CN111450862A - 制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法 - Google Patents

制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法 Download PDF

Info

Publication number
CN111450862A
CN111450862A CN202010210892.3A CN202010210892A CN111450862A CN 111450862 A CN111450862 A CN 111450862A CN 202010210892 A CN202010210892 A CN 202010210892A CN 111450862 A CN111450862 A CN 111450862A
Authority
CN
China
Prior art keywords
graphene oxide
temperature
cofe alloy
preparing
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010210892.3A
Other languages
English (en)
Inventor
张婷
李生娟
郭春卉
寿天
罗意
霍云浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202010210892.3A priority Critical patent/CN111450862A/zh
Publication of CN111450862A publication Critical patent/CN111450862A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明涉及一种制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法,采用尿素处理Fe、Co双金属。首先将铁盐、钴盐和尿素加入到去离子水中并油浴混合搅拌直至干燥;将获得的粉末与氧化石墨烯粉末研磨均匀,在Ar2条件下进行煅烧,首先将温度以3‑10℃/min升高到550℃并保温2小时,然后再以3‑10℃/min将管式炉升温到600‑900℃保温2小时,自然冷却到室温,制得CoFe合金/多孔氧化石墨烯/碳纳米管多维复合结构的氧还原催化剂。本发明制备工艺简单、成本低,材料结构均匀性好,具有结晶度高,电化学性能优良等优点,用于制作锌‑空气电池阴极的氧还原催化剂,克服了贵金属催化剂成本高、制备工艺复杂和很难实现产业化的缺点。

Description

制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法
技术领域
本发明涉及一种尿素处理金属Fe、Co制备出CoFe合金/氧化石墨烯/碳纳米管复合材料的方法。具体涉及到材料化学技术领域。所制备的CoFe合金/氧化石墨烯/碳纳米管复合材料用于制作金属空气电池阴极的氧还原催化剂。
背景技术
随着高密度储能便携式电子设备的迅速发展,对可再生、可持续能源的需求日益迫切。到目前为止,锂离子电池和超级电容器的研究受到了广泛关注。然而,它们的能量密度低,有限循环寿命低,仍然是一个有争议的问题。近年来,可充电金属(M)空气电池(M =Li、Zn、Mg、Al等)理论能量密度在1086-11140Wh/kg-1范围内,长期稳定性强,显示出了无限的潜力和经济价值。
目前常用的贵金属阴极电催化剂中金属主要是铂(Pt)、铱(Ir)、钌(Ru),尽管贵金属氧化物(如RuO2、IrO2)和贵金属(如Pt)作为氧析出反应(OER)和氧还原反应(ORR)的最先进催化剂,但其稳定性差、成本高、来源稀少、易中毒和动力学迟缓等缺点仍然是其大规模应用的主要障碍。所以过渡金属基无机纳米颗粒(NPs)(如金属、金属氧化物、硫化物 、氮化物、碳化物)与氮元素掺杂碳材料得到广泛研究,碳基复合材料(M-N-C)由过渡金属(M=Fe、Co、Ni等)和氮(特别是Fe-N-C,Co-N-C)组成,由于其低成本、高活性和稳定性,已成为最有希望替代铂族金属催化剂的候选材料。例如Wang等人(Wang, Q., et al. (2018). "Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene–CNTs framework as anefficient bifunctional oxygen electrocatalyst for robust rechargeable Zn–airbatteries." Journal of Materials Chemistry A6(2): 516-526. )将Fe/Fe3C@C纳米颗粒封装在N掺杂石墨烯-碳纳米管框架中,用于性能良好的可充电锌空气电池,与Pt/C催化剂的起始电位,半波电位相比显示出更优越的催化性能。
石墨烯由于其优良的导电性能和较高的比表面积,在燃料电池和超级电容器等电化学研究领域得到了广泛的应用。在氧还原过程中,氧化石墨烯表面含氧基团明显减少,容易引起石墨烯的聚集,从而导致比表面积降低。为了保持石墨烯的高比表面积,通常采用不同种类的原子掺杂如氮、硼、硫等来克服缺陷,同时防止石墨烯聚集。其中氮原子掺杂研究较为广泛,氮原子能够有效地改变碳的电子和晶体结构,促进氧吸附位点的形成,有效地促进氧还原催化活性。研究表明(Qiao M, Wang Y, Wang Q, et al. HierarchicallyOrdered Porous Carbon with Atomically Dispersed FeN4 for UltraefficientOxygen Reduction Reaction in Proton‐Exchange Membrane Fuel Cells[J].Angewandte Chemie International Edition, 2020, 59(7): 2688-2694.),氮原子掺入石墨烯碳骨架中可以与过渡金属(M)结合形成M-N4/C结构,在该结构中,氮原子可以与石墨烯边缘的碳原子相连,四个氮原子与中心金属(M)离子以配合物的形式存在,Fe、Co、Ni、Mn等都有可能形成M-N4/C结构,(Peng H, Liu F, Liu X, et al. Effect of transitionmetals on the structure and performance of the doped carbon catalysts derivedfrom polyaniline and melamine for ORR application[J]. Acs Catalysis, 2014, 4(10): 3797-3805.),由于这些过渡金属中Fe、Co相比与其他过渡金属元素氧还原性能较好,所以受到广泛关注。
催化剂的多孔结构有利于反应物质的传输,也有利于暴露更多的活性位,可以促进氧还原反应。目前过渡金属氮掺杂多孔碳材料的合成方法主要有化学活性法、模板法、水热合成法等,化学活性法通过将碱性活泼金属氢氧化物(如NaOH、KOH等)作为活化剂与碳反应,将活泼金属还原出来并高温气化以产生空隙结构,但最后需要去除多余碱性活化剂,会对仪器设备产生腐蚀造成经济损失。模板法将模板嵌入碳前驱体,然后去除模板形成介孔结构,去除模板过程中需要酸洗或强酸强碱刻蚀等,工艺复杂,安全性差。水热法热稳定性差,限制了其工业化发展。
发明内容
本发明公开了一种尿素处理FeCo制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法,通过直接热解法,先将尿素低温油浴处理Fe、Co双金属,然后通过将尿素高温热解成(NH3CO(NH2)2=2NH3↑+HNCO),分解的NH3使石墨烯不再致密紧实,形成具有丰富孔隙的多孔结构,随着热解温度的升高,Fe、Co双金属会形成CoFe合金,可以诱导纳米管的生长,将二维的石墨烯纳米片转化为三维的石墨烯基碳纳米管复合结构,有利于反应物质的传输,也有利于暴露更多的活性位点。氧还原性能优于单金属Fe、Co催化剂,所以这种尿素处理双金属Fe、Co与氧化石墨烯结合衍生出CoFe合金/多孔石墨烯基/碳纳米管复合结构的材料,本发明制备工艺简单、可重复性强、对环境无危害,可规模化生产,具有较高的使用价值,有效的克服了现有制备工艺繁琐、稳定性差、成本高、贵金属来源稀少、易中毒和动力学迟缓等缺点。
以下是本发明技术方案实现方式:
一种尿素处理FeCo制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法,首先以氧化石墨烯为前驱体和C源;以尿素为N源,将铁盐、钴盐和尿素加入去离子水中并油浴,混合搅拌直至干燥;将获得的粉末与氧化石墨烯粉末研磨均匀,在Ar2条件下进行煅烧,制得CoFe合金/氧化石墨烯/碳纳米管复合材料;其特征在于具体制备步骤如下:
1)将40.54mg FeCl3·9H2O与21.82mg Co(NO3)2·6H2O按照摩尔比nFe:nCo=1:0.5比例与尿素1.5g混合并油浴,(n代表摩尔质量),其油温保持在80℃,搅拌速度为300 rpm,搅拌12h直至干燥,得到橘黄色粉末;
2)将步骤1)获得的橘黄色粉末取1g与棕色氧化石墨烯粉末50mg混合研磨后置于坩埚中盖上坩埚盖,在Ar2条件下进行煅烧;首先将温度以3℃/min 升高到550℃并保温2h;然后以3℃/min将管式炉升温到800℃并保温2小时;最后在Ar2气氛的保护下,让炉子自然冷却到室温温度,得到均匀的氧化石墨烯/碳纳米管多维复合结构材料。
所制备的CoFe合金/氧化石墨烯/碳纳米管多维复合结构材料,用于制作锌-空气电池阴极的氧还原催化剂。
本发明优点在于:
1)根据尿素的热解性质,在煅烧过程中(CO(NH2)2=2NH3↑+HNCO)可以分解氨气,一方面提供丰富的N源,另一方面释放NH3时可以增大空隙率防止石墨烯发生聚集,同时暴露出更多的活性位点,在煅烧过程中铁盐和钴盐发生合金化反应,形成CoFe合金纳米粒子,CoFe纳米颗粒与顶端的碳原子的直接接触,造成单层碳原子的电子密度重新分布,当温度升高时,在CoFe合金纳米颗粒的诱导下氮掺杂的氧化石墨烯可以转化为碳纳米管,形成CoFe合金/多孔石墨烯基/碳纳米管三维复合结构,利用多孔氧化石墨烯和碳纳米管比表面积大,金属结晶性好等优势以及双金属的协同效应可以形成高效的ORR活性,与商用20%Pt/C相比,这种CoFe合金/石墨烯/碳纳米管三维复合结构的空气阴极催化剂显示出令人满意的氧还原性能。
2)本发明制备工艺简单、可重复性强,可实现产业化,有效克服了现有技术阴极ORR反应速率慢,工艺繁琐、对仪器设备产生腐蚀造成经济损失、安全性差、成本较高、不便推广等缺点。
附图说明
图1:实施例1制得的Fe1Co0.5-N-C 样品的SEM图像;
图2:实施例1制得的Fe1Co0.5-N-C 样品的EDS图谱;
图3:实施例1制备制得的Fe1Co0.5-N-C 样品材料XRD图谱;
图4:实施例1样品Fe1Co0.5-N-C、实施例2样品Fe-N-C和实施例3样品Co-N-C的拉曼图谱;
图5:实施例1制得的Fe1Co0.5-N-C,实施例2制得的Fe-N-C,实施例3制得的Co-N-C样品氧还原测试的CV曲线;
图6:实施例1制得的Fe1Co0.5-N-C,实施例2制得的Fe-N-C,实施例3制得的Co-N-C与商用20%Pt/C 在转速为1600rpm 下氧还原测试的LSV曲线;
图7:实施例1制得的Fe1Co0.5-N-C 样品不同转速下(400-1600rpm)的氧还原测试的LSV曲线。
具体实施方式
为了更好的理解本发明,以下将通过具体实施例对本发明进行详细描述。
【实施例1】
一种尿素处理Fe、Co双金属制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法
步骤1)将FeCl3·9H2O(40.54mg)与Co(NO3)2·6H2O (21.82mg)摩尔比nFe:nCo=1:0.5,(n代表摩尔质量)与尿素(1.5g)混合并油浴,其油温保持在80℃,搅拌速度300rpm,搅拌12h直至干燥;
步骤2)将步骤1)获得的粉末1g与氧化石墨烯粉末50mg研磨混合置于坩埚中盖上坩埚盖,在Ar2气氛条件下进行煅烧;首先将温度以3℃/min 升高到550℃并保温2h;然后以3℃/min将管式炉升温到800℃并保温2小时;最后在Ar2的保护下炉子自然冷却到室温温度,得到均匀的碳纳米管状结构,样品命名为Fe1Co0.5-N-C,用于锌空气电池阴极催化剂。
【实施例2】
步骤1)将FeCl3·9H2O(40.54mg)与尿素(1.5g)混合并油浴,其油温保持在80℃,搅拌速度300转/min,搅拌12h直至干燥;
步骤2)与实施例1相同,得到样品Fe-N-C。
【实施例3】
步骤1)将Co(NO3)2·6H2O (21.82mg)与尿素(1.5g)混合并油浴,其油温保持在80℃,搅拌速度300转/min,搅拌12h直至干燥;
步骤2)与实施例1相同,得到样品Co-N-C。
本发明实施例1制备得到样品Fe1Co0.5-N-C的形貌如图1所示;可以看出在石墨烯片上存在丰富的碳纳米管结构,石墨烯片间有丰富的孔隙结构,在碳纳米管顶端形成CoFe合金的金属纳米颗粒,这种Fe、Co诱导形成的多孔氧化石墨烯/碳纳米管结构防止了金属团聚,有利于金属与不同的氮结合形成丰富的活性位点(M-Nx 、N-C),同时增大了比表面积,使空气阴极同O2充分接触,并促进电子、离子的传输,从而提高氧还原性能。
实施例1中Fe1Co0.5-N-C样品的EDS图谱如图2所示;测得各元素含量和原子百分比如表1所示:
表1:制备Fe1Co0.5-N-C 材料各种元素含量
Figure DEST_PATH_IMAGE001
由图2、表1可以看出N元素的质量比为13.69%,C元素的质量比为70.31%,Fe元素的质量比6.19%,Co元素的质量比为3.22%, N的原子百分比13.56%,C的原子百分比为81.22%,Fe的原百分比为1.54%,Co原子百分比为0.76%,由EDS可以看出通过尿素处理后提供了质量为13.56%的N元素,Fe、Co金属元素质量比和原子比均约为1:0.5,与制备材料时添加Fe、Co金属的摩尔比相符。
实施例1中Fe1Co0.5-N-C样品的X射线衍射图如图3所示;在角度为≈25.5处的峰与石墨碳(002)面有关,在≈44.65,65,82.3处三个明确限定的峰对应于PDF#65-7519CoFe15.7的标准卡片,可以看出铁盐和钴盐形成了CoFe合金相,衍射峰较强,这主要归因于在碳热还原过程中部分铁盐和钴盐形成CoFe合金纳米粒子含量较高,结晶性好。
实施例1、实施例2和实施例3样品的拉曼光谱如图4所示;在≈1341 cm-1和≈1580cm-1处观察到两个峰,这分别对应于结构缺陷(D峰)的无序振动和石墨碳原子的有序散射(G峰),ID/IG比值可以表征石墨烯的结构缺陷,ID/IG比值越大,意味着石墨烯上有更多的缺陷。可以看出,所有催化剂的ID/IG比值均大于1.0,表明尿素处理的Fe、Co均可以在氧化石墨烯上产生结构缺陷,当尿素处理过的Co掺入氧化石墨烯中ID/IG值为1.021,当尿素处理过的Fe掺入氧化石墨烯中ID/IG值为1.038,当既有Fe的掺入又有Co的掺入时,ID/IG值为1.067。当有Fe、Co同时掺入时的ID/IG值最大,这说明Fe和Co的掺入形成的CoFe合金纳米粒子,更容易引入N的掺杂并形成缺陷,增加催化剂表面上的活性位点,因此更有利于ORR活性的提高。
实施例1样品Fe1Co0.5-N-C、实施例2样品Fe-N-C,实施例3样品Co-N-C的循环伏安(CV)曲线如图5所示;催化剂负载量为0.51mg cm-2的旋转圆盘电极上,通入饱和的O2在0.1M KOH水溶液中进行测试,Fe1Co0.5-N-C氧还原位置为-0.155V,Fe-N-C氧还原位置为-0.168V,Co-N-C氧还原位置为-0.20 V,可以看出实施例1样品Fe1Co0.5-N-C具有最正的阴极氧还原峰。
实施例1样品Fe1Co0.5-N-C、实施例2样品Fe-N-C,实施例3样品Co-N-C的线性扫描伏安(LSV)曲线测试如图6所示;从图中可以看出实施例1样品 Fe1Co0.5-N-C的起始电位为-0.057V,半波电位为-0.175V,极限电流密度为-5.80mA cm-2,Fe-N-C起始电位为-0.076V,半波电位为-0.24V,极限电流密度为-5.41mA cm-2,Co-N-C起始电位为-0.119V,半波电位为-0.28V,极限电流密度为-4.57mA cm-2。Pt/C起始电位为-0.055V,半波电位为-0.167V,极限电流密度为-6.32mA cm-2
具体结果如表2所示:
表2:制备的Fe1Co0.5-N-C、Fe-N-C、Co-N-C样品与Pt/C的起始电位、半波电位以及极限电流密度对比表
催化剂名称 起始电位/V 半波电位/V 极限电流密度/mA cm<sup>-2</sup>
Fe-N-C -0.076 -0.24 -5.41
Fe<sub>1</sub>Co<sub>0.5</sub>-N-C -0.057 -0.18 -5.80
Co-N-C -0.119 -0.28 -4.57
Pt/C -0.055 -0.17 -6.32
在进行线性扫描伏安(LSV)测试时,圆盘电极的转速为1600rpm,扫描速率为10mV s-1,催化剂负载量为0.51mg cm-2。从实施例1样品Fe1Co0.5-N-C和20%Pt/C的起始电位、半波电位及极限电流密度对比表中可以看出,Fe1Co0.5-N-C样品与实施例2样品Fe-N-C、实施例3样品Co-N-C的起始电位、半波电位及极限电流密度相比均右移,比市售的20%Pt/C催化剂的半波电位左移0.008V,极限电流密度低0.52 mA cm-2,起始电位左移0.002V,说明Fe1Co0.5-N-C样品的起始电位、半波电位以及极限电流密度比Fe-N-C、Co-N-C氧还原性能较好与20%Pt/C氧还原性能相当。
实施例1样品Fe1Co0.5-N-C在圆盘电极的转速为(400-1600rpm) 时进行线性扫描伏安(LSV)测试如图7所示;每个转速间隔均匀,意味着转速稳定,这主要归因于合金纳米粒子可以显著调节材料的电子结构,从而具有优异的导电性,提高化学稳定性及催化性能。
综上所述,实施例1样品Fe1Co0.5-N-C比实施例2样品Fe-N-C、实施例3样品Co-N-C的ORR性能较好,与20%Pt/C的ORR性能相当,所以本发明实施例1样品Fe1Co0.5-N-C材料,可以用于锌-空气电池阴极的氧还原催化剂。

Claims (2)

1.一种制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法,首先以氧化石墨烯为前驱体和C源;以尿素为N源,将铁盐、钴盐和尿素加入去离子水中并油浴混合搅拌直至干燥;将获得的粉末与氧化石墨烯粉末研磨均匀,在Ar2条件下进行煅烧,制得CoFe合金/氧化石墨烯/碳纳米管复合材料;其特征在于具体制备步骤如下:
1)取40.54mg FeCl3·9H2O与21.82mg Co(NO3)2·6H2O按照摩尔比nFe:nCo=1:0.5与尿素1.5g混合并油浴,其油温保持在80℃,搅拌速度300转/min,搅拌12h直至干燥,得到橘黄色粉末;其中n代表摩尔质量;
2)将步骤1)获得的橘黄色粉末取1g与棕色氧化石墨烯粉末50mg混合研磨后置于坩埚中盖上坩埚盖,在Ar2条件下进行煅烧;首先将温度以3℃/min 升高到550℃并保温2h;然后以3℃/min将管式炉升温到800℃并保温2小时;最后在Ar2气氛的保护下,让炉子自然冷却到室温温度,得到均匀的CoFe合金/氧化石墨烯/碳纳米管多维复合结构材料。
2.根据权利要求1所述的制备氧化CoFe合金/氧化石墨烯/碳纳米管复合材料的方法,其特征在于:所述制备材料用于制作锌-空气电池阴极的氧还原催化剂。
CN202010210892.3A 2020-03-24 2020-03-24 制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法 Pending CN111450862A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010210892.3A CN111450862A (zh) 2020-03-24 2020-03-24 制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010210892.3A CN111450862A (zh) 2020-03-24 2020-03-24 制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法

Publications (1)

Publication Number Publication Date
CN111450862A true CN111450862A (zh) 2020-07-28

Family

ID=71670737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010210892.3A Pending CN111450862A (zh) 2020-03-24 2020-03-24 制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法

Country Status (1)

Country Link
CN (1) CN111450862A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112008090A (zh) * 2020-09-01 2020-12-01 中国科学院苏州纳米技术与纳米仿生研究所 一种链状金属合金材料及其制备方法与应用
CN112599805A (zh) * 2020-12-16 2021-04-02 三峡大学 一种CoSb/NC电催化剂的制备方法及应用
CN113097498A (zh) * 2021-03-29 2021-07-09 江苏科技大学 一种铁钴合金纳米晶/掺氮碳管复合材料及其制法与应用
CN113122865A (zh) * 2021-03-09 2021-07-16 中国科学院大连化学物理研究所 多碳杂化的NiFe基高效碱性水氧化催化剂
CN114797932A (zh) * 2022-03-28 2022-07-29 武汉大学 一种双金属3d独特蜂窝状还原二氧化碳催化剂及其制备方法和应用
CN116581313A (zh) * 2023-06-30 2023-08-11 江西师范大学 限域型单分散Co-Co7Fe3异质结构复合材料的制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266786A1 (de) * 2009-06-23 2010-12-29 GKSS-Forschungszentrum Geesthacht GmbH Herstellung von Verbundwerkstoffen aus Nanokompositen
WO2016122741A2 (en) * 2014-11-11 2016-08-04 William March Rice University A new class of electrocatalysts
CN106783237A (zh) * 2017-04-07 2017-05-31 郑州大学 一种Co‑Fe合金/石墨烯复合材料及其制备方法和应用
CN109755599A (zh) * 2018-12-14 2019-05-14 上海理工大学 一种氧化石墨烯负载Fe-N-C材料的制备方法
CN110201695A (zh) * 2019-03-29 2019-09-06 上海理工大学 一种多孔碳材料负载过渡金属Fe、Co复合材料的制备方法
CN110783582A (zh) * 2019-11-06 2020-02-11 浙江理工大学 一种氮掺杂碳纳米管负载的氮掺杂碳包覆铁钴合金双功能催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266786A1 (de) * 2009-06-23 2010-12-29 GKSS-Forschungszentrum Geesthacht GmbH Herstellung von Verbundwerkstoffen aus Nanokompositen
WO2016122741A2 (en) * 2014-11-11 2016-08-04 William March Rice University A new class of electrocatalysts
CN106783237A (zh) * 2017-04-07 2017-05-31 郑州大学 一种Co‑Fe合金/石墨烯复合材料及其制备方法和应用
CN109755599A (zh) * 2018-12-14 2019-05-14 上海理工大学 一种氧化石墨烯负载Fe-N-C材料的制备方法
CN110201695A (zh) * 2019-03-29 2019-09-06 上海理工大学 一种多孔碳材料负载过渡金属Fe、Co复合材料的制备方法
CN110783582A (zh) * 2019-11-06 2020-02-11 浙江理工大学 一种氮掺杂碳纳米管负载的氮掺杂碳包覆铁钴合金双功能催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PINGWEI CAI ET AL.: ""In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn–air batteries"", 《NANOSCALE》 *
YANG LIU ET AL.: ""Two-Step Synthesis of Cobalt Iron Alloy Nanoparticles Embedded in Nitrogen-Doped Carbon Nanosheets/Carbon Nanotubes for the Oxygen Evolution Reaction"", 《CHEMSUSCHEM》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112008090A (zh) * 2020-09-01 2020-12-01 中国科学院苏州纳米技术与纳米仿生研究所 一种链状金属合金材料及其制备方法与应用
CN112599805A (zh) * 2020-12-16 2021-04-02 三峡大学 一种CoSb/NC电催化剂的制备方法及应用
CN113122865A (zh) * 2021-03-09 2021-07-16 中国科学院大连化学物理研究所 多碳杂化的NiFe基高效碱性水氧化催化剂
CN113097498A (zh) * 2021-03-29 2021-07-09 江苏科技大学 一种铁钴合金纳米晶/掺氮碳管复合材料及其制法与应用
CN114797932A (zh) * 2022-03-28 2022-07-29 武汉大学 一种双金属3d独特蜂窝状还原二氧化碳催化剂及其制备方法和应用
CN114797932B (zh) * 2022-03-28 2023-11-28 武汉大学 一种双金属3d独特蜂窝状还原二氧化碳催化剂及其制备方法和应用
CN116581313A (zh) * 2023-06-30 2023-08-11 江西师范大学 限域型单分散Co-Co7Fe3异质结构复合材料的制备方法和应用
CN116581313B (zh) * 2023-06-30 2024-04-26 江西师范大学 限域型单分散Co-Co7Fe3异质结构复合材料的制备方法和应用

Similar Documents

Publication Publication Date Title
Ban et al. Efficient Co–N/PC@ CNT bifunctional electrocatalytic materials for oxygen reduction and oxygen evolution reactions based on metal–organic frameworks
Jin et al. In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zinc–air batteries
Song et al. Metal-organic framework derived Fe/Fe3C@ N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions
Zhang et al. Heteroatom-doped carbon dots based catalysts for oxygen reduction reactions
CN110444776B (zh) 一种非贵金属氮掺杂mof双效电催化剂及其制备方法
CN111450862A (zh) 制备CoFe合金/氧化石墨烯/碳纳米管复合材料的方法
Wu et al. A large-scale synthesis of heteroatom (N and S) co-doped hierarchically porous carbon (HPC) derived from polyquaternium for superior oxygen reduction reactivity
Wang et al. Unification of catalytic oxygen reduction and hydrogen evolution reactions: highly dispersive Co nanoparticles encapsulated inside Co and nitrogen co-doped carbon
CN106807427B (zh) 一种过渡金属嵌入式多孔氮磷掺杂碳材料及其制备方法和应用
Huang et al. Noble metal-free catalysts for oxygen reduction reaction
Xiao et al. Pudding-typed cobalt sulfides/nitrogen and sulfur dual-doped hollow carbon spheres as a highly efficient and stable oxygen reduction electrocatalyst
Liu et al. Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions
Xu et al. The construction of porous graphene tri-doped with B, N and Co for enhanced oxygen reduction reaction
Zhang et al. A metal-organic framework-derived Fe–N–C electrocatalyst with highly dispersed Fe–Nx towards oxygen reduction reaction
Yang et al. Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction
Zhang et al. An animal liver derived non-precious metal catalyst for oxygen reduction with high activity and stability
Guo et al. Dual-doping of ruthenium and nickel into Co 3 O 4 for improving the oxygen evolution activity
CN108808023A (zh) 一种复合碳材料及其制备方法和应用
Dong et al. Nitrogen-doped graphene quantum dots anchored on NiFe layered double-hydroxide nanosheets catalyze the oxygen evolution reaction
Hassan et al. Mesoporous carbon/Co3O4 hybrid as efficient electrode for methanol electrooxidation in alkaline conditions
Tang et al. Positive regulation of active sites for oxygen evolution reactions by encapsulating NiFe 2 O 4 nanoparticles in N-doped carbon nanotubes in situ to construct efficient bifunctional oxygen catalysts for rechargeable Zn–air batteries
Zhe-qin et al. A high-performance nitrogen-rich ZIF-8-derived Fe-NC electrocatalyst for the oxygen reduction reaction
Wang et al. Facile synthesis of amino acids-derived Fe/N-codoped reduced graphene oxide for enhanced ORR electrocatalyst
Zhang et al. Metal–organic framework derived carbon-encapsulated hollow CuO/Cu 2 O heterostructure heterohedron as an efficient electrocatalyst for hydrogen evolution reaction
Shao et al. A facile one-pot synthesis of Co 2 P nanoparticle-encapsulated doped carbon nanotubes as bifunctional electrocatalysts for high-performance rechargeable Zn–air batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200728

RJ01 Rejection of invention patent application after publication