CN111446890B - 一种具有电流检测功能的编码器及电流检测方法 - Google Patents

一种具有电流检测功能的编码器及电流检测方法 Download PDF

Info

Publication number
CN111446890B
CN111446890B CN202010221084.7A CN202010221084A CN111446890B CN 111446890 B CN111446890 B CN 111446890B CN 202010221084 A CN202010221084 A CN 202010221084A CN 111446890 B CN111446890 B CN 111446890B
Authority
CN
China
Prior art keywords
sampling
pos
current
act
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010221084.7A
Other languages
English (en)
Other versions
CN111446890A (zh
Inventor
杜佳星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Maxsine Electric Co ltd
Original Assignee
Wuhan Maxsine Electric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Maxsine Electric Co ltd filed Critical Wuhan Maxsine Electric Co ltd
Priority to CN202010221084.7A priority Critical patent/CN111446890B/zh
Publication of CN111446890A publication Critical patent/CN111446890A/zh
Application granted granted Critical
Publication of CN111446890B publication Critical patent/CN111446890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了一种具有电流检测功能的编码器及电流检测方法,由伺服驱动器请求获取伺服电机转子位置且发送位置数据请求指令到通信部,由通信部与其进行信息交互,对位置数据请求指令进行接收,并将其反馈到控制部;控制部对位置数据请求指令进行解析,根据解析得到的采样时间Ta和采样周期Ts,控制电流采样部和位置采样部采样的采样时间处于同一时刻;在控制部在进行采样时间同步处理后,结合从位置采样部获取到的实际转子位置pos_act以及电机位置控制参数进行计算,得到转子观测位置pos_fed;由伺服驱动器根据电机的电流和位置反馈,控制电机的扭矩、转速和转动角度。

Description

一种具有电流检测功能的编码器及电流检测方法
技术领域
本发明属于伺服驱动系统,具体涉及一种具有电流检测功能的编码器,及利用该编码器进行电流检测的方法。
背景技术
伺服电机及驱动器是现代运动控制的重要组成部分,被广泛应用于工业机器人及数控加工中心等自动化设备中。
当前交流伺服驱动器设计中普遍采用基于矢量控制的电流、速度和位置的闭环控制算法,来提高伺服驱动器的性能;其中,电流的获取,是由伺服驱动器内部的电流采样元件采样得到;速度和位置是由安装在伺服电机侧的编码器采样获得。
然而,随着编码器分辨率的提升,目前主流编码器的分辨率已经提升到了17bit及其以上,当前通过TTL电平发送脉冲信号的方式已经不能满足相关需求,为了解决上述缺陷,目前多采用以通讯传输数据的形式,将位置信息传送给伺服驱动器。但是,伺服驱动器采用的闭环控制算法,是要求严格等时同步的,若采用现有的编码器通信方式,不仅造成通信周期数据的滞后,且由于伺服驱动器无法知道编码器的采样时刻,导致电流采样和编码器的位置采样无法做到真正的同步,这样采样的时间误差会造成相位裕度的损失及性能劣化。另外由于某些应用场景下UVW动力线较长,线上的分布电容和寄生电感,造成驱动侧采样到的电流不等同于电机的实际电流,因此,目前需要针对以上缺陷设计一种具有电流检测功能的编码器,通过派出传输线上的干扰,得到电机的实际电流。
发明内容
本发明要解决的技术问题在于,针对现有技术的无法精准检测到电机的实际电流缺陷,提供一种具有电流检测功能的编码器,及利用该编码器进行电流检测的方法。
本发明解决其技术问题所采用的技术方案是:构造一种具有电流检测功能的编码器,包括电流采样部、位置采样部、通信部和控制部,其中:
所述电流采样部与位置采样部均分别连接到控制部和伺服电机,所述控制部连接到通信部,所述通信部链接到伺服驱动器;
电流采样部,用于对伺服电机的UVW相电流进行采样,得到三相电流Iu、Iv和Iw,所述三相电流Iu、Iv和Iw将反馈到控制部;
位置采样部,用于对伺服电机转子的实际位置进行采样,得到实际转子位置pos_act,所述实际转子位置pos_act将反馈到控制部;
通信部,用于和伺服驱动器进行信息交互,并在所述伺服驱动器请求获取伺服电机转子位置且发送位置数据请求指令到通信部时,对所述位置数据请求指令进行接收;所述位置数据请求指令包括采样时间Ta、采样周期Ts和电机位置控制参数;所述位置数据请求指令将反馈到控制部;
控制部,一方面用于对所述位置数据请求指令进行解析,根据解析得到的采样时间Ta和采样周期Ts,同时触发电流采样部和位置采样部进行电流采样和位置采样,控制电流采样部和位置采样部采样得到电流信号、转子位置信号的采样时间处于同一时刻;另一方面用于在进行采样时间同步处理后,结合从位置采样部获取到的实际转子位置pos_act以及电机位置控制参数进行计算,得到转子观测位置pos_fed;所述转子观测位置pos_fed以及进行采样时间同步后的电流信号将通过通信部反馈到伺服驱动器,由所述伺服驱动器根据电机的电流和位置反馈,控制电机的扭矩、转速和转动角度。
由于伺服电机控制系统里面,需要用到电机的电流反馈参与计算,然而传统的做法是在伺服驱动器里面做采样。这样的话,动力传输线上面寄生电容造成的漏电流,以及一些干扰电流都会被检测到,给系统带来噪音。如果在电机侧直接采样,这样得到的电流是真正的电机绕组电流;同时,根据通信时刻来控制电流采样和编码器位置采样的时刻,确保避免发生延时,导致数据检测精度出现偏差,并通过驱动器下发数据,获取采样点和PWM波峰波谷的相对时间,控制编码器位置和电流采样点,避开PWM斩波。
本发明提出的一种利用如上述编码器进行电流检测的方法,包括以下步骤:
S1、由伺服驱动器请求获取伺服电机转子位置且发送位置数据请求指令到通信部,由所述通信部与所述伺服驱动器进行信息交互,对所述位置数据请求指令进行接收;所述位置数据请求指令将由通信部反馈到控制部;
S2、所述控制部对所述位置数据请求指令进行解析,根据解析得到的采样时间Ta和采样周期Ts,同时触发电流采样部和位置采样部进行电流采样和位置采样,控制电流采样部和位置采样部采样得到电流信号、转子位置信号的采样时间处于同一时刻;
S3、由所述电流采样部对伺服电机的UVW相电流进行采样得到三相电流Iu、Iv和Iw,所述三相电流Iu、Iv和Iw将反馈到控制部;由所述位置采样部对伺服电机转子的实际位置进行采样,得到实际转子位置pos_act,所述实际转子位置pos_act将反馈到控制部;
S4、所述控制部在进行采样时间同步处理后,结合从位置采样部获取到的实际转子位置pos_act以及电机位置控制参数进行计算,得到转子观测位置pos_fed;
S4、由所述控制部将所述转子观测位置pos_fed以及进行采样时间同步后的电流信号,通过通信部反馈到伺服驱动器,由所述伺服驱动器根据电机的电流和位置反馈,控制电机的扭矩、转速和转动角度。
实施本发明的一种具有电流检测功能的编码器及电流检测方法,具有以下有益效果:
1、在编码器中设计了一个电流采样部对伺服电机的相电流进行采样,避免干扰电流被检测到;
2、在进行电流信号和位置信号采样前,设置延时时间来避开PWM斩波,保证采样信号的完整性。
3、确保位置采样和电流采样同时进行,有益于伺服算法的计算。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是编码器内部电路的结构图;
图2是避开PWM斩波信号干扰的时序图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
请参考图1,其为编码器内部电路的结构图,本发明提供的一种具有电流检测功能的编码器,包括电流采样部、位置采样部、通信部和控制部,其中:
各个部件之间的连接关系为:
所述电流采样部与位置采样部均分别连接到控制部和伺服电机M;
所述控制部连接到通信部,所述通信部连接到伺服驱动器。
各个部件的功能作用为:
电流采样部主要用于对伺服电机的UVW相电流进行采样,得到三相电流Iu、Iv和Iw,所述三相电流Iu、Iv和Iw将反馈到控制部;伺服电机控制系统里面,需要用到电机的电流反馈参与计算,然而传统的做法是在伺服驱动器里面做采样。这样的话,动力传输线上面寄生电容造成的漏电流,以及一些干扰电流都会被检测到,给系统带来噪音。本发明中,通过在电机侧直接采样,这样得到的电流即为真正的电机绕组电流,有效的避免了干扰电流带来的噪音;
位置采样部主要用于对伺服电机转子的实际位置进行采样,得到实际转子位置pos_act,所述实际转子位置pos_act将反馈到控制部;由于编码器和伺服驱动器之间的通信是周期性的,比如62.5us通信一次,那么在编码器收到伺服驱动器的请求指令后,采样得到pos_act,假设不做任何处理直接在应答帧里面,直接反馈给伺服驱动器,那么伺服驱动器收到数据后(数据传输需要时间,一般是20us以上),一般会在下一个周期处理,也就是62.5us以后,这时候,电机转子的实际位置和采样时刻是不相等的,这也是为什么后续需要通过控制部进行电机观测位置的预测;
通信部主要用于和伺服驱动器进行信息交互,并在所述伺服驱动器请求获取伺服电机转子位置且发送位置数据请求指令到通信部时,对所述位置数据请求指令进行接收;所述位置数据请求指令包括采样时间Ta、采样周期Ts和电机位置控制参数;所述位置数据请求指令将反馈到控制部;所述电机位置控制参数包括Q轴电流给定值Iqref或电机转矩给定值Tqref;
控制部主要起到两个方面的作用:
一方面用于对所述位置数据请求指令进行解析,根据解析得到的采样时间Ta和采样周期Ts,同时触发电流采样部和位置采样部进行电流采样和位置采样,控制电流采样部和位置采样部采样得到电流信号、转子位置信号的采样时间处于同一时刻;在进行同步采样处理的时候,可以考虑通过mcu(微控制单元)的定时器同时触发电流采样和位置采样,保证采样时刻的同时性;
另一方面,控制部用于在进行采样时间同步处理后,结合从位置采样部获取到的实际转子位置pos_act以及电机位置控制参数进行计算,得到转子观测位置pos_fed;转子观测位置pos_fed的计算公式为:
pos_fed(k)=pos_act(k)+(pos_act(k)-pos_act(k-1))×Iqref(k)÷(pos_act(k-1)-
pos_act(k-2))÷Iqref(k-1);
或者
pos_fed(k)=pos_act(k)+(pos_act(k)-pos_act(k-1))×Tqref(k)÷(pos_act(k-1)-
pos_act(k-2))÷Tqref(k-1);
其中,k为采样周期,例如Iqref(k-1)为一个离散的表示其即为在上一个周期采样得到的Q轴电流给定值,Iqref(k)为在当前周期采样得到的Q轴电流给定值。
所述转子观测位置pos_fed以及进行采样时间同步后的电流信号将通过通信部反馈到伺服驱动器,由所述伺服驱动器根据电机的电流和位置反馈,控制电机的扭矩、转速和转动角度。
本实施例中为了保证采样信号的完整性,所述位置数据请求指令中还包括PWM波峰、波谷的相对时间;具体可参考图2,其为避开PWM斩波信号干扰的时序图,所述控制部根据PWM波峰、波谷的相对时间、采样时间Ta和采样周期Ts,设置采样延时时间,其中:
所述控制部在t1+Td时刻接收到位置数据请求指令时,根据PWM波谷的相对时间,设置的采样延时时间Tw为:
Tw=Ts-Ta-Td;
在进行延时处理后,再依次进行电流信号和位置信号的采样,并将采样点调整在PWM斩波信号的底部;
或者根据PWM波峰的相对时间,设置的采样延时时间Tw为:
Tw=Ts/2-Ta-Td;
当前将采样点调整在PWM斩波信号的顶部;
在进行电流信号和位置信号采样前,设置延时时间来避开PWM斩波,保证采样信号的完整性。
本实施例中,利用上述编码器进行电流检测的方法,包括以下步骤:
S1、由伺服驱动器请求获取伺服电机转子位置且发送位置数据请求指令到通信部,由所述通信部与所述伺服驱动器进行信息交互,对所述位置数据请求指令进行接收;所述位置数据请求指令将由通信部反馈到控制部;
S2、所述控制部对所述位置数据请求指令进行解析,根据解析得到的采样时间Ta和采样周期Ts,同时触发电流采样部和位置采样部进行电流采样和位置采样,控制电流采样部和位置采样部采样得到电流信号、转子位置信号的采样时间处于同一时刻;其中,所述位置数据请求指令中还包括PWM波峰、波谷的相对时间;所述控制部根据PWM波峰、波谷的相对时间、采样时间Ta和采样周期Ts,设置采样延时时间,其中:
所述控制部在t1+Td时刻接收到位置数据请求指令时,根据PWM波谷的相对时间,设置的采样延时时间Tw为:
Tw=Ts-Ta-Td;
在进行延时处理后,再依次进行电流信号和位置信号的采样,并将采样点调整在PWM斩波信号的底部;
或者根据PWM波峰的相对时间,设置的采样延时时间Tw为:
Tw=Ts/2-Ta-Td;
当前将采样点调整在PWM斩波信号的顶部;
在进行电流信号和位置信号采样前,设置延时时间来避开PWM斩波,保证采样信号的完整性。
S3、由所述电流采样部对伺服电机的UVW相电流进行采样计算得到三相电流Iu、Iv和Iw,所述三相电流Iu、Iv和Iw将反馈到控制部;由所述位置采样部对伺服电机转子的实际位置进行采样,得到实际转子位置pos_act,所述实际转子位置pos_act将反馈到控制部。
S4、所述控制部在进行采样时间同步处理后,结合从位置采样部获取到的实际转子位置pos_act以及电机位置控制参数进行计算,得到转子观测位置pos_fed;其中,所述电机位置控制参数包括Q轴电流给定值Iqref或电机转矩给定值Tqref;本步骤下,利用所述控制部计算转子观测位置pos_fed的计算公式为:
pos_fed(k)=pos_act(k)+(pos_act(k)-pos_act(k-1))×Iqref(k)÷(pos_act(k-1)-
pos_act(k-2))÷Iqref(k-1);
或者
pos_fed(k)=pos_act(k)+(pos_act(k)-pos_act(k-1))×Tqref(k)÷(pos_act(k-1)-
pos_act(k-2))÷Tqref(k-1);
其中,k为采样时刻,Tqref(k-1)为在上一个周期采样得到的电机转矩给定值,Tqref(k)为在当前周期采样得到的电机转矩给定值。
S5、由所述控制部将所述转子观测位置pos_fed以及进行采样时间同步后的电流信号,通过通信部反馈到伺服驱动器,由所述伺服驱动器根据电机的电流和位置反馈,控制电机的扭矩、转速和转动角度。
本发明中通过在编码器中设计了一个电流采样部对伺服电机的相电流进行采样,避免干扰电流被检测到;在进行电流信号和位置信号采样前,设置延时时间来避开PWM斩波,保证采样信号的完整性。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (8)

1.一种具有电流检测功能的编码器,其特征在于包括电流采样部、位置采样部、通信部和控制部,其中:
所述电流采样部与位置采样部均分别连接到控制部和伺服电机,所述控制部连接到通信部,所述通信部连接到伺服驱动器;
电流采样部,用于对伺服电机的UVW相电流进行采样,得到三相电流Iu、Iv和Iw,所述三相电流Iu、Iv和Iw将反馈到控制部;
位置采样部,用于对伺服电机转子的实际位置进行采样,得到实际转子位置pos_act,所述实际转子位置pos_act将反馈到控制部;
通信部,用于和伺服驱动器进行信息交互,并在所述伺服驱动器请求获取伺服电机转子位置且发送位置数据请求指令到通信部时,对所述位置数据请求指令进行接收;所述位置数据请求指令包括采样时间Ta、采样周期Ts和电机位置控制参数;所述位置数据请求指令将反馈到控制部;
控制部,一方面用于对所述位置数据请求指令进行解析,根据解析得到的采样时间Ta和采样周期Ts,同时触发电流采样部和位置采样部进行电流采样和位置采样,控制电流采样部和位置采样部采样得到电流信号、转子位置信号的采样时间处于同一时刻;另一方面用于在进行采样时间同步处理后,结合从位置采样部获取到的实际转子位置pos_act以及电机位置控制参数进行计算,得到转子观测位置pos_fed;所述转子观测位置pos_fed以及进行采样时间同步后的电流信号将通过通信部反馈到伺服驱动器,由所述伺服驱动器根据电机的电流和位置反馈,控制电机的扭矩、转速和转动角度。
2.根据权利要求1所述的具有电流检测功能的编码器,其特征在于,所述电机位置控制参数包括Q轴电流给定值Iqref或电机转矩给定值Tqref。
3.根据权利要求2所述的具有电流检测功能的编码器,其特征在于,利用所述控制部计算转子观测位置pos_fed的计算公式为:
pos_fed(k)=pos_act(k)+(pos_act(k)-pos_act(k-1))×Iqref(k)÷(pos_act(k-1)-pos_act(k-2))÷Iqref(k-1);
或者
pos_fed(k)=pos_act(k)+(pos_act(k)-pos_act(k-1))×Tqref(k)÷(pos_act(k-1)-pos_act(k-2))÷Tqref(k-1);
其中,k为采样时刻,Iqref(k-1)为在上一个周期采样得到的Q轴电流给定值,Iqref(k)为在当前周期采样得到的Q轴电流给定值。
4.根据权利要求1所述的具有电流检测功能的编码器,其特征在于,所述位置数据请求指令中还包括PWM波峰、波谷的相对时间;所述控制部根据PWM波峰、波谷的相对时间、采样时间Ta和采样周期Ts,设置采样延时时间,其中:
所述控制部在t1+Td时刻接收到位置数据请求指令时,根据PWM波谷的相对时间,设置的采样延时时间Tw为:
Tw=Ts-Ta-Td;
在进行延时处理后,再依次进行电流信号和位置信号的采样,并将采样点调整在PWM斩波信号的底部;
或者根据PWM波峰的相对时间,设置的采样延时时间Tw为:
Tw=Ts/2-Ta-Td;
当前将采样点调整在PWM斩波信号的顶部;
在进行电流信号和位置信号采样前,设置延时时间来避开PWM斩波,保证采样信号的完整性。
5.一种利用如权利要求1-4任一项所述的编码器进行电流检测的方法,其特征在于,包括以下步骤:
S1、由伺服驱动器请求获取伺服电机转子位置且发送位置数据请求指令到通信部,由所述通信部与所述伺服驱动器进行信息交互,对所述位置数据请求指令进行接收;所述位置数据请求指令将由通信部反馈到控制部;
S2、所述控制部对所述位置数据请求指令进行解析,根据解析得到的采样时间Ta和采样周期Ts,同时触发电流采样部和位置采样部进行电流采样和位置采样,控制电流采样部和位置采样部采样得到电流信号、转子位置信号的采样时间处于同一时刻;
S3、由所述电流采样部对伺服电机的UVW相电流进行采样得到三相电流Iu、Iv和Iw,所述三相电流Iu、Iv和Iw将反馈到控制部;由所述位置采样部对伺服电机转子的实际位置进行采样,得到实际转子位置pos_act,所述实际转子位置pos_act将反馈到控制部;
S4、所述控制部在进行采样时间同步处理后,结合从位置采样部获取到的实际转子位置pos_act以及电机位置控制参数进行计算,得到转子观测位置pos_fed;
S5、由所述控制部将所述转子观测位置pos_fed以及进行采样时间同步后的电流信号,通过通信部反馈到伺服驱动器,由所述伺服驱动器根据电机的电流和位置反馈,控制电机的扭矩、转速和转动角度。
6.根据权利要求5所述的进行电流检测的方法,其特征在于,步骤S4中所述电机位置控制参数包括Q轴电流给定值Iqref或电机转矩给定值Tqref。
7.根据权利要求6所述的进行电流检测的方法,其特征在于,步骤S4中利用所述控制部计算转子观测位置pos_fed的计算公式为:
pos_fed(k)=pos_act(k)+(pos_act(k)-pos_act(k-1))×Iqref(k)÷(pos_act(k-1)-pos_act(k-2))÷Iqref(k-1);
或者
pos_fed(k)=pos_act(k)+(pos_act(k)-pos_act(k-1))×Tqref(k)÷(pos_act(k-1)-pos_act(k-2))÷Tqref(k-1);
其中,k为采样时刻,Tqref(k-1)为在上一个周期采样得到的电机转矩给定值,Tqref(k)为在当前周期采样得到的电机转矩给定值。
8.根据权利要求5所述的进行电流检测的方法,其特征在于,步骤S2中所述位置数据请求指令中还包括PWM波峰、波谷的相对时间;所述控制部根据PWM波峰、波谷的相对时间、采样时间Ta和采样周期Ts,设置采样延时时间,其中:
所述控制部在t1+Td时刻接收到位置数据请求指令时,根据PWM波谷的相对时间,设置的采样延时时间Tw为:
Tw=Ts-Ta-Td;
在进行延时处理后,再依次进行电流信号和位置信号的采样,并将采样点调整在PWM斩波信号的底部;
或者根据PWM波峰的相对时间,设置的采样延时时间Tw为:
Tw=Ts/2-Ta-Td;
当前将采样点调整在PWM斩波信号的顶部;
在进行电流信号和位置信号采样前,设置延时时间来避开PWM斩波,保证采样信号的完整性。
CN202010221084.7A 2020-03-25 2020-03-25 一种具有电流检测功能的编码器及电流检测方法 Active CN111446890B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010221084.7A CN111446890B (zh) 2020-03-25 2020-03-25 一种具有电流检测功能的编码器及电流检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010221084.7A CN111446890B (zh) 2020-03-25 2020-03-25 一种具有电流检测功能的编码器及电流检测方法

Publications (2)

Publication Number Publication Date
CN111446890A CN111446890A (zh) 2020-07-24
CN111446890B true CN111446890B (zh) 2022-02-11

Family

ID=71652525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010221084.7A Active CN111446890B (zh) 2020-03-25 2020-03-25 一种具有电流检测功能的编码器及电流检测方法

Country Status (1)

Country Link
CN (1) CN111446890B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112202387B (zh) * 2020-09-28 2022-06-10 深圳市英威腾电动汽车驱动技术有限公司 软解码下的信号采样同步方法、装置及电机控制系统
CN115296583A (zh) * 2022-07-01 2022-11-04 重庆智能机器人研究院 一种伺服系统电角度补偿方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189700A (ja) * 2001-12-13 2003-07-04 Mitsubishi Heavy Ind Ltd 電動機制御装置、電動機の駆動方法、及び電動機制御用プログラム
JP2011200030A (ja) * 2010-03-19 2011-10-06 Denso Wave Inc 生産機器の制御装置及び生産機器用モータの停止制御方法
CN103246274A (zh) * 2013-05-20 2013-08-14 南车株洲电力机车有限公司 一种机车牵引性能测量系统
CN203275995U (zh) * 2013-05-28 2013-11-06 中国船舶重工集团公司第七一二研究所 一种多通道周期同步协调控制器
CN105656591A (zh) * 2015-12-30 2016-06-08 杭州娃哈哈精密机械有限公司 在伺服系统中的串行编码器通信时数据采集同步的方法
CN106645919A (zh) * 2016-12-26 2017-05-10 北京四方继保自动化股份有限公司 基于三相瞬时功率的电网全谱功率振荡相量同步测量方法
CN107994827A (zh) * 2017-11-17 2018-05-04 美的集团股份有限公司 电机驱动系统和采样相电流相电压的同步计算方法、装置
CN109861611A (zh) * 2019-02-22 2019-06-07 中国第一汽车股份有限公司 永磁同步电机位置传感器误差补偿系统和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182377A (ja) * 1994-12-26 1996-07-12 Mitsubishi Heavy Ind Ltd 同期電動機の自動位相補正回路
JP3397013B2 (ja) * 1995-08-10 2003-04-14 富士電機株式会社 同期モータの制御装置
US8779705B2 (en) * 2011-02-25 2014-07-15 Deere & Company Synchronization of position and current measurements in an electric motor control application using an FPGA
CN103534929B (zh) * 2011-05-13 2017-03-29 株式会社日立制作所 同步电动机的驱动系统
CN105305921B (zh) * 2015-11-12 2018-03-06 上海新时达电气股份有限公司 电机编码器的位置反馈自适应校正方法及其伺服驱动器
CN106452251B (zh) * 2016-11-08 2018-10-26 同济大学 一种充分利用旋变正交输出的电机交流电量同步采样装置
US10707984B2 (en) * 2017-07-14 2020-07-07 Qualcomm Incorporated Techniques for synchronizing slave devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189700A (ja) * 2001-12-13 2003-07-04 Mitsubishi Heavy Ind Ltd 電動機制御装置、電動機の駆動方法、及び電動機制御用プログラム
JP2011200030A (ja) * 2010-03-19 2011-10-06 Denso Wave Inc 生産機器の制御装置及び生産機器用モータの停止制御方法
CN103246274A (zh) * 2013-05-20 2013-08-14 南车株洲电力机车有限公司 一种机车牵引性能测量系统
CN203275995U (zh) * 2013-05-28 2013-11-06 中国船舶重工集团公司第七一二研究所 一种多通道周期同步协调控制器
CN105656591A (zh) * 2015-12-30 2016-06-08 杭州娃哈哈精密机械有限公司 在伺服系统中的串行编码器通信时数据采集同步的方法
CN106645919A (zh) * 2016-12-26 2017-05-10 北京四方继保自动化股份有限公司 基于三相瞬时功率的电网全谱功率振荡相量同步测量方法
CN107994827A (zh) * 2017-11-17 2018-05-04 美的集团股份有限公司 电机驱动系统和采样相电流相电压的同步计算方法、装置
CN109861611A (zh) * 2019-02-22 2019-06-07 中国第一汽车股份有限公司 永磁同步电机位置传感器误差补偿系统和方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Compensation for non-synchronized position and current feedback signals in embedded digital controls of AC machines;Zhenxing Fu et al.;《2005 International Conference on Electrical Machines and Systems》;20060116;第792-797页 *
Δ-Σ ADC在旋变解码与电流采样中的应用;钟再敏等;《微特电机》;20171028;第45卷(第10期);第9-12,17页 *
基于DTC的永磁直线同步电机位置和速度控制;史黎明等;《2006年全国直线电机学术年会论文集》;20071105;第147-150页 *

Also Published As

Publication number Publication date
CN111446890A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
CN108282124B (zh) 电机矢量控制的转子位置角度补偿方法
US4772839A (en) Rotor position estimator for switched reluctance motor
CN111446890B (zh) 一种具有电流检测功能的编码器及电流检测方法
JP3367260B2 (ja) エンコーダ装置及びサーボモーター制御装置
EP3065012B1 (en) Control device and method of synchronizing control
CN108712127B (zh) 一种开关磁阻电机无位置传感器控制方法及装置
CN107748524B (zh) 基于单片机和fpga的双电机高速高精伺服控制系统及其方法
CN105048919A (zh) 用于pmsm的无传感器矢量控制的旋转角度估计组件
CN110601604A (zh) 一种多电机速度同步控制系统及其控制方法
CN109361330A (zh) 一种基于总线的伺服电机同步控制方法
CN107992109B (zh) 全闭环定位控制系统及方法
CN111831019B (zh) 一种电机位置数据补偿方法及电机控制系统
JP3805637B2 (ja) 電動機制御装置
JP2002341943A (ja) サーボモータの位置データをモーションコントローラへ入力する方法およびその方法を実施する装置
EP4169672A1 (en) Multi-axis servo control system
US9836040B2 (en) Motor control device, motor control system and motor control method
CN115480517A (zh) 一种通讯型编码器反馈位置估计方法及系统
CN114499335A (zh) 一种绝对值编码器传输延迟补偿方法
CN109150026B (zh) 一种无位置传感器无刷电机换相方法
CN108880369B (zh) 基于分数阶滑模控制的电机抗干扰控制方法、系统及装置
JPH11149308A (ja) 自動機械のモータ制御装置
JPH10301630A (ja) 検出位置データ送信出力装置
US20160259311A1 (en) Control device and method of synchronizing control
JPH0944252A (ja) 位置決め装置
CN111987937B (zh) 一种永磁电机启动装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant