CN111451003A - 一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法 - Google Patents

一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法 Download PDF

Info

Publication number
CN111451003A
CN111451003A CN202010151187.0A CN202010151187A CN111451003A CN 111451003 A CN111451003 A CN 111451003A CN 202010151187 A CN202010151187 A CN 202010151187A CN 111451003 A CN111451003 A CN 111451003A
Authority
CN
China
Prior art keywords
copper
desliming
ore
flotation
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010151187.0A
Other languages
English (en)
Other versions
CN111451003B (zh
Inventor
邓禾淼
康怀斌
刘晨
姚道春
董世华
余潇
颜江渊
盛欢
汪令辉
李煜辉
高明
葛传奎
朱斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongling Nonferrous Metals Group Co Ltd
Original Assignee
Tongling Nonferrous Metals Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongling Nonferrous Metals Group Co Ltd filed Critical Tongling Nonferrous Metals Group Co Ltd
Priority to CN202010151187.0A priority Critical patent/CN111451003B/zh
Publication of CN111451003A publication Critical patent/CN111451003A/zh
Application granted granted Critical
Publication of CN111451003B publication Critical patent/CN111451003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B1/00Conditioning for facilitating separation by altering physical properties of the matter to be treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/018Mixtures of inorganic and organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/04Frothers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/06Depressants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly

Abstract

本发明公开了一种易泥化、易浮含铜滑石‑蛇纹岩矿石的选矿方法,它包括以下步骤:(1)、磨矿:对易泥化、易浮含铜滑石‑蛇纹岩矿石进行磨矿,从而得到原矿矿浆;(2)预先脱泥浮选:向原矿矿浆中加入起泡剂,进行泥化易浮脉石预浮选,从而得到预先脱泥泡沫和预脱泥后矿浆;(3)预先脱泥泡沫单独浮选:(4)预脱泥后矿浆单独浮选;本发明的有益效果是先通过对原矿矿浆进行预先脱泥,优化了预脱泥后矿浆的浮选环境,此外,创造性地提出先抑铜浮泥,反浮选脱泥后矿浆再活化铜浮选富集的技术方案,避免大量含泥脉石对预先脱泥泡沫中铜富集时的影响,从而大幅度减少药剂用量,从而为提高铜精矿品质提供了有力保障。

Description

一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法
技术领域
本发明涉及选矿领域,涉及一种硫化铜矿物的选矿方法,特别是用于一种易泥化、易浮含铜滑石-蛇纹岩矿石选别方法。
背景技术
铜是人类最早使用的金属,早在史前时代,人们就开始采掘露天铜矿,并用获取的铜制造武器、式具和其他器皿,铜的使用对早期人类文明的进步影响深远,在现代工业体系中,铜被广泛地应用于电气、国防工业、机械制造、轻工、医疗器械等领域。
铜是一种存在于地壳和海洋中的金属,在地壳中的含量约为0.01%,按氧化铜和硫化铜比例分为三个自然类型,即硫化铜矿石(氧化铜含量小于10%)、氧化铜矿石(氧化铜含量大于30%)、混合矿石(氧化铜含量10%~30%),受矿石成因的影响,部分硫化铜矿石于滑石-蛇纹岩共生或伴生,滑石、蛇纹石天然疏水性强,可浮性极好,且易泥化,若果采用常规浮选工艺对含铜滑石-蛇纹岩矿石进行浮选选铜,滑石、蛇纹石随铜大量上浮,导致粗选产率大,铜精矿品位难以保证,同时易泥化的滑石、蛇纹石吸附在硫化铜矿物表面,形成矿泥罩盖,一方面易泥化的滑石、蛇纹石消耗大量浮选药剂,并挤占铜矿物的上浮空间,另一方面,硫化铜矿物表面由于矿泥罩盖,难以与捕收剂作用,其浮游性变差,导致选铜回收率降低。
目前针对易泥化、易浮脉石铜矿物的选别工艺主要为两种:(1)在常规工艺中添加大量的高分子抑制剂,如羧甲基纤维素(CMC)、瓜尔胶、淀粉等,如中国专利CN104874484A公开了一种在硫化铜镍矿浮选中降低精矿氧化镁含量的方法,原矿在磨矿之后、浮选之前首先添加络合剂草酸、柠檬酸、酒石酸、乙二胺、EDTA,进行调浆处理;然后再添加一定量的抑制剂六偏磷酸钠、CMC、改性淀粉或水玻璃其中之一和抑制剂木质素磺酸盐或壳聚糖其中之一;接着再添加调整剂、捕收剂和起泡剂进行浮选,但大量高分子抑制剂或淀粉、纤维类的改性产品在应用过程中还具有明显的弊端,一方面抑制效果不甚理想;使用浓度高,产生高COD的废水污染环境;另一方面大量高分子抑制剂不仅恶化浮选矿浆环境,对铜矿物的有效回收产生不利影响,降低企业经济效益;此外,大分子抑制剂溶液配制过程中易形成肿块、溶胀速度慢,易造成物料浪费,堵塞管道或泵体等;(2)预先脱泥,脱泥之后再按常规浮选流程进行铜矿物的选别回收,脱泥浮选工艺又根据对脱泥泡沫的处理方式分为两种,一种是控制脱泥量,脱泥泡沫作为尾矿直接抛弃,这种工艺脱泥量难以把握,铜损失量较大;另一种对脱泥产品进行单独处理,在脱泥产品中加入如羧甲基纤维素(CMC)、瓜尔胶、淀粉等高分子抑制剂进行选别,如中国发明专利公开号CN109201320A公开的一种含易浮脉石铜钴矿的选矿方法,对含易浮脉石铜钴矿进行磨矿后预先脱泥,在预先脱泥产品中加入用羧甲基纤维素、瓜尔胶、淀粉中的至少一种,得到铜钴粗精矿,并与脱泥后矿浆粗选得到的铜钴粗精矿合并进行铜钴精选得到铜钴精矿。
发明内容
为了解决现有含铜滑石-蛇纹岩矿石选矿方法中易浮滑石蛇纹石影响浮选效果,使用大量高分子抑制剂恶化浮选矿浆环境,对铜矿物的有效回收产生不利影响、羧甲基纤维素等高分子抑制剂水溶性差,现场难以配制等技术问题,本发明提供了一种易泥化易浮含铜滑石-蛇纹岩矿石的选矿方法,反其道而行之,创新式的提出预先脱泥泡沫首先进行抑铜浮泥,再进行铜矿物活化并分选富集的技术思路,从而实现铜矿物的高效回收,提高企业经济效益。
本发明的技术方案是:一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,它包括以下步骤:
(1)、磨矿:对易泥化、易浮含铜滑石-蛇纹岩矿石进行磨矿,从而得到原矿矿浆;
(2)预先脱泥浮选:向原矿矿浆中加入起泡剂,进行泥化易浮脉石预浮选,从而得到预先脱泥泡沫和预脱泥后矿浆;
(3)预先脱泥泡沫单独浮选:
Figure 100002_DEST_PATH_IMAGE002
向步骤(2)所得预先脱泥泡沫中加入铜矿物抑制剂,搅拌5分钟,进行脱泥反浮选,得到反浮选脱泥泡沫及脱泥后含铜脉石矿浆,反浮选脱泥泡沫为最终尾矿;
Figure 100002_DEST_PATH_IMAGE004
向脱泥后含铜脉石矿浆中加入石灰调浆,控制pH值8~9,再加入10~30g/t的硫酸铜活化剂,搅拌3分钟后,加入选铜捕收剂和起泡剂,搅拌3分钟后,进行含铜脉石粗选,得到粗选精矿
Figure 100002_DEST_PATH_IMAGE006
-
Figure 85095DEST_PATH_IMAGE006
和粗选尾矿
Figure 2235DEST_PATH_IMAGE006
-
Figure 719655DEST_PATH_IMAGE006
Figure 100002_DEST_PATH_IMAGE008
向粗选精矿
Figure 52548DEST_PATH_IMAGE006
-
Figure 866920DEST_PATH_IMAGE006
中加入铜离子去除剂,并加石灰,控制pH值12.4±0.2,进行一次精选,得到铜精矿
Figure 627066DEST_PATH_IMAGE006
-
Figure 894099DEST_PATH_IMAGE006
和精尾
Figure 30682DEST_PATH_IMAGE006
-
Figure 699561DEST_PATH_IMAGE006
,精尾
Figure 692925DEST_PATH_IMAGE006
-
Figure 384937DEST_PATH_IMAGE006
合并到粗选尾矿
Figure 121949DEST_PATH_IMAGE006
-
Figure 583017DEST_PATH_IMAGE006
,形成闭路循环;
Figure 100002_DEST_PATH_IMAGE010
向铜精矿
Figure 12862DEST_PATH_IMAGE006
-
Figure 192170DEST_PATH_IMAGE006
中加入石灰,控制pH值12.4±0.2,进行二次精选,得到铜精矿
Figure 467294DEST_PATH_IMAGE006
-
Figure 100002_DEST_PATH_IMAGE012
与精尾
Figure 48448DEST_PATH_IMAGE006
-
Figure 321297DEST_PATH_IMAGE012
,铜精矿
Figure 50219DEST_PATH_IMAGE006
-
Figure 129033DEST_PATH_IMAGE012
作为最终精矿,精尾
Figure 564694DEST_PATH_IMAGE006
-
Figure 336341DEST_PATH_IMAGE012
与脱泥后含铜脉石矿浆合并,进行含铜脉石粗选,形成闭路循环;
Figure 100002_DEST_PATH_IMAGE014
向精尾
Figure 224662DEST_PATH_IMAGE006
-
Figure 44851DEST_PATH_IMAGE006
和粗选尾矿
Figure 397335DEST_PATH_IMAGE006
-
Figure 339883DEST_PATH_IMAGE006
合并矿浆中加入选铜捕收剂和起泡剂,搅拌2分钟后,进行一次扫选作业,得到泡沫产品
Figure 715501DEST_PATH_IMAGE006
-
Figure 136118DEST_PATH_IMAGE006
与一扫尾矿
Figure 546370DEST_PATH_IMAGE006
-
Figure 659820DEST_PATH_IMAGE006
,泡沫产品
Figure 585051DEST_PATH_IMAGE006
-
Figure 747042DEST_PATH_IMAGE006
合并到粗选尾矿
Figure 808539DEST_PATH_IMAGE006
-
Figure 30573DEST_PATH_IMAGE006
,形成闭路循环;向一扫尾矿
Figure 443099DEST_PATH_IMAGE006
-
Figure 408781DEST_PATH_IMAGE006
中加入选铜捕收剂和起泡剂,进行二次扫选,得到泡沫产品
Figure 590364DEST_PATH_IMAGE006
-
Figure 780037DEST_PATH_IMAGE012
与二扫尾矿
Figure 617543DEST_PATH_IMAGE006
-
Figure 183653DEST_PATH_IMAGE006
,泡沫产品
Figure 423005DEST_PATH_IMAGE006
-
Figure 783579DEST_PATH_IMAGE012
顺序返回与精尾
Figure 170698DEST_PATH_IMAGE006
-
Figure 478183DEST_PATH_IMAGE006
、粗选尾矿
Figure 368778DEST_PATH_IMAGE006
-
Figure 103516DEST_PATH_IMAGE006
合并,形成闭路循环,二扫尾
Figure 712352DEST_PATH_IMAGE006
-
Figure 885844DEST_PATH_IMAGE006
矿为最终尾矿;
(4)预脱泥后矿浆单独浮选:
Figure 834209DEST_PATH_IMAGE002
向步骤(2)所得预脱泥后矿浆中加入石灰调浆,控制pH值11.5~11.8,加入捕收剂和起泡剂,进行预脱泥后矿浆粗选和扫选,得到粗精矿
Figure 802165DEST_PATH_IMAGE012
-
Figure 835980DEST_PATH_IMAGE006
和尾矿3;
Figure 547584DEST_PATH_IMAGE004
向粗精矿
Figure 412772DEST_PATH_IMAGE012
-
Figure 489312DEST_PATH_IMAGE006
中加入石灰调浆,控制pH值12.4±0.2,进行精选作业,得到铜精矿
Figure 72740DEST_PATH_IMAGE012
上述方案中所述铜矿物抑制剂为碳酸钠、过硫酸钠、亚铁氰化钾、巯基乙酸的混合物,其中碳酸钠用量为500~2000g/t,过硫酸钠、亚铁氰化钾、巯基乙酸总用量为300~1500g/t。
上述方案中所述过硫酸钠、亚铁氰化钾、巯基乙酸使用时的质量比例为:(6~8):(1~3):1。
上述方案中所述铜矿物抑制剂加药顺序为:先加入碳酸钠,再同时添加或混合添加过硫酸钠、亚铁氰化钾和巯基乙酸。
上述方案中所述起泡剂为甲基异丁基甲醇、丁基醚醇中的任意一种,且用量为1~10g/t。
上述方案中所述步骤(3)中含铜脉石矿浆粗选、扫选捕收剂为丁基黄原酸丙腈脂,且其用量为10~60g/t。
上述方案中所述铜离子去除剂为硫化钠,用量10~30g/t。
上述方案中所述步骤(1)中磨矿细度为-0.074mm粒级含量为70~80%。
上述方案中所述步骤(3)中脱泥反浮选、含铜脉石矿浆粗选、精选为柱浮选。
上述方案中所述步骤(4)中捕收剂为硫氮腈脂、硫氨酯、乙硫氮、丁基黄药、戊基黄药的至少一种,起泡剂为松醇油、甲基异丁基甲醇、丁基醚醇中的任意一种。
本发明的有益效果是先通过对原矿矿浆进行预先脱泥,使滑石、蛇纹石等易泥化、易浮脉石矿物被率先脱除,优化了预脱泥后矿浆的浮选环境,有效解决了易泥化、易浮滑石、蛇纹石等脉石与铜矿物同步浮选时铜精矿品质差、铜矿物损失率高、精矿铜与含泥易浮矿物分离时抑制剂大量使用而造成的中矿循环量大、含泥矿物罩盖引起的浮选环境恶化等难题。同时,本发明通过对预先脱泥后的泥泡沫产品进行单独浮选,有效提高了铜矿物的回收,实现了资源最大化回收;此外,针对脱泥产品粒度细、含铜低的特性,创造性地提出先抑铜浮泥,反浮选脱泥后矿浆再活化铜浮选富集的技术方案,避免大量含泥脉石对预先脱泥泡沫中铜富集时的影响,从而大幅度减少药剂用量,从而为提高铜精矿品质提供了有力保障。
与现有技术相比,本发明的优点在于:首先,对原矿矿浆进行预先脱泥,大幅度减轻了易泥、易浮滑石、蛇纹石等易浮矿物对主系统选铜带来的不利影响,为提高铜精矿品质及回收率奠定了基础;其次,对脱泥泡沫单独浮选,实现了资源最大化回收;第三,对预先脱泥泡沫进行抑铜浮泥,有效减轻大量含泥易浮脉石对后续铜浮选的影响;第四,预先脱泥泡沫抑铜浮泥技术方案,避免抑泥浮铜时添加大量高分子抑制剂、淀粉、纤维类的改性产品在应用过程中产生的高COD的废水污染环境、恶化浮选矿浆环境、大分子抑制剂溶液配制过程中易形成肿块、溶胀速度慢,易造成物料浪费,堵塞管道或泵体等弊端;第五,预先脱泥泡沫抑铜浮泥后,有效降低了铜富集时的药剂消耗,降低了选矿成本,增加了企业效益;第六,对预先脱泥泡沫进行抑铜浮泥,打破了硫化铜矿物抑制泥矿物,浮选铜矿物的常规技术路线,根据脉石可浮性,创造性地提出了抑铜浮泥的技术方案,同时选用铜抑制剂均为无毒药剂,避免了选矿水污染环境的问题;第七,针对脱泥时泥矿夹带目的矿物的情况,本发明选用起泡剂为泡沫粘度小的甲基异丁基甲醇(MIBC)、丁基醚醇中的任意一种;第八,预先脱泥泡沫抑铜浮泥后矿浆粗选采用弱起泡性和高选择性的丁基黄原酸丙腈脂,且粗、精选均采用柱分选,为提高铜精矿品质提供了有力保障。
附图说明
图1是本发明一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法的流程示意图;
图2是本发明一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法的浮选原则流程图;
图3是含铜滑石-蛇纹岩矿石优先浮铜的浮选原则流程图;
图4是含铜滑石-蛇纹岩矿石预先脱泥后优先浮铜的浮选原则流程图。
具体实施方式
下面结合附图 ,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所有其他实施例,都属于本发明的保护范围。
实施例1:如图1和图2所示,一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,按以下步骤进行:
(1)、磨矿:对易泥化、易浮含铜滑石-蛇纹岩矿石进行磨矿,磨矿细度为-0.074mm粒级含量为75%,从而得到原矿矿浆;
(2)预先脱泥浮选:向原矿矿浆中加入起泡剂丁基醚醇,用量2g/t,进行泥化易浮脉石预浮选,从而得到预先脱泥泡沫和预脱泥后矿浆;
(3)预先脱泥泡沫单独浮选:
Figure 260139DEST_PATH_IMAGE002
向步骤(2)所得预先脱泥泡沫中加入铜矿物抑制剂,搅拌5分钟,进行脱泥反浮选,得到反浮选泥泡沫及脱泥后含铜脉石矿浆,反浮选脱泥泡沫为最终尾矿;
Figure 245413DEST_PATH_IMAGE004
向脱泥后含铜脉石矿浆中加入石灰调浆,控制PH值8~9,再加入硫酸铜活化剂,药剂用量20g/t,搅拌3分钟后,加入选铜捕收剂丁基黄原酸丙腈脂和起泡剂丁基醚醇,用量分别为30g/t、4g/t搅拌3分钟后,进行含铜脉石粗选,得到粗选精矿
Figure 492854DEST_PATH_IMAGE006
-
Figure 563578DEST_PATH_IMAGE006
和粗选尾矿
Figure 616985DEST_PATH_IMAGE006
-
Figure 394448DEST_PATH_IMAGE006
Figure 875108DEST_PATH_IMAGE008
向粗精矿
Figure 105232DEST_PATH_IMAGE006
-
Figure 962330DEST_PATH_IMAGE006
中加入硫化钠,用量20g/t,并加石灰,控制PH值12.4±0.2,进行一次精选,得到铜精矿
Figure 656616DEST_PATH_IMAGE006
-
Figure 257579DEST_PATH_IMAGE006
和精尾
Figure 302896DEST_PATH_IMAGE006
-
Figure 635788DEST_PATH_IMAGE006
,精尾
Figure 184581DEST_PATH_IMAGE006
合并到粗选尾矿
Figure 272623DEST_PATH_IMAGE006
-
Figure 477339DEST_PATH_IMAGE006
,形成闭路循环;
Figure 676239DEST_PATH_IMAGE010
向铜精矿
Figure 17222DEST_PATH_IMAGE006
-
Figure 276165DEST_PATH_IMAGE006
中加入石灰,控制PH值12.4±0.2,进行二次精选,得到铜精矿
Figure 30495DEST_PATH_IMAGE006
-
Figure 705189DEST_PATH_IMAGE012
与精尾
Figure 228575DEST_PATH_IMAGE006
-
Figure 596102DEST_PATH_IMAGE012
,铜精矿
Figure 572148DEST_PATH_IMAGE006
-
Figure 112851DEST_PATH_IMAGE012
作为最终精矿,精尾
Figure 694005DEST_PATH_IMAGE006
-
Figure 29172DEST_PATH_IMAGE012
与脱泥后含铜脉石矿浆合并,进行含铜脉石粗选,形成闭路循环;
Figure 695776DEST_PATH_IMAGE014
向精尾
Figure 774591DEST_PATH_IMAGE006
-
Figure 210251DEST_PATH_IMAGE006
和粗选尾矿
Figure 716319DEST_PATH_IMAGE006
-
Figure 932537DEST_PATH_IMAGE006
合并矿浆中加入选铜捕收剂丁基黄原酸丙腈脂和起泡剂丁基醚醇,用量分别为15g/t、2g/t,搅拌2分钟后,进行一次扫选作业,得到泡沫产品
Figure 752725DEST_PATH_IMAGE006
-
Figure 105209DEST_PATH_IMAGE006
与一扫尾矿
Figure 985440DEST_PATH_IMAGE006
-
Figure 423375DEST_PATH_IMAGE006
,泡沫产品
Figure 843992DEST_PATH_IMAGE006
-
Figure 254245DEST_PATH_IMAGE006
合并到粗选尾矿
Figure 102115DEST_PATH_IMAGE006
-
Figure 965029DEST_PATH_IMAGE006
,形成闭路循环;向一扫尾矿
Figure 189337DEST_PATH_IMAGE006
-
Figure 516413DEST_PATH_IMAGE006
中加入选铜捕收剂丁基黄原酸丙腈脂和起泡剂丁基醚醇,用量分别为15g/t、2g/t,进行二次扫选,得到泡沫产品
Figure 738447DEST_PATH_IMAGE006
-
Figure 150974DEST_PATH_IMAGE012
与二扫尾矿
Figure 851076DEST_PATH_IMAGE006
-
Figure 32659DEST_PATH_IMAGE006
,泡沫产品
Figure 487911DEST_PATH_IMAGE006
-
Figure 325417DEST_PATH_IMAGE012
顺序返回与精尾
Figure 891528DEST_PATH_IMAGE006
-
Figure 865300DEST_PATH_IMAGE006
、粗选尾矿
Figure 491453DEST_PATH_IMAGE006
-
Figure 816255DEST_PATH_IMAGE006
合并,形成闭路循环,二扫尾
Figure 920478DEST_PATH_IMAGE006
-
Figure 76652DEST_PATH_IMAGE006
矿为最终尾矿;
(4)预脱泥后矿浆单独浮选:
Figure 811390DEST_PATH_IMAGE002
向步骤(2)所得预脱泥后矿浆中加入石灰调浆,控制PH值11.8,加入脂类捕收剂,用量45g/t,搅拌3分钟,进行一次粗选,得到粗精矿
Figure 420226DEST_PATH_IMAGE012
-
Figure 531402DEST_PATH_IMAGE006
和粗选尾矿
Figure 542083DEST_PATH_IMAGE012
-
Figure 510039DEST_PATH_IMAGE006
Figure 543854DEST_PATH_IMAGE004
向粗精矿
Figure 989879DEST_PATH_IMAGE012
-
Figure 58329DEST_PATH_IMAGE006
中加入石灰调浆,控制PH值12.42,搅拌3分钟,进行一次精选,得到铜精矿
Figure 197186DEST_PATH_IMAGE012
-
Figure 780614DEST_PATH_IMAGE006
和精选尾矿
Figure 968013DEST_PATH_IMAGE012
-
Figure 953287DEST_PATH_IMAGE006
,形成闭路循环;
Figure 200729DEST_PATH_IMAGE008
向铜精矿
Figure 271453DEST_PATH_IMAGE012
-
Figure 324859DEST_PATH_IMAGE006
加入石灰,控制PH值12.4,进行二次精选,得到铜精矿
Figure 102323DEST_PATH_IMAGE012
-
Figure 582982DEST_PATH_IMAGE012
和精选尾矿
Figure 813107DEST_PATH_IMAGE012
-
Figure 670204DEST_PATH_IMAGE012
,铜精矿
Figure 364491DEST_PATH_IMAGE012
-
Figure 953735DEST_PATH_IMAGE012
为最终精矿,精选尾矿
Figure 999051DEST_PATH_IMAGE012
-
Figure 331944DEST_PATH_IMAGE012
返回与粗精矿
Figure 880737DEST_PATH_IMAGE012
-
Figure 906462DEST_PATH_IMAGE006
合并,形成闭路循环;
Figure 173495DEST_PATH_IMAGE010
向粗选尾矿
Figure 106816DEST_PATH_IMAGE012
-
Figure 713378DEST_PATH_IMAGE006
中加入捕收剂丁基黄药与松醇油起泡剂,用量分别为5g/t,5g/t,进行一次扫选,得到扫选泡沫
Figure 972321DEST_PATH_IMAGE012
-
Figure 398754DEST_PATH_IMAGE006
和一扫尾矿
Figure 401345DEST_PATH_IMAGE012
-
Figure 924730DEST_PATH_IMAGE006
Figure 26678DEST_PATH_IMAGE014
将扫选泡沫
Figure 268304DEST_PATH_IMAGE012
-
Figure 734971DEST_PATH_IMAGE006
与一精尾矿
Figure 112863DEST_PATH_IMAGE012
-
Figure 651291DEST_PATH_IMAGE006
合并,进行中矿单独再磨,再磨细度-0.045mm粒级含量为92%,经磨矿分级后再磨溢流汇入预脱泥后矿浆,形成闭路循环;
Figure DEST_PATH_IMAGE016
向一扫尾矿
Figure 114634DEST_PATH_IMAGE012
-
Figure 396711DEST_PATH_IMAGE006
中加入捕收剂丁基黄药与松醇油起泡剂,用量分别为5g/t,5g/t,进行二次扫选,得到扫选泡沫
Figure 894688DEST_PATH_IMAGE012
-
Figure 338439DEST_PATH_IMAGE012
与二扫尾矿
Figure 554657DEST_PATH_IMAGE012
-
Figure 437162DEST_PATH_IMAGE012
,扫选泡沫
Figure 727329DEST_PATH_IMAGE012
-
Figure 404298DEST_PATH_IMAGE012
与粗选尾矿
Figure 779916DEST_PATH_IMAGE012
-
Figure 466112DEST_PATH_IMAGE006
合并,形成闭路循环,二扫尾矿
Figure 673102DEST_PATH_IMAGE012
-
Figure 724235DEST_PATH_IMAGE012
为最终尾矿;
上述方案中,步骤(3)预先脱泥泡沫中先加入铜矿物抑制剂为碳酸钠、再同时加入过硫酸钠(Na2S2O8)、亚铁氰化钾(K4Fe(CN)6·3H2O)、巯基乙酸(HSCH2COOH)的混合物,其中碳酸钠用量为500g/t,过硫酸钠、亚铁氰化钾、巯基乙酸总用量为300g/t;
进一步地,过硫酸钠、亚铁氰化钾、巯基乙酸使用时的质量比例为:(6~8):(1~3):1 。
作为对比,按照图3流程图所示的选别工艺流程,将原矿磨至细度为-0.074mm粒级含量为75%,不脱泥直接进入浮选,其他条件同实施例1。针对原矿含铜0.95%的含铜滑石蛇纹岩矿石,两组条件试验结果见下表:
Figure DEST_PATH_IMAGE018
从上表可见,本发明提供的工艺流程较常规不脱泥工艺回收率高0.37个百分点的情况下,铜精矿品位高5.27个百分点,铜精矿品质显著提高。
实施例2:如图1和图2所示,一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,按以下步骤进行:
(1)、磨矿:对易泥化、易浮含铜滑石-蛇纹岩矿石进行磨矿,磨矿细度为-0.074mm粒级含量为75%,从而得到原矿矿浆;
(2)预先脱泥浮选:向原矿矿浆中加入起泡剂丁基醚醇,用量2g/t,进行泥化易浮脉石预浮选,从而得到预先脱泥泡沫和预脱泥后矿浆;
(3)预先脱泥泡沫单独浮选:
Figure 587149DEST_PATH_IMAGE002
向步骤(2)所得预先脱泥泡沫中加入铜矿物抑制剂,搅拌5分钟,进行脱泥反浮选,得到反浮选泥泡沫及脱泥后含铜脉石矿浆,反浮选脱泥泡沫为最终尾矿;
Figure 811457DEST_PATH_IMAGE004
向脱泥后含铜脉石矿浆中加入石灰调浆,控制PH值8~9,再加入硫酸铜活化剂,药剂用量20g/t,搅拌3分钟后,加入选铜捕收剂丁基黄原酸丙腈脂和起泡剂丁基醚醇,用量分别为30g/t、4g/t搅拌3分钟后,进行含铜脉石粗选,得到粗选精矿
Figure 138533DEST_PATH_IMAGE006
-
Figure 360567DEST_PATH_IMAGE006
和粗选尾矿
Figure 507514DEST_PATH_IMAGE006
-
Figure 473196DEST_PATH_IMAGE006
Figure 654779DEST_PATH_IMAGE008
向粗精矿
Figure 47714DEST_PATH_IMAGE006
-
Figure 947537DEST_PATH_IMAGE006
中加入硫化钠,用量20g/t,并加石灰,控制PH值12.4±0.2,进行一次精选,得到铜精矿
Figure 513648DEST_PATH_IMAGE006
-
Figure 487420DEST_PATH_IMAGE006
和精尾
Figure 113573DEST_PATH_IMAGE006
-
Figure 172796DEST_PATH_IMAGE006
,精尾
Figure 542598DEST_PATH_IMAGE006
合并到粗选尾矿
Figure 636455DEST_PATH_IMAGE006
-
Figure 433510DEST_PATH_IMAGE006
,形成闭路循环;
Figure 42346DEST_PATH_IMAGE010
向铜精矿
Figure 887942DEST_PATH_IMAGE006
-
Figure 898624DEST_PATH_IMAGE006
中加入石灰,控制PH值12.4±0.2,进行二次精选,得到铜精矿
Figure 804263DEST_PATH_IMAGE006
-
Figure 900395DEST_PATH_IMAGE012
与精尾
Figure 611999DEST_PATH_IMAGE006
-
Figure 680449DEST_PATH_IMAGE012
,铜精矿
Figure 819306DEST_PATH_IMAGE006
-
Figure 74838DEST_PATH_IMAGE012
作为最终精矿,精尾
Figure 590133DEST_PATH_IMAGE006
-
Figure 513090DEST_PATH_IMAGE012
与脱泥后含铜脉石矿浆合并,进行含铜脉石粗选,形成闭路循环;
Figure 822848DEST_PATH_IMAGE014
向精尾
Figure 627993DEST_PATH_IMAGE006
-
Figure 619083DEST_PATH_IMAGE006
和粗选尾矿
Figure 458863DEST_PATH_IMAGE006
-
Figure 877206DEST_PATH_IMAGE006
合并矿浆中加入选铜捕收剂丁基黄原酸丙腈脂和起泡剂丁基醚醇,用量分别为15g/t、2g/t,搅拌2分钟后,进行一次扫选作业,得到泡沫产品
Figure 435227DEST_PATH_IMAGE006
-
Figure 26745DEST_PATH_IMAGE006
与一扫尾矿
Figure 924294DEST_PATH_IMAGE006
-
Figure 575855DEST_PATH_IMAGE006
,泡沫产品
Figure 293275DEST_PATH_IMAGE006
-
Figure 688484DEST_PATH_IMAGE006
合并到粗选尾矿
Figure 502857DEST_PATH_IMAGE006
-
Figure 263002DEST_PATH_IMAGE006
,形成闭路循环;向一扫尾矿
Figure 530036DEST_PATH_IMAGE006
-
Figure 666619DEST_PATH_IMAGE006
中加入选铜捕收剂丁基黄原酸丙腈脂和起泡剂丁基醚醇,用量分别为15g/t、2g/t,进行二次扫选,得到泡沫产品
Figure 335498DEST_PATH_IMAGE006
-
Figure 328861DEST_PATH_IMAGE012
与二扫尾矿
Figure 20874DEST_PATH_IMAGE006
-
Figure 23465DEST_PATH_IMAGE006
,泡沫产品
Figure 484533DEST_PATH_IMAGE006
-
Figure 648798DEST_PATH_IMAGE012
顺序返回与精尾
Figure 828107DEST_PATH_IMAGE006
-
Figure 368810DEST_PATH_IMAGE006
、粗选尾矿
Figure 684385DEST_PATH_IMAGE006
-
Figure 285130DEST_PATH_IMAGE006
合并,形成闭路循环,二扫尾
Figure 748473DEST_PATH_IMAGE006
-
Figure 30549DEST_PATH_IMAGE006
矿为最终尾矿;
(4)预脱泥后矿浆单独浮选:
Figure 262947DEST_PATH_IMAGE002
向步骤(2)所得预脱泥后矿浆中加入石灰调浆,控制PH值11.8,加入脂类捕收剂,用量40g/t,搅拌3分钟,进行一次粗选,得到粗精矿
Figure 972278DEST_PATH_IMAGE012
-
Figure 922916DEST_PATH_IMAGE006
和粗选尾矿
Figure 805421DEST_PATH_IMAGE012
-
Figure 95588DEST_PATH_IMAGE006
Figure 38137DEST_PATH_IMAGE004
向粗精矿
Figure 237973DEST_PATH_IMAGE012
-
Figure 924169DEST_PATH_IMAGE006
中加入石灰调浆,控制PH值12.42,搅拌3分钟,进行一次精选,得到铜精矿
Figure 68843DEST_PATH_IMAGE012
-
Figure 182292DEST_PATH_IMAGE006
和精选尾矿
Figure 107523DEST_PATH_IMAGE012
-
Figure 269514DEST_PATH_IMAGE006
,形成闭路循环;
Figure 596590DEST_PATH_IMAGE008
向铜精矿
Figure 615362DEST_PATH_IMAGE012
-
Figure 965572DEST_PATH_IMAGE006
加入石灰,控制PH值12.4,进行二次精选,得到铜精矿
Figure 993571DEST_PATH_IMAGE012
-
Figure 112836DEST_PATH_IMAGE012
和精选尾矿
Figure 568088DEST_PATH_IMAGE012
-
Figure 140015DEST_PATH_IMAGE012
,铜精矿
Figure 706126DEST_PATH_IMAGE012
-
Figure 7794DEST_PATH_IMAGE012
为最终精矿,精选尾矿
Figure 571631DEST_PATH_IMAGE012
-
Figure 693170DEST_PATH_IMAGE012
返回与粗精矿
Figure 655DEST_PATH_IMAGE012
-
Figure 156830DEST_PATH_IMAGE006
合并,形成闭路循环;
Figure 953884DEST_PATH_IMAGE010
向粗选尾矿
Figure 500403DEST_PATH_IMAGE012
-
Figure 408317DEST_PATH_IMAGE006
中加入捕收剂丁基黄药与松醇油起泡剂,用量分别为5g/t,5g/t,进行一次扫选,得到扫选泡沫
Figure 356681DEST_PATH_IMAGE012
-
Figure 324637DEST_PATH_IMAGE006
和一扫尾矿
Figure 420769DEST_PATH_IMAGE012
-
Figure 70056DEST_PATH_IMAGE006
Figure 935244DEST_PATH_IMAGE014
将扫选泡沫
Figure 11784DEST_PATH_IMAGE012
-
Figure 595213DEST_PATH_IMAGE006
与一精尾矿
Figure 110507DEST_PATH_IMAGE012
-
Figure 767885DEST_PATH_IMAGE006
合并,进行中矿单独再磨,再磨细度-0.045mm粒级含量为92%,经磨矿分级后再磨溢流汇入预脱泥后矿浆,形成闭路循环;
Figure 77644DEST_PATH_IMAGE016
向一扫尾矿
Figure 86051DEST_PATH_IMAGE012
-
Figure 139457DEST_PATH_IMAGE006
中加入捕收剂丁基黄药与松醇油起泡剂,用量分别为5g/t,5g/t,进行二次扫选,得到扫选泡沫
Figure 916921DEST_PATH_IMAGE012
-
Figure 397581DEST_PATH_IMAGE012
与二扫尾矿
Figure 955601DEST_PATH_IMAGE012
-
Figure 484802DEST_PATH_IMAGE012
,扫选泡沫
Figure 179089DEST_PATH_IMAGE012
-
Figure 33912DEST_PATH_IMAGE012
与粗选尾矿
Figure 813649DEST_PATH_IMAGE012
-
Figure 208859DEST_PATH_IMAGE006
合并,形成闭路循环,二扫尾矿
Figure 960914DEST_PATH_IMAGE012
-
Figure 783377DEST_PATH_IMAGE012
为最终尾矿;
上述方案中,步骤(3)预先脱泥泡沫中先加入铜矿物抑制剂为碳酸钠、再同时加入过硫酸钠(Na2S2O8)、亚铁氰化钾(K4Fe(CN)6·3H2O)、巯基乙酸(HSCH2COOH)的混合物,其中碳酸钠用量为2000g/t,过硫酸钠、亚铁氰化钾、巯基乙酸总用量为1500g/t;
进一步地,过硫酸钠、亚铁氰化钾、巯基乙酸使用时的质量比例为:(6~8):(1~3):1 。
作为对比,按照图4流程图所示的选别工艺流程,将原矿磨至细度为-0.074mm粒级含量为75%,脱泥后进入浮选,其他条件同实施例1。针对原矿含铜0.84%的含铜滑石蛇纹岩矿石,两组条件试验结果见下表:
Figure DEST_PATH_IMAGE020
从上表可见,本发明提供的工艺流程较常规脱泥浮选工艺铜精矿品位低0.47个百分点的情况下,选铜回收率高3.56个百分点,在保证铜精矿品质的同时铜回收率增加明显。
上述两个实施例可以看出,针对易泥化、易浮含铜滑石、蛇纹岩类矿石,使用常规直接浮选流程,铜精矿得不到保证,使用常规脱泥浮选流程,脱泥产品中铜损失量大,导致最终选铜回收率偏低,两种流程均影响企业效益,本发明工艺流程通过预先脱泥,脱泥产品进行抑铜反浮选脱泥,再对反浮选脱泥后矿浆及预脱泥后矿浆分别进行铜选别的工艺方案,在保证铜精矿品质的同时提高选铜回收率,且效果明显。
本发明采用的铜抑制剂是在常温下添加,组合添加过程中药剂不产生化学反应,经过无数次试验发现最佳配比,部分试验数据见下表:
Figure DEST_PATH_IMAGE022
从上表可知:1)针对含铜0.11%的脱泥泡沫,在碳酸钠800g/t,过硫酸钠碳酸钠、亚铁氰化钾、巯基乙酸总用量1000g/t条件下,试验2、3、4选铜回收率均在90%以上,且尾矿1损失率不超过3%;2)从试验1~7综合分析可知,过硫酸钠碳酸钠、亚铁氰化钾、巯基乙酸最佳比例为7:3:1,结合回收率变化趋势并充分考虑原矿性质变化,过硫酸钠碳酸钠、亚铁氰化钾、巯基乙酸较为适宜的用量比例为:(6~8):(1~3):1。
Figure DEST_PATH_IMAGE024
注:过硫酸钠、亚铁氰化钾、巯基乙酸比例为(6~8):(1~3):1。
从表2数据分析可知,当碳酸钠用量偏低时(300g/t),脱泥量较大,但铜损失率偏大,当碳酸钠用量偏高时(2500g/t),脱泥量偏少,反浮选矿浆中脉石未大量脱除,影响后续选别作业,同时综合考虑矿石中硫矿物含量变化,碳酸钠最佳用量为500~2000g/t。
Figure DEST_PATH_IMAGE026
注:过硫酸钠、亚铁氰化钾、巯基乙酸比例为(6~8):(1~3):1。
从表3数据分析可知,三种抑制剂混合用量偏低时(试验1),铜损失率偏大,当三种抑制剂混合用量偏高时(2000g/t),铜损失率有增大趋势,同时考虑到后续铜矿物活化,若抑制剂用量过大,对后续活化选铜作业影响较大,综合考虑,过硫酸钠、亚铁氰化钾、巯基乙酸三种抑制剂混合总用量为300~1500g/t。
由以上实验可知,本发明的铜抑制剂的组分与比例是经过反复尝试得出的最优解,现有技术并没有给出相关的报道或指引使得本领域技术人员能够经过有限次的实验得出本发明的铜抑制剂的合理配方及组分含量,这是本发明的创新点之一。

Claims (10)

1.一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,其特征是它包括以下步骤:
(1)、磨矿:对易泥化、易浮含铜滑石-蛇纹岩矿石进行磨矿,从而得到原矿矿浆;
(2)预先脱泥浮选:向原矿矿浆中加入起泡剂,进行泥化易浮脉石预浮选,从而得到预先脱泥泡沫和预脱泥后矿浆;
(3)预先脱泥泡沫单独浮选:
Figure DEST_PATH_IMAGE002
向步骤(2)所得预先脱泥泡沫中加入铜矿物抑制剂,搅拌5分钟,进行脱泥反浮选,得到反浮选脱泥泡沫及脱泥后含铜脉石矿浆,反浮选脱泥泡沫为最终尾矿;
Figure DEST_PATH_IMAGE004
向脱泥后含铜脉石矿浆中加入石灰调浆,控制pH值8~9,再加入10~30g/t的硫酸铜活化剂,搅拌3分钟后,加入选铜捕收剂和起泡剂,搅拌3分钟后,进行含铜脉石粗选,得到粗选精矿
Figure DEST_PATH_IMAGE006
-
Figure 78288DEST_PATH_IMAGE006
和粗选尾矿
Figure 277188DEST_PATH_IMAGE006
-
Figure 883750DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE008
向粗选精矿
Figure 814797DEST_PATH_IMAGE006
-
Figure 569126DEST_PATH_IMAGE006
中加入铜离子去除剂,并加石灰,控制pH值12.4±0.2,进行一次精选,得到铜精矿
Figure 243821DEST_PATH_IMAGE006
-
Figure 767206DEST_PATH_IMAGE006
和精尾
Figure 134734DEST_PATH_IMAGE006
-
Figure 314042DEST_PATH_IMAGE006
,精尾
Figure 589166DEST_PATH_IMAGE006
-
Figure 170320DEST_PATH_IMAGE006
合并到粗选尾矿
Figure 505486DEST_PATH_IMAGE006
-
Figure 172091DEST_PATH_IMAGE006
,形成闭路循环;
Figure DEST_PATH_IMAGE010
向铜精矿
Figure 188588DEST_PATH_IMAGE006
-
Figure 624249DEST_PATH_IMAGE006
中加入石灰,控制pH值12.4±0.2,进行二次精选,得到铜精矿
Figure 395896DEST_PATH_IMAGE006
-
Figure DEST_PATH_IMAGE012
与精尾
Figure 284217DEST_PATH_IMAGE006
-
Figure 166723DEST_PATH_IMAGE012
,铜精矿
Figure 456890DEST_PATH_IMAGE006
-
Figure 399438DEST_PATH_IMAGE012
作为最终精矿,精尾
Figure 775056DEST_PATH_IMAGE006
-
Figure 195673DEST_PATH_IMAGE012
与脱泥后含铜脉石矿浆合并,进行含铜脉石粗选,形成闭路循环;
Figure DEST_PATH_IMAGE014
向精尾
Figure 605926DEST_PATH_IMAGE006
-
Figure 657058DEST_PATH_IMAGE006
和粗选尾矿
Figure 582289DEST_PATH_IMAGE006
-
Figure 744280DEST_PATH_IMAGE006
合并矿浆中加入选铜捕收剂和起泡剂,搅拌2分钟后,进行一次扫选作业,得到泡沫产品
Figure 805777DEST_PATH_IMAGE006
-
Figure 27811DEST_PATH_IMAGE006
与一扫尾矿
Figure 440337DEST_PATH_IMAGE006
-
Figure 406019DEST_PATH_IMAGE006
,泡沫产品
Figure 587602DEST_PATH_IMAGE006
-
Figure 714958DEST_PATH_IMAGE006
合并到粗选尾矿
Figure 614781DEST_PATH_IMAGE006
-
Figure 118575DEST_PATH_IMAGE006
,形成闭路循环;向一扫尾矿
Figure 420243DEST_PATH_IMAGE006
-
Figure 718500DEST_PATH_IMAGE006
中加入选铜捕收剂和起泡剂,进行二次扫选,得到泡沫产品
Figure 105619DEST_PATH_IMAGE006
-
Figure 413104DEST_PATH_IMAGE012
与二扫尾矿
Figure 303699DEST_PATH_IMAGE006
-
Figure 38437DEST_PATH_IMAGE006
,泡沫产品
Figure 647273DEST_PATH_IMAGE006
-
Figure 582667DEST_PATH_IMAGE012
顺序返回与精尾
Figure 593349DEST_PATH_IMAGE006
-
Figure 498988DEST_PATH_IMAGE006
、粗选尾矿
Figure 595120DEST_PATH_IMAGE006
-
Figure 244407DEST_PATH_IMAGE006
合并,形成闭路循环,二扫尾
Figure 109595DEST_PATH_IMAGE006
-
Figure 186135DEST_PATH_IMAGE006
矿为最终尾矿;
(4)预脱泥后矿浆单独浮选:
Figure 769563DEST_PATH_IMAGE002
向步骤(2)所得预脱泥后矿浆中加入石灰调浆,控制pH值11.5~11.8,加入捕收剂和起泡剂,进行预脱泥后矿浆粗选和扫选,得到粗精矿
Figure 956962DEST_PATH_IMAGE012
-
Figure 942236DEST_PATH_IMAGE006
和尾矿3;
Figure 924098DEST_PATH_IMAGE004
向粗精矿
Figure 994822DEST_PATH_IMAGE012
-
Figure 251491DEST_PATH_IMAGE006
中加入石灰调浆,控制pH值12.4±0.2,进行精选作业,得到铜精矿
Figure 91271DEST_PATH_IMAGE012
2.如权利要求1所述的一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,其特征是:所述铜矿物抑制剂为碳酸钠、过硫酸钠、亚铁氰化钾、巯基乙酸的混合物,其中碳酸钠用量为500~2000g/t,过硫酸钠、亚铁氰化钾、巯基乙酸总用量为300~1500g/t。
3.如权利要求2所述的一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,其特征是:所述过硫酸钠、亚铁氰化钾、巯基乙酸使用时的质量比例为:(6~8):(1~3):1。
4.如权利要求2或3所述的一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,其特征是:所述铜矿物抑制剂加药顺序为:先加入碳酸钠,再同时添加或混合添加过硫酸钠、亚铁氰化钾和巯基乙酸。
5.如权利要求1所述的一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,其特征是:所述起泡剂为甲基异丁基甲醇、丁基醚醇中的任意一种,且用量为1~10g/t。
6.如权利要求1所述的一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,其特征是:所述步骤(3)中含铜脉石矿浆粗选、扫选捕收剂为丁基黄原酸丙腈脂,且其用量为10~60g/t。
7.如权利要求1所述的一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,其特征是:所述铜离子去除剂为硫化钠,用量10~30g/t。
8.如权利要求1所述的一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,其特征是:所述步骤(1)中磨矿细度为-0.074mm粒级含量为70~80%。
9.如权利要求1所述的一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,其特征是:所述步骤(3)中脱泥反浮选、含铜脉石矿浆粗选、精选为柱浮选。
10.如权利要求1所述的一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法,其特征是:所述步骤(4)中捕收剂为硫氮腈脂、硫氨酯、乙硫氮、丁基黄药、戊基黄药的至少一种,起泡剂为松醇油、甲基异丁基甲醇、丁基醚醇中的任意一种。
CN202010151187.0A 2020-03-05 2020-03-05 一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法 Active CN111451003B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010151187.0A CN111451003B (zh) 2020-03-05 2020-03-05 一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010151187.0A CN111451003B (zh) 2020-03-05 2020-03-05 一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法

Publications (2)

Publication Number Publication Date
CN111451003A true CN111451003A (zh) 2020-07-28
CN111451003B CN111451003B (zh) 2022-06-07

Family

ID=71672872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010151187.0A Active CN111451003B (zh) 2020-03-05 2020-03-05 一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法

Country Status (1)

Country Link
CN (1) CN111451003B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112138873A (zh) * 2020-09-16 2020-12-29 东北大学 选择性抑制剂edtmps在菱镁矿浮选脱硅中的应用
CN112191371A (zh) * 2020-08-27 2021-01-08 中国恩菲工程技术有限公司 一种高镁硫化矿的浮选方法
CN112295728A (zh) * 2020-10-20 2021-02-02 长沙矿山研究院有限责任公司 一种滑石抑制剂及含滑石钼矿的高效浮选方法
CN112337654A (zh) * 2020-10-16 2021-02-09 中南大学 一种金属离子盐水在极难选硫化铜金矿浮选分离中的应用
CN112495590A (zh) * 2021-01-06 2021-03-16 昆明冶金研究院有限公司 一种含镁硅酸盐矿物抑制剂及其应用
CN113634375A (zh) * 2021-08-13 2021-11-12 西安建筑科技大学 一种低品位混合氧化铜矿石的选矿方法
CN114367376A (zh) * 2022-01-10 2022-04-19 中南大学 一种浮选回收铜钼矿物的方法
CN114405658A (zh) * 2022-01-20 2022-04-29 鞍钢集团北京研究院有限公司 一种降低水镁石浮选精矿中蛇纹石含量的方法
CN114798188A (zh) * 2022-04-27 2022-07-29 矿冶科技集团有限公司 一种含滑石铜矿的选矿方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696922A (en) * 1969-11-07 1972-10-10 David Weston Flotation of copper and nickel sulfides from talcose bearing ores
US4530758A (en) * 1982-05-17 1985-07-23 Thiotech, Inc. Ore flotation method
CN101831559A (zh) * 2010-05-21 2010-09-15 昆明理工大学 一种高结合率碳酸盐脉石型氧硫混合铜矿的选冶方法
CN107899754A (zh) * 2017-11-13 2018-04-13 西部矿业股份有限公司 一种铜硫分离高效抑制剂组合物及应用该组合物的铜硫分离浮选方法
CN108160313A (zh) * 2017-12-21 2018-06-15 中南大学 一种氧化铜矿粗细分级-强化细粒级硫化浮选的方法
CN108435438A (zh) * 2018-05-11 2018-08-24 西安建筑科技大学 一种抑铜抑制剂、制备方法及含铜矿物浮选方法
CN110216018A (zh) * 2019-05-28 2019-09-10 西北矿冶研究院 一种高泥细粒氧化铜矿的选矿方法
CN110523543A (zh) * 2019-09-18 2019-12-03 中铝国际工程股份有限公司 一种从硫化铜氧压浸出渣中回收铜硫有价元素的工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696922A (en) * 1969-11-07 1972-10-10 David Weston Flotation of copper and nickel sulfides from talcose bearing ores
US4530758A (en) * 1982-05-17 1985-07-23 Thiotech, Inc. Ore flotation method
CN101831559A (zh) * 2010-05-21 2010-09-15 昆明理工大学 一种高结合率碳酸盐脉石型氧硫混合铜矿的选冶方法
CN107899754A (zh) * 2017-11-13 2018-04-13 西部矿业股份有限公司 一种铜硫分离高效抑制剂组合物及应用该组合物的铜硫分离浮选方法
CN108160313A (zh) * 2017-12-21 2018-06-15 中南大学 一种氧化铜矿粗细分级-强化细粒级硫化浮选的方法
CN108435438A (zh) * 2018-05-11 2018-08-24 西安建筑科技大学 一种抑铜抑制剂、制备方法及含铜矿物浮选方法
CN110216018A (zh) * 2019-05-28 2019-09-10 西北矿冶研究院 一种高泥细粒氧化铜矿的选矿方法
CN110523543A (zh) * 2019-09-18 2019-12-03 中铝国际工程股份有限公司 一种从硫化铜氧压浸出渣中回收铜硫有价元素的工艺

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
李尧等: "铜钼混合精矿浮选分离技术研究进展", 《金属矿山》, no. 07, 15 July 2018 (2018-07-15), pages 13 - 18 *
王振: "某含滑石铜钼混合精矿的分离", 《矿冶工程》 *
王振: "某含滑石铜钼混合精矿的分离", 《矿冶工程》, vol. 35, no. 1, 28 February 2015 (2015-02-28), pages 51 - 53 *
穆迎迎: "含易浮钙镁矿物的某黄铜矿的浮选试验", 《金属矿山》 *
穆迎迎: "含易浮钙镁矿物的某黄铜矿的浮选试验", 《金属矿山》, no. 11, 30 November 2014 (2014-11-30), pages 67 - 70 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112191371A (zh) * 2020-08-27 2021-01-08 中国恩菲工程技术有限公司 一种高镁硫化矿的浮选方法
CN112138873A (zh) * 2020-09-16 2020-12-29 东北大学 选择性抑制剂edtmps在菱镁矿浮选脱硅中的应用
CN112138873B (zh) * 2020-09-16 2021-05-18 东北大学 选择性抑制剂edtmps在菱镁矿浮选脱硅中的应用
CN112337654A (zh) * 2020-10-16 2021-02-09 中南大学 一种金属离子盐水在极难选硫化铜金矿浮选分离中的应用
CN112295728A (zh) * 2020-10-20 2021-02-02 长沙矿山研究院有限责任公司 一种滑石抑制剂及含滑石钼矿的高效浮选方法
CN112295728B (zh) * 2020-10-20 2022-03-25 长沙矿山研究院有限责任公司 一种滑石抑制剂及含滑石钼矿的高效浮选方法
CN112495590A (zh) * 2021-01-06 2021-03-16 昆明冶金研究院有限公司 一种含镁硅酸盐矿物抑制剂及其应用
CN113634375A (zh) * 2021-08-13 2021-11-12 西安建筑科技大学 一种低品位混合氧化铜矿石的选矿方法
CN114367376A (zh) * 2022-01-10 2022-04-19 中南大学 一种浮选回收铜钼矿物的方法
CN114405658A (zh) * 2022-01-20 2022-04-29 鞍钢集团北京研究院有限公司 一种降低水镁石浮选精矿中蛇纹石含量的方法
CN114798188A (zh) * 2022-04-27 2022-07-29 矿冶科技集团有限公司 一种含滑石铜矿的选矿方法
CN114798188B (zh) * 2022-04-27 2023-08-08 矿冶科技集团有限公司 一种含滑石铜矿的选矿方法

Also Published As

Publication number Publication date
CN111451003B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN111451003B (zh) 一种易泥化、易浮含铜滑石-蛇纹岩矿石的选矿方法
CN103551255B (zh) 一种氧化钼矿浮选捕收剂的使用方法
CN106925433A (zh) 一种含铌钛铀矿的多金属矿选矿工艺
CN111468304A (zh) 一种铜硫矿中黄铁矿及易浮脉石的复合抑制剂及其浮选分离方法
MX2014013532A (es) Metodo y aparato para separacion de molibdenita a partir de menas de cobre-molibdeno que contienen pirita.
CN111570077B (zh) 三步法分离滑石和黄铜矿的工艺方法及用到的捕收剂
RU2398635C1 (ru) Способ флотационного обогащения сульфидных руд
CN112264192B (zh) 一种锡石浮选组合抑制剂及其应用
CN103480500A (zh) 一种含碳质物铜钴矿的浮选方法
CN104138807A (zh) 一种含层状易浮硅酸盐脉石的硫化铜镍矿选矿方法
CN107081220A (zh) 一种改善白钨浮选精矿中氧化钼富集效果的方法
US2407651A (en) Concentrating fluorspar by froth flotation
CN113856911A (zh) 高硫铜金银矿选矿方法
CN113233426A (zh) 一种锌氧压浸出高硫渣回收硫磺的方法
CN112295728A (zh) 一种滑石抑制剂及含滑石钼矿的高效浮选方法
US1914695A (en) Concentration of phosphate-bearing material
US2168762A (en) cacos
CN115921123A (zh) 一种新型方铅矿-黄铜矿分离的复合抑制剂及应用
CN112844818B (zh) 一种铜锌硫化矿选矿分离的方法
CN112474064B (zh) 一种复配捕收剂及其在复杂稀土矿浮选中的应用
CN114589012A (zh) 一种铜钼铅矿浮选絮凝剂及其制备方法和絮凝浮选方法
CN113333177A (zh) 含次生铜的硫化铜矿分离用组合抑制剂及分离方法
CN107755098B (zh) 一种轻稀土矿物浮选高效抑制萤石的方法
Hassani et al. Enhancement of phosphate flotation by ultrasonic pretreatment
CN101850296A (zh) 含滑石等硅质矿物较高的高硫铜矿石选铜工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant