CN111450266A - 靶向革兰氏阳性细菌的磁共振成像造影剂、制备和应用 - Google Patents

靶向革兰氏阳性细菌的磁共振成像造影剂、制备和应用 Download PDF

Info

Publication number
CN111450266A
CN111450266A CN202010236129.8A CN202010236129A CN111450266A CN 111450266 A CN111450266 A CN 111450266A CN 202010236129 A CN202010236129 A CN 202010236129A CN 111450266 A CN111450266 A CN 111450266A
Authority
CN
China
Prior art keywords
contrast agent
magnetic resonance
gram
resonance imaging
positive bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010236129.8A
Other languages
English (en)
Inventor
徐晨
郑建军
吴爱国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Huamei Hospital University of CAS
Original Assignee
Ningbo Huamei Hospital University of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Huamei Hospital University of CAS filed Critical Ningbo Huamei Hospital University of CAS
Priority to CN202010236129.8A priority Critical patent/CN111450266A/zh
Publication of CN111450266A publication Critical patent/CN111450266A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1866Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle the nanoparticle having a (super)(para)magnetic core coated or functionalised with a peptide, e.g. protein, polyamino acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提供了一种靶向革兰氏阳性细菌的磁共振成像造影剂、制备和应用,属于医用生物材料领域。它解决了现有目前的MRI造影剂普遍缺乏细菌特异性等问题,一种靶向革兰氏阳性细菌的磁共振成像造影剂,包括万古霉素修饰的钆基造影剂。本发明具有优异的革兰氏阳性细菌靶向性等优点。

Description

靶向革兰氏阳性细菌的磁共振成像造影剂、制备和应用
技术领域
本发明属于医用生物材料领域,特别涉及一种靶向革兰氏阳性细菌的磁共振成像造影剂及其制备方法和应用。
背景技术
细菌感染是临床上常见的疾病,并且随着耐药菌的出现,细菌感染所引起的疾病极大威胁到患者的生命安全。据文献报道,至2050年,由细菌感染引起的死亡人数远远高于肿瘤、霍乱、糖尿病等引起的死亡人数。目前,临床上判断细菌感染的“金标准”仍然是细菌培养,但是细菌培养通常需要3~7天,并且阳性率容易受到外界环境的干扰。因此,采用细菌培养的方式难以及时、有效判断病灶部位是否为细菌感染。
目前,临床上的成像诊断技术主要包括超声成像(US)、正电子发射计算机断层扫描(PET)、电子计算机断层扫描(CT)、磁共振成像(MRI)等,其中MRI对软组织的分辨率最高,可方便进行解剖结构和病变部位的立体追踪,并且在成像过程中无创伤和放射性损害(FEMS Microbiology Reviews,2015,39:892-916)。因此,MRI已经成为临床医学诊断的重要手段。基于MRI技术,研究人员开发了多种成像探针,以进一步提高MRI技术的成像敏感性和分辨率。
目前,最普遍的MRI探针主要为钆(Gd)基探针,包括MultiHance(Gd-BOPTA)(European Radiology,2018,28(10):4243-4253)、Magnevist(Gd-DTPA)(Nanoscale,2019,11,2644-2654)、Dotarem(Gd-DOTA)(Analytical Chemistry,2018,90(3):1934-1940)、氧化钆(Gd2O3)(Journal of Materials Chemistry B,2013,1(27):3419-3428)等。然而,目前的MRI造影剂普遍缺乏细菌特异性,难以有效判断病灶部位是由革兰氏阳性细菌引起还是由革兰氏阴性细菌引起。
发明内容
本发明的第一个目的是针对现有技术中存在的上述问题,提供了一种靶向革兰氏阳性细菌的磁共振成像造影剂;本发明的第二个目的是提供一种上述造影剂的制备方法;本发明的第三个目的是提供一种上述造影剂在革兰氏阳性细菌感染病灶的特异性成像中的应用。
本发明的第一个目的可通过下列技术方案来实现:一种靶向革兰氏阳性细菌的磁共振成像造影剂,其特征在于,包括万古霉素修饰的钆基造影剂。
优选地,所述的钆基造影剂包括钆基小分子或氧化钆无机纳米颗粒或纳米载体;所述的纳米载体搭载钆基小分子或氧化钆。
优选地,所述钆基小分子的分子量低于1500,所述氧化钆无机纳米颗粒的粒径为1-10nm,所述纳米载体的粒径为10-200nm。
优选地,搭载钆基小分子的纳米载体中,钆基小分子与纳米载体的质量比为100:0-1:99;搭载氧化钆的纳米载体中,氧化钆与纳米载体的质量比为100:0-1:99。
优选地,所述的纳米载体选自无机纳米颗粒、纳米脂质体、聚合物纳米颗粒中的一种或多种。
优选地,所述的靶向革兰氏阳性细菌的磁共振成像造影剂中,按复合物的总重量计,万古霉素的含量为0.1wt%-5wt%。
优选地,所述的靶向革兰氏阳性细菌的磁共振成像造影剂具有以下一个或多个特征:
水合粒径:40nm~300nm;
Zeta电位:-20mV~30mV;
弛豫效率:弛豫效率r1为2mM-1s-1~30mM-1s-1,弛豫效率r2为3mM-1s-1~60mM-1s-1,r2/r1为1.5~20。
本发明的第二个目的可通过下列技术方案来实现:一种上述靶向革兰氏阳性细菌的磁共振成像造影剂的制备方法,其特征在于,包括如下步骤:
S01:将钆基造影剂分散于水中,并加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-N-羟基琥珀酰亚胺,并活化,得到活化后的溶液;
S02:将万古霉素加入水中溶解,然后滴加入上述步骤S01的活化后的溶液中,反应6-24小时,即得。
本发明的第三个目的可通过下列技术方案来实现:上述靶向革兰氏阳性细菌的磁共振成像造影剂在革兰氏阳性细菌感染病灶的磁共振成像中的应用。
本发明的工作原理:本发明将万古霉素接枝于钆基小分子的表面,或氧化钆无机纳米颗粒的表面或纳米载体的表面,纳米载体搭载钆基小分子或氧化钆;可以得到具有革兰氏阳性细菌靶向型的造影剂,用于体内革兰氏阳性细菌感染病灶的磁共振成像。
万古霉素(VAN)是一种窄谱型抗生素,可用于治疗革兰氏阳性细菌引起的感染性疾病。万古霉素(VAN)作为一种糖肽类抗生素,万古霉素可通过革兰氏阳性菌细胞壁前质末端的D-alanyl-D-alanine与细菌特异性结合。因此,万古霉素可以作为革兰氏阳性细菌靶向分子。
与现有技术相比,本发明具有以下优点:
1.本发明的靶向革兰氏阳性细菌的磁共振成像造影剂具有优异的革兰氏阳性细菌靶向性,将本发明的万古霉素修饰的钆基造影剂注入体内后,万古霉素将通过革兰氏阳性细菌细胞壁的D-alanyl-D-alanine靶向细菌,引起钆基造影剂在革兰氏阳性细菌感染病灶的富集,从而增强感染病灶的磁共振成像信号,从而可用于革兰氏阳性细菌引起的感染病灶的磁共振成像。
2.本发明的靶向革兰氏阳性细菌的磁共振成像造影剂的构建,对于实现磁共振成像技术对细菌感染病灶中革兰氏阳性细菌感染的鉴别诊断具有重要意义。
附图说明
图1是本发明PAA-Gd2O3纳米颗粒的形貌表征图;
图2是本发明介孔二氧化硅纳米颗粒(MSN)的形貌表征图;
图3是本发明Gd2O3@MSN纳米颗粒的形貌表征图;
图4是本发明Gd2O3@MSN纳米颗粒放大的形貌表征图;
图5是本发明Gd2O3@MSN纳米颗粒的Si、O、Gd元素分布图;
图6是本发明不同组分的Gd2O3@MSN纳米颗粒的纵向弛豫率(r1)和横向弛豫率(r2)结果图;
图7是本发明不同组分的Gd2O3@MSN纳米颗粒的MR成像图;
图8是本发明Gd2O3@MSN与Gd2O3@MSN-VAN与金黄色葡萄球菌、大肠杆菌的相互作用示意图。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例中,透射电子显微镜采用美国FEI公司的Tecnai F20。
实施例中,造影剂的水合粒径和电位测试采用英国马尔文仪器有限公司的动态光散射粒度分析仪Zetasizer Nano ZS。
实施例中,扫描电子显微镜采用美国Thermo scientific公司的Verios G4 UC。
实施例中,磁共振成像采用纽麦电子科技有限公司的0.5T的MesoMR23-060H-1MR型磁共振成像仪或Philips-Ingenia 1.5T MR成像仪。
下面进一步例举实例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本范明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
万古霉素修饰的氧化钆(VAN-PAA-Gd2O3)磁共振成像造影剂的制备
(1)将0.25mmol聚丙烯酸(PAA)、2mmol Gd(NO3)3·6H2O和20mL二乙二醇分别加入100mL的三颈烧瓶中,60℃条件下磁力搅拌2小时;取10mmol NaOH溶解于10mL二乙二醇中,随后缓慢滴加入上述三颈烧瓶中,随着溶液的pH值逐渐升高至9~11,溶液逐渐呈黑褐色;温度逐渐升至110℃,并在此温度下继续反应12小时;缓慢降温后,将上述溶液加入规格为7kDa的透析袋中进行透析;3天后将上述透析后的溶液浓缩,即可得到PAA修饰的氧化钆(PAA-Gd2O3)纳米颗粒。通过透射电子显微镜对该纳米颗粒的形貌进行表征,结果见图1:该纳米颗粒粒径较均一,约为3~5nm。
(2)将上述PAA修饰的氧化钆纳米颗粒分散于去离子水中,随后加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和N-N-羟基琥珀酰亚胺(NHS),并于0℃环境下活化6小时;称取0.2g万古霉素(VAN)粉体加入去离子水中,并于低温下搅拌溶解,随后逐渐滴加入上述溶液中;室温条件下反应12小时,然后经透析后即可得到VAN-PAA-Gd2O3
实施例2
万古霉素修饰的氧化钆搭载介孔二氧化硅(Gd2O3@MSN-VAN)磁共振成像造影剂的制备
(1)将6mmol Gd(NO3)3·6H2O溶于26mL二乙二醇,并于100℃条件下剧烈搅拌;取8.5mmol NaOH溶解于34mL二乙二醇中,随后缓慢滴加入上述Gd(NO3)3溶液中,随着溶液的pH值逐渐升高至9~11,溶液逐渐呈黑褐色;温度逐渐升至140℃,并在此温度下冷凝回流反应1小时;然后继续升温至175℃,并在此温度下冷凝回流反应4小时;缓慢降温后,将上述溶液加入规格为3.5kDa的透析袋中进行透析;3天后将上述透析后的溶液浓缩,即可得到氧化钆(Gd2O3)纳米颗粒。
(2)取24mL浓度为25wt%的十六烷基三甲基氯化铵(CTAC)和0.18g三乙醇胺溶于36mL去离子水中,于60℃条件下搅拌1小时;将4mL正硅酸四乙酯(TEOS)溶于16mL环己烷溶液中,混合均匀,随后滴加入上述溶液中,磁力搅拌反应18小时,反应完成后,经过多次洗涤、离心即可得到介孔二氧化硅纳米颗粒(MSN)。通过透射电子显微镜对该纳米颗粒进行形貌表征,结果如图2所示:该纳米颗粒为多孔结构,粒径较均一,约为80~100nm。
(3)将Gd2O3纳米颗粒配制成Gd浓度分别为0.1、0.25、0.5、1.0和2.0mg/mL的悬液,然后分别取20mL上述悬液与20mg的MSN于室温下搅拌反应6小时,经多次洗涤、离心后即可得到氧化钆搭载介孔二氧化硅纳米颗粒(Gd2O3@MSN)。通过透射电子显微镜对该纳米颗粒进行形貌表征,结果如图3和图4所示;并且结合硅、氧、钆的元素分布,可判断钆元素分布均匀,如图5所示,Gd2O3成功装载于MSN的介孔孔道中。
(4)取20mg Gd2O3@MSN分散于10mL无水乙醇中,滴加入0.1mL的3-(三乙氧基硅基)丙基琥珀酸酐(TESPSA),温度升高至80℃,回流反应6小时;经多次洗涤、离心即可得到羧基化的Gd2O3@MSN(Gd2O3@MSN-COOH),经动态光散射粒度分析仪测试可知,改性后的纳米颗粒的水合粒径约为164nm,ζ-电位约为-20mV。
(5)将上述Gd2O3@MSN-COOH分散于去离子水中,随后加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)和N-N-羟基琥珀酰亚胺(NHS),并于0℃环境下活化6小时;称取0.2g万古霉素(VAN)加入去离子水中,并于低温下搅拌溶解,随后逐渐滴加入上述溶液中;室温条件下反应12小时,然后经多次洗涤、离心后即可得到Gd2O3@MSN-VAN;经动态光散射粒度分析仪测试可知,该纳米颗粒的水合粒径约为180nm,ζ-电位约为5mV。
实施例3
Gd2O3@MSN和Gd2O3@MSN-VAN的弛豫效率和磁共振成像
(1)将不同组成的Gd2O3@MSN配制成Gd浓度为0.05、0.1、0.2、0.4、0.6、0.8mM的悬液,通过1.5T MR成像仪测试其弛豫效率及磁共振成像性能。结果如图6所示:0.25Gd2O3@MSN具有最高的纵向弛豫率(r1)和横向弛豫率(r2),分别为17.324mM-1s-1和32.842mM-1s-1,并且r2/r1为1.896。此外,其具有最佳的T1成像效果。图7是本发明不同组分的Gd2O3@MSN纳米颗粒的MR成像图。
(2)将0.25Gd2O3@MSN于与万古霉素复合,通过1.5T MR成像仪测试并研究万古霉素(VAN)对Gd2O3@MSN成像性能的影响。万古霉素的引入降低了0.25Gd2O3@MSN的弛豫率和成像性能,0.25Gd2O3@MSN-VAN的纵向弛豫率和横向弛豫率分别为8.069mM-1s-1和12.388mM-1s-1
实施例4
(1)分别将0.5Gd2O3@MSN和0.5Gd2O3@MSN-VAN配制成Gd浓度为0.4mM的悬液。
(2)选取金黄色葡萄球菌和大肠杆菌为研究对象,并将其分别配制成浓度为1×108CFU/mL的细菌悬液。
(3)分别取0.1mL的上述金黄色葡萄球菌和大肠杆菌悬液,并分别与0.5Gd2O3@MSN和0.5Gd2O3@MSN-VAN混合振荡2个小时;然后分别将纳米颗粒处理后的细菌滴加于硅片表面,经50、70、80、90、95和100%的乙醇溶液逐级脱水后,通过扫描电子显微镜观察细菌的形貌以及细菌与纳米颗粒之间的相互作用。如图8所示:相对于单纯的金黄色葡萄球菌和0.5Gd2O3@MSN处理的金黄色葡萄球菌,大量的0.5Gd2O3@MSN-VAN吸附于金黄色葡萄球菌表面;相对于单纯的大肠杆菌和0.5Gd2O3@MSN处理的大肠杆菌,仅有少量的0.5Gd2O3@MSN-VAN吸附于大肠杆菌表面。这说明Gd2O3@MSN-VAN对革兰氏阳性细菌具有优异的靶向性能。
实施例5
(1)将Gd2O3与VAN-PAA-Gd2O3分别配制成Gd浓度为0.1、0.2、0.4、0.6、0.8mM的悬液,采用1.5T MR成像仪测试其弛豫效率及磁共振成像性能。结果表明,Gd2O3与Gd2O3-PAA-VAN均具有较好的T1成像效果;
(2)将Gd2O3-PAA-VAN分配制成Gd浓度为0.6mM的悬液,将金黄色葡萄球菌及大肠杆菌均配制成浓度为1×108CFU/mL的细菌悬液,然后分别取0.5mL的纳米材料悬液与0.1mL的细菌悬液混合振荡6小时,随后通过离心、洗涤方式分别得到经纳米颗粒处理的金黄色葡萄球菌和大肠杆菌;
(3)将经Gd2O3与Gd2O3-PAA-VAN处理的金黄色葡萄球菌和大肠杆菌置于1.5T MR成像仪中成像,结果表明,经Gd2O3-PAA-VAN处理的金黄色葡萄球菌具有较佳的T1成像效果,这说明万古霉素(VAN)修饰的钆基纳米造影剂具有较好的革兰氏阳性菌靶向性能。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (9)

1.一种靶向革兰氏阳性细菌的磁共振成像造影剂,其特征在于,包括万古霉素修饰的钆基造影剂。
2.根据权利要求1所述的一种靶向革兰氏阳性细菌的磁共振成像造影剂,其特征在于,所述的钆基造影剂包括钆基小分子或氧化钆无机纳米颗粒或纳米载体;所述的纳米载体搭载钆基小分子或氧化钆。
3.根据权利要求2所述的一种靶向革兰氏阳性细菌的磁共振成像造影剂,其特征在于,所述钆基小分子的分子量低于1500,所述氧化钆无机纳米颗粒的粒径为1-10nm,所述纳米载体的粒径为10-200nm。
4.根据权利要求2所述的一种靶向革兰氏阳性细菌的磁共振成像造影剂,其特征在于,搭载钆基小分子的纳米载体中,钆基小分子与纳米载体的质量比为100:0-1:99;搭载氧化钆的纳米载体中,氧化钆与纳米载体的质量比为100:0-1:99。
5.根据权利要求2所述的一种靶向革兰氏阳性细菌的磁共振成像造影剂,其特征在于,所述的纳米载体选自无机纳米颗粒、纳米脂质体、聚合物纳米颗粒中的一种或多种。
6.根据权利要求1所述的一种靶向革兰氏阳性细菌的磁共振成像造影剂,其特征在于,所述的靶向革兰氏阳性细菌的磁共振成像造影剂中,按复合物的总重量计,万古霉素的含量为0.1wt%-5wt%。
7.根据权利要求1所述的一种靶向革兰氏阳性细菌的磁共振成像造影剂,其特征在于,所述的靶向革兰氏阳性细菌的磁共振成像造影剂具有以下一个或多个特征:
水合粒径:40nm~300nm;
Zeta电位:-20mV~30mV;
弛豫效率:弛豫效率r1为2mM-1s-1~30mM-1s-1,弛豫效率r2为3mM-1s-1~60mM-1s-1,r2/r1为1.5~20。
8.一种如权利要求1-7任意一项所述的一种靶向革兰氏阳性细菌的磁共振成像造影剂的制备方法,其特征在于,包括如下步骤:
S01:将钆基造影剂分散于水中,并加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-N-羟基琥珀酰亚胺,并活化,得到活化后的溶液;
S02:将万古霉素加入水中溶解,然后滴加入上述步骤S01的活化后的溶液中,反应6-24小时,即得。
9.一种如权利要求1-7任意一项所述的一种靶向革兰氏阳性细菌的磁共振成像造影剂在革兰氏阳性细菌感染病灶的磁共振成像中的应用。
CN202010236129.8A 2020-03-30 2020-03-30 靶向革兰氏阳性细菌的磁共振成像造影剂、制备和应用 Pending CN111450266A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010236129.8A CN111450266A (zh) 2020-03-30 2020-03-30 靶向革兰氏阳性细菌的磁共振成像造影剂、制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010236129.8A CN111450266A (zh) 2020-03-30 2020-03-30 靶向革兰氏阳性细菌的磁共振成像造影剂、制备和应用

Publications (1)

Publication Number Publication Date
CN111450266A true CN111450266A (zh) 2020-07-28

Family

ID=71670791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010236129.8A Pending CN111450266A (zh) 2020-03-30 2020-03-30 靶向革兰氏阳性细菌的磁共振成像造影剂、制备和应用

Country Status (1)

Country Link
CN (1) CN111450266A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111956810A (zh) * 2020-08-03 2020-11-20 南京大学 一种双模血管造影剂的制备方法和应用
CN112353953A (zh) * 2020-11-09 2021-02-12 中国科学院大学宁波华美医院 一种广谱细菌靶向型磁共振成像造影剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117832A1 (en) * 2004-06-03 2005-12-15 Bracco Research Sa Liposomal assembly for therapeutic and/or diagnostic use
CN105412940A (zh) * 2015-12-02 2016-03-23 鲁东大学 一种复合型纳米抑菌材料用于万古霉素耐药致病菌的治疗

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117832A1 (en) * 2004-06-03 2005-12-15 Bracco Research Sa Liposomal assembly for therapeutic and/or diagnostic use
CN105412940A (zh) * 2015-12-02 2016-03-23 鲁东大学 一种复合型纳米抑菌材料用于万古霉素耐药致病菌的治疗

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAIYUAN NI,ET AL.: "Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T1 contrast ability", 《NANOSCALE》 *
SUMBLA SHEIKH,ET AL.: "Evaluating the Diagnostic and Chemotherapeutic Potential of Vancomycin-Derived Imaging Conjugates", 《MEDICINAL CHEMISTRY》 *
王鸿: "基于氧化铁纳米粒子磁弛豫传感与自组装钆剂MRI成像的致病菌分析", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *
齐国斌: "基于抗生素的纳米材料在抗菌方面的应用", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111956810A (zh) * 2020-08-03 2020-11-20 南京大学 一种双模血管造影剂的制备方法和应用
CN112353953A (zh) * 2020-11-09 2021-02-12 中国科学院大学宁波华美医院 一种广谱细菌靶向型磁共振成像造影剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Song et al. A multifunctional nanotheranostic for the intelligent MRI diagnosis and synergistic treatment of hypoxic tumor
US20230109283A1 (en) Ultrafine nanoparticles comprising a functionalized polyorganosiloxane matrix and including metal complexes; method for obtaining same and uses thereof in medical imaging and/or therapy
Lee et al. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents
Malvindi et al. Magnetic/Silica Nanocomposites as Dual‐Mode Contrast Agents for Combined Magnetic Resonance Imaging and Ultrasonography
Wan et al. Self-assembled magnetic theranostic nanoparticles for highly sensitive MRI of minicircle DNA delivery
Chen et al. Core–shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging
CN103143043B (zh) 一种Fe3O4/Au复合纳米颗粒的制备方法
Hao et al. Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging
CN111450266A (zh) 靶向革兰氏阳性细菌的磁共振成像造影剂、制备和应用
CN104606687A (zh) 一种负载氧化铁纳米颗粒的海藻酸钠纳米凝胶的制备方法
Mohammad-Taheri et al. Fabrication and characterization of a new MRI contrast agent based on a magnetic dextran–spermine nanoparticle system
CN109078196B (zh) 一种骨髓间充质干细胞介导的纳米水凝胶及其制备和应用
Paunesku et al. Gadolinium-conjugated TiO2-DNA oligonucleotide nanoconjugates show prolonged intracellular retention period and T1-weighted contrast enhancement in magnetic resonance images
Jahanbakhsh et al. Modified Gadonanotubes as a promising novel MRI contrasting agent
Zhu et al. Europium-phenolic network coated BaGdF 5 nanocomposites for tri-modal computed tomography/magnetic resonance/luminescence imaging
CN113134096A (zh) 一种兼具反向对比磁共振成像与药物控释功能的中空介孔有机硅复合纳米材料及其制备方法
CN111477420A (zh) 一种磁性纳米粒子、制备方法及其应用
Luu et al. Applications and perspective of silicon particles in hyperpolarized 29Si magnetic resonance imaging
Mehravi et al. Acute toxicity evaluation of glycosylated Gd 3+-based silica nanoprobe
Li et al. Facile synthesis of manganese silicate nanoparticles for pH/GSH-responsive T 1-weighted magnetic resonance imaging
Gharehaghaji et al. PEGylated Magnetite/Hydroxyapatite: A Green Nanocomposite for T2‐Weighted MRI and Curcumin Carrying
CN106963951B (zh) 氧化石墨烯/钨酸锰/聚乙二醇纳米杂化材料及其制备
CN110368359A (zh) 一种基于支化聚乙烯亚胺合成的杂化纳米水凝胶及其制备和应用
CN107320738A (zh) 一种四氧化三锰‑乳白蛋白纳米球及其制备与应用
CN112353953A (zh) 一种广谱细菌靶向型磁共振成像造影剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200728