CN111454923A - 大豆GmP5CDH基因的应用 - Google Patents

大豆GmP5CDH基因的应用 Download PDF

Info

Publication number
CN111454923A
CN111454923A CN202010382641.3A CN202010382641A CN111454923A CN 111454923 A CN111454923 A CN 111454923A CN 202010382641 A CN202010382641 A CN 202010382641A CN 111454923 A CN111454923 A CN 111454923A
Authority
CN
China
Prior art keywords
gmp5cdh
gene
soybean
transgenic
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010382641.3A
Other languages
English (en)
Inventor
黄方
王慧
毛卓卓
阚贵珍
程浩
喻德跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN202010382641.3A priority Critical patent/CN111454923A/zh
Publication of CN111454923A publication Critical patent/CN111454923A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0028Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with NAD or NADP as acceptor (1.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8251Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8267Seed dormancy, germination or sprouting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8291Hormone-influenced development
    • C12N15/8293Abscisic acid [ABA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y105/00Oxidoreductases acting on the CH-NH group of donors (1.5)
    • C12Y105/01Oxidoreductases acting on the CH-NH group of donors (1.5) with NAD+ or NADP+ as acceptor (1.5.1)
    • C12Y105/010121-Pyrroline-5-carboxylate dehydrogenase (1.5.1.12)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Endocrinology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了大豆GmP5CDH基因的应用。大豆GmP5CDH蛋白编码基因GmP5CDH,其核苷酸序列为:SEQ ID NO.1。将构建的植物过量表达载体pMDC83‑GmP5CDH在拟南芥的野生型中进行异源表达,发现转基因植株总氨基酸含量显著提高,萌发率降低,对转基因拟南芥进行盐和ABA处理后,发现根长和鲜重以及植株体内脯氨酸含量显著降低。相反,在外源Pro处理后,转基因株系的根长和鲜重以及脯氨酸含量显著提高,同时对种子萌发率的影响低于对照WT。表明该基因可以作为目的基因导入植物,通过对GmP5CDH基因的过表达,提高转基因植物果实品质。

Description

大豆GmP5CDH基因的应用
技术领域
本发明属于植物基因工程领域,涉及一个△1-吡咯啉-5-羧酸脱氢酶基因GmP5CDH的应用,具体涉及来源于大豆在种子中高表达并与生长发育相关的△1-吡咯啉-5-羧酸脱氢酶基因GmP5CDH在调控植物种子萌发率、调控种子氨基酸含量以及对非生物胁迫的响应相关方面的应用。
背景技术
P5CDH是高等植物Pro降解生成Glu的关键酶之一,它将P5C分解代谢为Glu(AarzooQamar et al.,2019),这有利于维持植物体内氨基酸平衡,同时为细胞的生命代谢提供氮源及能量。P5CDH在所有的植物中是由单拷贝基因编码。P5CDH调节P5C合成酶,参与保护植物免受脯氨酸毒性,控制活性氧(ROS)产生和应激反应的调节。Forlani等(1997b)在盐处理的烟草培养细胞中发现两个P5CDH的同源表达物。Forlani等(1997a)从马铃薯的培养细胞中纯化得到分子量为60KDa的四聚体P5CDH,该酶以NAD+或NADP+为底物,但对NAD+的亲和力较高。同时,该酶受Cl-的抑制且可能定位于线粒体和胞质中,进一步证实了高渗透胁迫可以负调节体内脯氨酸氧化。现已从拟南芥中克隆得到AtP5CDH基因。Deuschle等(2004)为了研究P5CDH的生理功能,分离并鉴定了AtP5CDH中的T-DNA插入突变体,在p5cdh突变体中无法检测到Pro的降解,但未观察到生长表型的改变,说明AtP5CDH基因在植物的营养生长过程中是非必需的但是对脯氨酸的降解过程是必须的,同时该基因对Pro、中间产物P5C以及其他产生P5C的物质如精氨酸、鸟氨酸等敏感,P5C的积累可能是诱导脯氨酸降解的诱因。Rizzi等(2015)使用p5cdh突变体为材料探究P5CDH如何影响拟南芥组织中Pro合成的激活,发现当停止外源脯氨酸胁迫时,突变体内脯氨酸含量没有降低反而上升,说明p5cdh突变体激活了鸟氨酸途径。截至目前为止,对于P5CDH及其编码基因P5CDH基因的分子生物学研究相对较少。
本研究根据大豆子叶折叠突变体(cco)的初步定位结果以及实时荧光定量技术并结合拟南芥同源基因注释结果,筛选出一个△1-吡咯啉-5-羧酸脱氢酶基因,并命名为GmP5CDH。通过生物信息学方法分析该基因的序列以及蛋白质信息。利用荧光定量PCR技术检测GmP5CDH基因组织器官以及在各种非生物胁迫处理(盐碱、干旱、低温、ABA)下的表达特性。通过构建酵母诱饵载体pGBKT7-GmP5CDH,通过酵母筛库鉴定与GmP5CDH互作的蛋白。对其进行大豆叶文库和荚文库筛选,经过回转验证发现与GmP5CDH互作的基因有:叶文库的果糖二磷酸醛缩酶Glyma.04g008300和来自荚文库的S-腺苷甲硫氨酸合酶Glyma.17g039100。并构建了植物表达载体转化拟南芥,发现过表达GmP5CDH转基因拟南芥种子氨基酸含量显著提高,萌发率显著降低。同时经NaCl、ABA处理后,转基因株系的根长和鲜重均显著降低,而外源Pro处理后,转基因株系的根长和鲜重均极显著高于对照且萌发率降低程度低于WT,为进一步研究GmP5CDH基因功能奠定了基础。
发明内容
本发明的目的在于提供公开一个△1-吡咯啉-5-羧酸脱氢酶基因GmP5CDH。
本发明的另一目的是提供该基因在种子氨基酸含量、萌发率以及逆境胁迫中的基因工程应用。
本发明的目的可通过如下技术方案实现:
大豆△1-吡咯啉-5-羧酸脱氢酶基因GmP5CDH,核苷酸序列为SEQ ID NO.1。
本发明所述的大豆△1-吡咯啉-5-羧酸脱氢酶基因GmP5CDH编码的蛋白质,其氨基酸序列为SEQ ID NO.2。
含有本发明所述的大豆△1-吡咯啉-5-羧酸脱氢酶基因GmP5CDH的表达载体。
本发明所述的大豆△1-吡咯啉-5-羧酸脱氢酶基因GmP5CDH在植物种子氨基酸含量、萌发率以及逆境胁迫中的基因工程应用。
所述的GmP5CDH转基因拟南芥种子氨基酸含量提高,萌发率降低,对外源Pro具有耐受性而对NaCl、ABA敏感。
使用GmP5CDH构建植物表达载体时,在其转录起始核苷酸前可加上任何一种增强型启动子或诱导型启动子。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的选择性标记基因(GUS基因、GFP基因等)或者抗生素标记物(庆大霉素标记物、卡那霉素标记物、潮霉素标记物等)的抗性基因。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以表型性状筛选转化植株。
携带有本发明GmP5CDH的植物表达载体可通过使用Ti质粒、Ri质粒、植物病毒载体、直接DNA转化、显微注射、电导、农杆菌介导等常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株。被转化的植物宿主既可以是水稻、小麦、玉米等单子叶植物,也可以是烟草、拟南芥、大豆、油菜、黄瓜、番茄、杨树、草坪草、苜蓿等双子叶植物。
有益效果:
本发明中GmP5CDH具有Aldedh结构域,是醛脱氢酶家族中的成员之一。通过组织表达分析发现GmP5CDH在7d种子和13d种子中的表达相对较高,而且在胁迫处理材料中,基因的表达量受到干旱、低温、激素ABA和盐处理的诱导。亚细胞定位显示GmP5CDH蛋白定位于细胞核和细胞膜中。拟南芥中过表达GmP5CDH,发现与对照野生型拟南芥相比,转基因拟南芥种子总氨基酸含量提高,萌发率降低。经NaCl、ABA处理后,转基因株系的根长和鲜重均显著降低。之后对胁迫处理后的转基因幼苗进行表达量分析以及脯氨酸含量检测,结果发现,经NaCl、ABA处理后的转基因株系中GmP5CDH基因的表达量与对照相比,均极显著升高,但脯氨酸含量却极显著低于对照,相反,在外源Pro处理后,转基因株系的根长和鲜重均极显著高于对照,同时脯氨酸检测发现转基因株系中脯氨酸含量也极显著高于对照。本发明公开了该基因在促使植株果实氨基酸含量提高,萌发率降低以及对不同逆境胁迫响应现象的发生。可以通过定向地改造作物的果实氨基酸含量以及对逆境的响应,为农作物提高品质和对逆境的耐受性。
利用植物过表达载体pMDC83-GmP5CDH,将本发明的GmP5CDH导入植物体内,可以调控植株果实发育以及逆境响应,获得转基因植株。
附图说明
下面结合附图及实施例对本发明做进一步说明。
图1 GmP5CDH基因的组织表达分析。
采用实时荧光定量PCR技术对GmP5CDH在大豆“南农94-16”以及cco的不同组织表达进行研究,大豆不同组织分别为根、茎、叶、花、7d荚、13d荚、7d种子、13d种子、子叶。
图2 GmP5CDH在胁迫处理下的表达量变化
A为15%PEG干旱处理;B为250mMNaCl处理;C为4℃低温处理;D为100μM ABA处理。
图3 GmP5CDH的亚细胞定位(A)d35s::GFP;(B)d35s::GmP5CDH-GFP;
图4 GmP5CDH互作蛋白的回转验证结果
阳性对照:转pGADT7-T和pGBKT7-53质粒;阴性对照:pGADT7-T和pGBKT7-lam质粒。
图5转基因拟南芥的PCR鉴定。
图6转GmP5CDH基因拟南芥种子萌发率
*表示0.01<p<0.05水平下显著差异
图7 GmP5CDH转基因拟南芥种子中各组分氨基酸含量
**表示p<0.01水平下极显著差异,每个系列从左至右依次为WT、转基因植株29-7、29-11、29-21
图8 NaCl处理下拟南芥表型
A:NaCl处理下拟南芥幼苗长势图;B:NaCl处理下拟南芥根长和鲜重
图9盐胁迫处理下转基因拟南芥中GmP5CDH的表达量分析,每个系列从左至右依次为0mMNaCl、150mMNaCl。
图10 NaCl处理后拟南芥脯氨酸含量情况
FW:鲜重,每个系列从左至右依次为WT、转基因植株29-7、29-11、29-21图11ABA处理下拟南芥表型
A:ABA处理下拟南芥幼苗长势图;B:ABA处理下拟南芥根长和鲜重
图12 ABA处理下转基因拟南芥中GmP5CDH的表达量分析
图13 ABA处理后拟南芥脯氨酸含量情况
图14 Pro处理下拟南芥表型
A Pro处理下拟南芥幼苗长势图;B Pro处理下拟南芥的根长和鲜重
图15不同浓度脯氨酸处理下转GmP5CDH基因拟南芥种子萌发率;每个系列从左至右依次为WT、转基因植株29-7、29-11、29-16、29-21
图16 Pro处理下转基因拟南芥中GmP5CDH的表达量分析,右图中每个系列从左至右依次为0mM Pro、150mM Pro。
图17 Pro处理后拟南芥脯氨酸含量情况
具体实施方式
下面结合附图和实施例,并参照数据进一步详细地描述本发明。这些实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。在以下的实施例中,未详细描述的各种过程和方法是本领域中公知的常规方法。所用到的引物,均在首次出现时标明,其后所用相同引物,均以首次标明的内容相同。
实施例1大豆GmP5CDH及其编码基因的克隆与鉴定
根据phytozome网站预测的GmP5CDH序列信息设计引物,以大豆子叶折叠突变体cco开花后7d种子的cDNA为模板PCR扩增。
上游引物GmP5CDH-F1:ggatcttccagagat ATGTTCATGTTTTTGGTTAGCAGA;(SEQ IDNO.3)
下游引物GmP5CDH-R1:ctgccgttcgacgatTCAAGTGGACTGAGGAGTTTTC。(SEQ IDNO.4)
应用PCR方法,从大豆开花后7d种子总RNA中扩增GmP5CDH基因。取开花后7d种子,用研钵研碎,加入盛有裂解液的1.5mL EP管,充分振荡后,再移入玻璃匀浆器内。匀浆后移至1.5mL EP管中,采用植物总RNA提取试剂盒(TIANGEN DP404)进行总RNA提取。用甲醛变性胶电泳鉴定总RNA质量,然后在分光光度计上测定RNA含量。以获得的总RNA为模板,按照Takara公司提供的反转录试剂盒的说明书进行反转录,合成cDNA第一链。进行PCR扩增反应。PCR反应体系为:2μl cDNA(0.05μg)、上、下游引物各2μl(10μM)、25μl2×Phanta MaxBuffer、1μl dNTP(10mM)和1U Phanta Max Super-Fidelity DNA聚合酶(Vazyme),用超纯水补足50μl。PCR程序如下:在Bio-RAD PTC200型PCR仪上进行,其程序为94℃预变性3min;94℃变性15s,58℃退火15s,72℃延伸45s,共30个循环;然后72℃延伸5min终止反应,4℃保存。PCR产物回收将其克隆至pMD19-T载体,测序后获得具有完整编码区的大豆基因GmP5CDH的cDNA序列SEQ ID NO.1,全长1665bp,编码SEQ ID NO.2所示的554个氨基酸。根据phytozome网站下载GmP5CDH基因的氨基酸序列信息,GmP5CDH编码554个氨基酸,利用NCBI网站预测基因的保守结构域,基因在60-524位具有一个Aldedh结构域。
实施例2 GmP5CDH在大豆不同器官中的表达特征
提取大豆突变体cco和“南农94-16”茎、叶、花、7d荚、13d荚、7d种子、13d种子、子叶的RNA,反转成cDNA进行RT-PCR分析。
总RNA的提取同实施例1。以大豆组成型表达基因Tubulin为内参基因,其扩增引物为Tubulin正向引物序列:GGAGTTCACAGAGGCAGAG(SEQ ID NO.5),Tubulin反向引物序列:CACTTACGCATCACATAGCA(SEQ ID NO.6)。以来自大豆不同组织或器官的cDNA为模板,进行实时荧光定量PCR分析。GmP5CDH的扩增引物为:GmP5CDH-F2:AGGAAGATTACATAGCGTGGGT(SEQID NO.7),GmP5CDH-R2:TGGGCCGATTGTCAAGTC(SEQ ID NO.8)。结果(图1)分析表明GmP5CDH在7d种子和13d种子中的表达相对较高,表明GmP5CDH可能与大豆种子发育相关。
实施例3 GmP5CDH对非生物胁迫的响应
以不同间隔时间,不同非生物胁迫处理后的大豆叶片的cDNA为模板,进行荧光定量分析GmP5CDH在不同胁迫处理后的表达量变化,结果显示,在低温处理后的2h和4h时,GmP5CDH基因在处理以及对照材料中的表达量均呈现先下降后上升的趋势,但在这两个时期的处理材料中,处理材料中基因表达量均显著低于对照(图2A)。在干旱处理0.5h时,处理材料中GmP5CDH基因的表达量极显著高于对照,而在干旱处理2h时,处理材料基因表达量又极显著低于对照(图2B)。而在NaCl处理时,GmP5CDH基因在处理材料和对照材料中的表达量呈现相反趋势。GmP5CDH基因在NaCl处理过程中,基因表达量持续上升;而在对照材料中,基因表达量呈下降趋势。从图中可以看出,在NaCl处理3h和6h时,处理材料中基因表达量均极显著高于对照(图2C)。在ABA处理3h时,处理材料中目的基因与对照相比显著下调,而后在处理6h时,两材料基因表达量趋于一致(图2D)。说明GmP5CDH基因能被三种非生物胁迫(低温,干旱和盐胁迫)以及激素(ABA)处理诱导。
实施例4 GmP5CDH的亚细胞定位
利用烟草瞬时表达系统对GmP5CDH基因进行亚细胞定位研究。首先将GmP5CDH基因的CDS序列(不含终止密码子)连接到P2载体上,获得d35S::GmP5CDH-GFP融合表达载体,然后通过注射法分别将空载和重组载体转入烟草叶片中,培养48h后在激光共聚焦显微镜下观察,通过报告基因所产生的绿色荧光信号来确定GmP5CDH在细胞中的位置。结果如图3所示,转入空载质粒在整个细胞中都有分布,GmP5CDH:GFP融合蛋白分布于细胞膜和细胞核中,表明该基因可能在细胞膜和细胞核中发挥作用。
实施例5 GmP5CDH基因互作蛋白的筛选
利用本实验室已经构建好的大豆叶片(张晋玉,2016)和荚(王婷婷,2016)组织文库筛选与GmP5CDH互作的蛋白。首先,利用Nde1和BamH1同源重组法将GmP5CDH基因整合到诱饵载体pGBKT7上,构建酵母诱饵载体pGBKT7-GmP5CDH。将含有诱饵载体的酵母菌株Y2H分别与含有叶和荚cDNA文库质粒的酵母菌株共转化后,涂布于SD/-Trp/-Leu/-Ade/-His四缺培养基上,30℃培养4-6天,挑取平板上的酵母单克隆,扩繁并提取酵母质粒。PCR检测并送测序后,进行同源性比对后,选取不同的互作基因酵母质粒转化大肠杆菌DH5α,菌液送交公司进行核苷酸序列测定,并进行后续的回转验证。共筛选到2个蛋白与GmP5CDH互作,它们分别是来自叶文库参与糖酵解过程的果糖二磷酸醛缩酶Glyma.04g008300和来自荚文库中参与植物生长发育以及胁迫反应等过程的S-腺苷甲硫氨酸合酶Glyma.17g039100(图4)
实施例6 GmP5CDH的基因工程
以连接到pMD19-T载体上的全长GmP5CDH cDNA质粒为模板,用CDS序列引物加载体接头序列GmP5CDH-F3(SEQ ID NO.9):caggtcgactctagaggatccgccaccATGTTCATGTTTTTGGTTAGCAGA;GmP5CDH-R3(SEQ ID NO.10):gggaaattcgagctcggtaccTCAAGTGGACTGAGGAGTTTTC。50ul体系进行PCR扩增,利用同源重组方法将胶回收产物连接pMDC83过表达载体,转化DH5α大肠杆菌感受态,涂布于具有Kana抗性的LB固体培养基上,37℃培养12-16h后挑单克隆,菌检阳性的送测序,测序正确的菌液提质粒,命名为pMDC83-GmP5CDH。之后转化根癌农杆菌EHA105感受态,得到pMDC83-GmP5CDH农杆菌菌液。
用蘸花法侵染拟南芥获得转基因拟南芥株系,提取初步筛选得到具有潮霉素抗性的转基因拟南芥的基因组DNA,PCR扩增结果显示各株系可以得到长度为1665bp的扩增条带,表明转基因株系均为GmP5CDH转基因阳性株系(图5)。
对GmP5CDH转基因拟南芥进行表型观察。在22℃、长日照的生长条件下,GmP5CDH转基因拟南芥与对照相比,转基因拟南芥株系种子氨基酸含量显著提高,但萌发率显著下降(图6、图7)。为进一步研究GmP5CDH基因的功能,对转基因拟南芥进行NaCl、ABA和Pro处理,发现经NaCl、ABA处理后,转基因株系的根长和鲜重均显著降低(图8A、图8B、图11A、图11B)。之后对胁迫处理后的转基因幼苗进行表达量分析以及脯氨酸含量检测,结果发现,经NaCl、ABA处理后的转基因株系中GmP5CDH基因的表达量与对照相比,均极显著升高,但脯氨酸含量却极显著低于对照(图9、图10、图12、图13)。相反,在外源Pro处理后,转基因株系的根长和鲜重均极显著高于对照,且随着外源Pro浓度的增加,各个转基因拟南芥株系种子的萌发率降低程度低于WT,同时脯氨酸检测发现转基因株系中脯氨酸含量也极显著高于对照(图14A、图14B、图15、图16、图17),说明转基因株系能有效抵抗外界脯氨酸的毒害作用,使其对脯氨酸的毒害更耐受。
序列表
<110> 南京农业大学
<120> 大豆GmP5CDH基因的应用
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1665
<212> DNA
<213> 大豆(Glycine max)
<400> 1
atgttcatgt ttttggttag cagagtaact aaggattcaa tttcacgcaa ccgcaatgcc 60
tttgcttctt ttgctttctc tagcaggtgt gctcattcat tatcatttgc cacagtagaa 120
gcagaagaga tatcaggttc taggcctgct gaagttttga acctggtgca aggtaaatgg 180
gtaggatctt caaattggaa cacaattgca gatcctttaa atggtgactc atttattaaa 240
gttgctgaag ttgatgaaac aggcattcag ccttttataa aaagcttgtc cagctgtccc 300
aaacatggtg tacacaatcc ttttaaggca ccagagagat atcttatgta tggagatata 360
tctactaagg cagctcatat gctatcactt cctaaggttt cggatttctt tacaaagtta 420
atacaaagag tttctccaaa gagttaccag caggcttttg gggaagttta tgtgacacaa 480
aagtttctag agaatttttg cggggatcag gttcgtttcc tggcaaggtc ttttggtgtc 540
cctggaaatc atcttggaca acaaagtcat ggttttcgtt ggccatatgg tcccgtggcc 600
attattactc cttttaattt tcccttggag attcctgtcc ttcaattgat gggtgccctt 660
tacatgggca acaagccagt ccttaaagtt gacagcaagg tgagcattgt tatggaacaa 720
atgttgcgcc tgcttcatac ctgtggctta cctgcagaag atgtagactt cataaattct 780
gatgggaaga caatgaacag gctgttgctg gaggcaaatc cacgaatgac cctctttact 840
ggtagttcaa gagtggcaga taaattggct gttgatttga aaggtcgcgt taaattagaa 900
gatgctggat ttgactggaa aatactgggc cctgatgtcc atcaggaaga ttacatagcg 960
tgggtctgtg atcaggatgc atatgcatgc agtggtcaga aatgctcagc acaatcattg 1020
ttatttatgc atgagaactg gtctaaaact tccttgctat ctaagttgaa agatcttgct 1080
gagagaagaa agctagaaga cttgacaatc ggcccagtcc tcacatgtac gactggtatg 1140
atgctagaac acaagaataa attgcttgag ataccaggat caaagctgct ctttgggggt 1200
agtcctctag agaaccattc aattccacct atttatggtg ccattaaacc aacagctgtc 1260
tatgttcctc tcgaggaaat tatgaaggat aagaattttg atcttgtaac aaaagaaata 1320
tttggaccct ttcaggttat cacggactac aaaaacagtc aactatcagt tgtattggat 1380
gctgtggaaa gaatgcataa ccatttaacg gctgctgtag tttcaaatga tcctttgttt 1440
ttacaggaag ttgttggcaa ttcagtaaat ggtactactt atgctggtct aagagcaagg 1500
acaaccggag ctcctcagaa tcattggttt ggtcccgctg gcgacgctag aggtgcagga 1560
attggaacac cggaggctat aaaacttgta tggtcttgcc acagagaagt tatatatgat 1620
tttggacctg tgccaaagga ttggaaaact cctcagtcca cttga 1665
<210> 2
<211> 488
<212> PRT
<213> 大豆(Glycine max)
<400> 2
Met Phe Met Phe Leu Val Ser Arg Val Thr Lys Asp Ser Ile Ser Arg
1 5 10 15
Asn Arg Asn Ala Phe Ala Ser Phe Ala Phe Ser Ser Arg Cys Ala His
20 25 30
Ser Ser Phe Ala Thr Val Glu Ala Glu Glu Ile Ser Gly Ser Arg Pro
35 40 45
Ala Glu Val Asn Val Gln Gly Lys Trp Val Gly Ser Ser Asn Trp Asn
50 55 60
Thr Ile Ala Asp Pro Asn Gly Asp Ser Phe Ile Lys Val Ala Glu Val
65 70 75 80
Asp Glu Thr Gly Ile Gln Pro Phe Ile Lys Ser Ser Ser Cys Pro Lys
85 90 95
His Gly Val His Asn Pro Phe Lys Ala Pro Glu Arg Met Gly Asp Ile
100 105 110
Ser Thr Lys Ala Ala His Met Ser Pro Lys Val Ser Asp Phe Phe Thr
115 120 125
Lys Ile Gln Arg Val Ser Pro Lys Ser Gln Gln Ala Phe Gly Glu Val
130 135 140
Val Thr Gln Lys Phe Glu Asn Phe Cys Gly Asp Gln Val Arg Phe Ala
145 150 155 160
Arg Ser Phe Gly Val Pro Gly Asn His Gly Gln Gln Ser His Gly Phe
165 170 175
Arg Trp Pro Gly Pro Val Ala Ile Ile Thr Pro Phe Asn Phe Pro Glu
180 185 190
Ile Pro Val Gln Met Gly Ala Met Gly Asn Lys Pro Val Lys Val Asp
195 200 205
Ser Lys Val Ser Ile Val Met Glu Gln Met Arg His Thr Cys Gly Pro
210 215 220
Ala Glu Asp Val Asp Phe Ile Asn Ser Asp Gly Lys Thr Met Asn Arg
225 230 235 240
Glu Ala Asn Pro Arg Met Thr Phe Thr Gly Ser Ser Arg Val Ala Asp
245 250 255
Lys Ala Val Asp Lys Gly Arg Val Lys Glu Asp Ala Gly Phe Asp Trp
260 265 270
Lys Ile Gly Pro Asp Val His Gln Glu Asp Ile Ala Trp Val Cys Asp
275 280 285
Gln Asp Ala Ala Cys Ser Gly Gln Lys Cys Ser Ala Gln Ser Phe Met
290 295 300
His Glu Asn Trp Ser Lys Thr Ser Ser Lys Lys Asp Ala Glu Arg Arg
305 310 315 320
Lys Glu Asp Thr Ile Gly Pro Val Thr Cys Thr Thr Gly Met Met Glu
325 330 335
His Lys Asn Lys Glu Ile Pro Gly Ser Lys Phe Gly Gly Ser Pro Glu
340 345 350
Asn His Ser Ile Pro Pro Ile Gly Ala Ile Lys Pro Thr Ala Val Val
355 360 365
Pro Glu Glu Ile Met Lys Asp Lys Asn Phe Asp Val Thr Lys Glu Ile
370 375 380
Phe Gly Pro Phe Gln Val Ile Thr Asp Lys Asn Ser Gln Ser Val Val
385 390 395 400
Asp Ala Val Glu Arg Met His Asn His Thr Ala Ala Val Val Ser Asn
405 410 415
Asp Pro Phe Gln Glu Val Val Gly Asn Ser Val Asn Gly Thr Thr Ala
420 425 430
Gly Arg Ala Arg Thr Thr Gly Ala Pro Gln Asn His Trp Phe Gly Pro
435 440 445
Ala Gly Asp Ala Arg Gly Ala Gly Ile Gly Thr Pro Glu Ala Ile Lys
450 455 460
Val Trp Ser Cys His Arg Glu Val Ile Asp Phe Gly Pro Val Pro Lys
465 470 475 480
Asp Trp Lys Thr Pro Gln Ser Thr
485
<210> 4
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ggatcttcca gagatatgtt catgtttttg gttagcaga 39
<210> 4
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ctgccgttcg acgattcaag tggactgagg agttttc 37
<210> 5
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
ggagttcaca gaggcagag 19
<210> 6
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
cacttacgca tcacatagca 20
<210> 7
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
aggaagatta catagcgtgg gt 22
<210> 8
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
tgggccgatt gtcaagtc 18
<210> 9
<211> 51
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
caggtcgact ctagaggatc cgccaccatg ttcatgtttt tggttagcag a 51
<210> 10
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
gggaaattcg agctcggtac ctcaagtgga ctgaggagtt ttc 43

Claims (3)

1.大豆GmP5CDH蛋白编码基因Glyma.05G029200在提高植物氨基酸含量中的应用,所述的大豆GmP5CDH蛋白编码基因Glyma.05G029200核苷酸序列为:SEQ ID NO.1。
2.大豆GmP5CDH蛋白编码基因Glyma.05G029200在通过基因工程手段调控植物氨基酸含量、种子萌发率、对外源Pro具有耐受性和对NaCl、ABA敏感性中的应用,所述的大豆GmP5CDH蛋白编码基因Glyma.05G029200核苷酸序列为:SEQ ID NO.1。
3.根据权利要求2所述的应用,其特征在于所述的大豆GmP5CDH蛋白编码基因Glyma.05G029200在通过基因工程改造后转基因拟南芥氨基酸含量显著提高,萌发率显著降低,同时经NaCl、ABA处理后,转基因株系的根长和鲜重均显著降低,而外源Pro处理后,转基因株系的根长和鲜重均极显著高于对照且萌发率降低程度低于WT。
CN202010382641.3A 2020-05-08 2020-05-08 大豆GmP5CDH基因的应用 Pending CN111454923A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010382641.3A CN111454923A (zh) 2020-05-08 2020-05-08 大豆GmP5CDH基因的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010382641.3A CN111454923A (zh) 2020-05-08 2020-05-08 大豆GmP5CDH基因的应用

Publications (1)

Publication Number Publication Date
CN111454923A true CN111454923A (zh) 2020-07-28

Family

ID=71675086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010382641.3A Pending CN111454923A (zh) 2020-05-08 2020-05-08 大豆GmP5CDH基因的应用

Country Status (1)

Country Link
CN (1) CN111454923A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110669782A (zh) * 2019-10-10 2020-01-10 南京农业大学 大豆糖转运体基因GmSWEET39的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1390939A (zh) * 2001-06-08 2003-01-15 株式会社日立制作所 脯氨酸蓄积能力高的稻科植物及其生产方法
US20130031665A1 (en) * 2010-04-20 2013-01-31 Basf Plant Science Company Gmbh Enhanced methods for gene regulation in plants
CN103451204A (zh) * 2013-06-13 2013-12-18 广西大学 板栗疫病菌致病力基因P5Cdh及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1390939A (zh) * 2001-06-08 2003-01-15 株式会社日立制作所 脯氨酸蓄积能力高的稻科植物及其生产方法
US20130031665A1 (en) * 2010-04-20 2013-01-31 Basf Plant Science Company Gmbh Enhanced methods for gene regulation in plants
CN103451204A (zh) * 2013-06-13 2013-12-18 广西大学 板栗疫病菌致病力基因P5Cdh及其应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GENBANK: "PREDICTED: Glycine soja probable aldehyde dehydrogenase (LOC114411877), transcript variant X1, mRNA,ACCESSION XM_028375606", 《GENBANK》 *
KAREN DEUSCHLE ET AL.: "The Role of D1-Pyrroline-5-Carboxylate Dehydrogenase in Proline Degradation", 《THE PLANT CELL》 *
MARIELA INÉS MONTEOLIVA ET AL.: "Context of action of Proline Dehydrogenase (ProDH) in the Hypersensitive Response of Arabidopsis", 《BMC PLANT BIOLOGY》 *
MOHAMED S. SHETEIWY ET AL.: "Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress", 《BMC PLANT BIOLOGY》 *
ÖZGE ÇELIK ET AL.: "Expression analysis of proline metabolism-related genes in salt-tolerant soybean mutant plants", 《POJ》 *
SANDEEP SHARMA ET AL.: "Mechanisms independent of abscisic acid (ABA) or prolinefeedback have a predominant role in transcriptionalregulation of proline metabolism during low waterpotential and stress recovery", 《PLANT, CELL AND ENVIRONMENT》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110669782A (zh) * 2019-10-10 2020-01-10 南京农业大学 大豆糖转运体基因GmSWEET39的应用
CN110669782B (zh) * 2019-10-10 2022-11-01 南京农业大学 大豆糖转运体基因GmSWEET39的应用

Similar Documents

Publication Publication Date Title
Rausch et al. Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2; 1 in auto‐and heterotrophic tissues in potato and Arabidopsis
CN110904071B (zh) Raf49蛋白及其编码基因在调控植物抗旱性中的应用
CN107188940B (zh) GsHA12蛋白及其编码基因在调控植物耐逆性中的应用
CN110872598B (zh) 一种棉花抗旱相关基因GhDT1及其应用
CN111778265A (zh) 玉米赤霉素氧化酶的突变基因、突变体、表达载体和应用
CN110714013A (zh) 大豆E2泛素结合酶基因GmUBC1的应用
CN109879947B (zh) 毛竹转录因子PheDof 2基因及应用
CN110713994B (zh) 一种植物耐逆性相关蛋白TaMAPK3及其编码基因和应用
CN115725531B (zh) 乙酰转移酶OsG2基因及其编码的蛋白质在调节水稻籽粒大小方面的应用
CN113372423A (zh) 一个野生大豆Bet_v_1家族基因GsMLP328的应用
CN110295175B (zh) 一个大豆NAC转录因子家族基因Glyma08g41995的应用
CN111454923A (zh) 大豆GmP5CDH基因的应用
CN110684088B (zh) 蛋白ZmbZIPa3及其编码基因在调控植物生长发育与耐逆性中的应用
CN114591409B (zh) TaDTG6蛋白在提高植物抗旱性中的应用
CN111826391A (zh) 一种nhx2-gcd1双基因或其蛋白的应用
CN111607598B (zh) 大豆DDT结构域基因GmDDT1的应用
CN115806979A (zh) 拟南芥长链非编码rna-dana1及其在植物干旱耐受性的应用
CN110791506B (zh) 一种唐古特白刺NtCIPK11基因及其表达蛋白和应用
EP1686177B1 (en) Method for enhancing environmental stress resistance of plant using environmental stress associated gene
CN112813097A (zh) 一种调控水稻耐盐性的方法
CN113880927A (zh) 通过过表达锌指蛋白OsCIP3增强水稻低温耐受性的方法
CN113005106B (zh) 玉米耐低温基因ZmCIPK10.1在提高植物抗寒性中的应用
CN111454346B (zh) 一种来源于大麦的参与硝态氮调控的转录因子HvNLP2及其用途
CN114644699B (zh) 调控ZmARP1基因表达的物质在调控植物抗旱中的应用
CN114656539B (zh) ZmAE1蛋白及其编码基因在植物抗旱中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200728