020-03-31 2020-03-31 一种基于加表的高可靠性轨控推力器故障判别方法 Active CN111458150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010245757.2A CN111458150B (zh) 2020-03-31 2020-03-31 一种基于加表的高可靠性轨控推力器故障判别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010245757.2A CN111458150B (zh) 2020-03-31 2020-03-31 一种基于加表的高可靠性轨控推力器故障判别方法

Publications (2)

Publication Number Publication Date
CN111458150A CN111458150A (zh) 2020-07-28
CN111458150B true CN111458150B (zh) 2021-11-16

Family

ID=71676739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010245757.2A Active CN111458150B (zh) 2020-03-31 2020-03-31 一种基于加表的高可靠性轨控推力器故障判别方法

Country Status (1)

Country Link
CN (1) CN111458150B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083645B (zh) * 2020-07-30 2024-05-03 上海航天控制技术研究所 一种推力器冗余模式管理及故障屏蔽与自主恢复方法
CN112078832B (zh) * 2020-08-04 2021-12-07 上海航天控制技术研究所 一种在轨剩余燃料的确定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2400013A1 (de) * 1973-01-06 1974-07-18 Rolls Royce 1971 Ltd Verfahren und vorrichtung zur pruefung von in betrieb befindlichen antriebsmaschinen, beispielsweise von gasturbinentriebwerken
CN101214861A (zh) * 2007-12-26 2008-07-09 北京控制工程研究所 一种自主恢复轨控故障时的星敏感器定姿方法
CN101214859A (zh) * 2007-12-26 2008-07-09 北京控制工程研究所 一种变轨期间自主故障检测恢复控制的方法
CN102591349A (zh) * 2012-03-12 2012-07-18 北京控制工程研究所 高轨道卫星大初始角速率情况的无陀螺太阳捕获控制方法
CN103466100A (zh) * 2013-08-23 2013-12-25 北京控制工程研究所 一种着陆器软着陆姿态控制方法
CN106742067A (zh) * 2016-12-02 2017-05-31 上海航天控制技术研究所 基于参考模型的姿控发动机在轨故障诊断处理系统与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2400013A1 (de) * 1973-01-06 1974-07-18 Rolls Royce 1971 Ltd Verfahren und vorrichtung zur pruefung von in betrieb befindlichen antriebsmaschinen, beispielsweise von gasturbinentriebwerken
CN101214861A (zh) * 2007-12-26 2008-07-09 北京控制工程研究所 一种自主恢复轨控故障时的星敏感器定姿方法
CN101214859A (zh) * 2007-12-26 2008-07-09 北京控制工程研究所 一种变轨期间自主故障检测恢复控制的方法
CN102591349A (zh) * 2012-03-12 2012-07-18 北京控制工程研究所 高轨道卫星大初始角速率情况的无陀螺太阳捕获控制方法
CN103466100A (zh) * 2013-08-23 2013-12-25 北京控制工程研究所 一种着陆器软着陆姿态控制方法
CN106742067A (zh) * 2016-12-02 2017-05-31 上海航天控制技术研究所 基于参考模型的姿控发动机在轨故障诊断处理系统与方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于RO-NUIO/LMI的挠性卫星轨控期间姿态系统故障诊断;侯倩 等;《宇航学报》;20111031;第32卷(第10期);第2146-2151页 *
星载计算机及关键流程可靠性设计;王献忠 等;《第四届中国指挥控制大会》;20160704;第492-496页 *

Also Published As

Publication number Publication date
CN111458150A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
CN111458150B (zh) 一种基于加表的高可靠性轨控推力器故障判别方法
CN108227492B (zh) 一种六自由度串联机器人末端负载动力学参数的辨识方法
WARREN et al. Grid convergence for adaptive methods
Ruijun et al. The thermal error optimization models for CNC machine tools
CN108132134A (zh) 基于风洞自由飞试验的气动导数辨识方法和系统
CN108304594B (zh) 一种基于速度与陀螺仪数据的汽车驾驶稳定性的判定方法
CN114580224B (zh) 一种分布式气动融合轨道耦合姿态摄动分析方法
CN111638654A (zh) 一种故障自适应的运载火箭智能控制半实物仿真方法
CN109100537A (zh) 运动检测方法、装置、设备和介质
CN109739088B (zh) 一种无人船有限时间收敛状态观测器及其设计方法
CN111737880B (zh) 基于复合信息熵的惯性仪表测试效能评估方法
CN104819717B (zh) 一种基于mems惯性传感器组的多旋翼飞行器姿态检测方法
CN115576184A (zh) 一种水下机器人推进器故障在线诊断与容错控制方法
CN101915675A (zh) 一种过滤器性能检测方法及装置
CN106338307B (zh) 具有偏航状态监测功能的风电机组状态监测系统和方法
CN116243620A (zh) 一种注入式惯性测量装置半实物仿真试验方法
CN115027445A (zh) 一种车辆电功率确定方法、装置、电子设备及存储介质
CN108827509A (zh) 一种电动汽车的道路滑行阻力的计算方法和装置
CN112182783B (zh) 航天飞行器系统的风险识别方法、设备及存储介质
CN114707297A (zh) 面向智能汽车测试的临界虚拟场景自动生成方法及系统
CN111082420A (zh) 一种改善交直流混联电网暂态稳定性的方法和系统
Wang et al. Quantitative Evaluation of Sensor Fault Diagnosability of F-16 High Maneuvering Fighter
CN106599387B (zh) 发动机壳体振动概貌图的综合化构建方法
CN117184455B (zh) 轨控发动机推力矢量的估计方法、装置、设备及介质
Feng et al. Prediction of gyro motor's state based on grey model and BP neural network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant