CN111434354A - 一种用于肿瘤药物深入递送的温敏型纳米药物制剂及其制备方法与应用 - Google Patents

一种用于肿瘤药物深入递送的温敏型纳米药物制剂及其制备方法与应用 Download PDF

Info

Publication number
CN111434354A
CN111434354A CN201910033393.9A CN201910033393A CN111434354A CN 111434354 A CN111434354 A CN 111434354A CN 201910033393 A CN201910033393 A CN 201910033393A CN 111434354 A CN111434354 A CN 111434354A
Authority
CN
China
Prior art keywords
temperature
drug
sensitive
polymer chain
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910033393.9A
Other languages
English (en)
Other versions
CN111434354B (zh
Inventor
王忠良
常湾湾
张瑞丽
王中嫡
王琳琳
黄慧敏
贾茜
乔晁强
陈柏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201910033393.9A priority Critical patent/CN111434354B/zh
Publication of CN111434354A publication Critical patent/CN111434354A/zh
Application granted granted Critical
Publication of CN111434354B publication Critical patent/CN111434354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0042Photocleavage of drugs in vivo, e.g. cleavage of photolabile linkers in vivo by UV radiation for releasing the pharmacologically-active agent from the administered agent; photothrombosis or photoocclusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明属于生物医药技术领域,具体涉及一种用于肿瘤药物深入递送的温敏型纳米药物制剂及其制备方法与应用。本发明提供的肿瘤药物深入递送的温敏型纳米药物制剂在近红外光的照射下(例如波长为650~900nm的激光照射下),产生温和光热,使药物制剂中温敏型中间体Azo‑linker断裂并产生非氧依赖性自由基,具有光热治疗(PTT)和光动力治疗(PDT)的效果。此外,温和光热能引起所述药物制剂在肿瘤血管部位的富集,提高所述药物制剂的靶向性,从而增加化疗药物在肿瘤部位的富集量。

Description

一种用于肿瘤药物深入递送的温敏型纳米药物制剂及其制备 方法与应用
技术领域
本发明属于生物医药技术领域,具体涉及一种用于肿瘤药物深入递送的温敏型纳米药物制剂及其制备方法与应用。
背景技术
化疗作为临床上癌症患者的首选治疗手段,但是它面临诸如小分子化疗药物的溶解性差、靶向性差,导致全身毒副作用大,副反应严重,肿瘤部位药物富集量低,治愈效果差等严峻挑战。据报道,纳米载体能够有效提高化疗药物的靶向性、稳定性和负载率,所以利用纳米载体协助化疗,不仅增加化疗药物的溶解性,而且增强肿瘤的EPR效应,从而提高载药纳米粒子在肿瘤部位的富集量。50~100nm的纳米粒子具有较强的EPR效应,但是该尺寸的纳米载体在经过血液循环富集到肿瘤血管附近后,由于实体瘤外部一层紧密排列的基质细胞与内部较高的流体渗透压,使得纳米药物载体很难进一步深入渗透到实体瘤内部。
发明内容
针对现有技术存在的问题,本发明提供一种制备温敏型聚合物链PCLm-Azo-PAMAM/Drug的方法,包括:
S1)疏水性聚合物链PCLm与温敏型中间体Azo-linker通过缩合反应得到带有COOH结构的单元;
S2)树枝状分子PAMAM与分子结构中带有COOH的化疗药物,或经化学修饰的化疗药物发生缩合反应,得到PAMAM表面仍有剩余NH2的结构单元;
S3)步骤S1)得到的带有COOH结构的单元与步骤S2)反应得到的结构单元发生缩合反应。
根据本发明的实施方案,所述疏水性聚合物链PCLm中m为500~8000,优选为1500~5000,还优选为2000~4000。
根据本发明的实施方案,所述温敏型中间体Azo-linker选自偶氮二异丙基咪唑啉、偶氮二异丁基脒、偶氮二羧乙基-2-异丁基脒或者它们的酸性盐或水合物,例如所述温敏型中间体Azo-linker为偶氮二异丙基咪唑啉盐酸盐(VA-044)、偶氮二异丁基脒盐酸盐(V-50)、偶氮二羧乙基-2-异丁基脒水合物(V-057)。
根据本发明的实施方案,所述树枝状分子PAMAM选自末端功能基团为NH2的分子,优选为G2(分子量3256,末端基团数16个)、G3(分子量6909,末端基团数32个)或G4(分子量14215,末端基团数64个)中的至少一种。
根据本发明的实施方案,所述经化学修饰的化疗药物为将分子结构中不含有COOH官能团的化疗药物进一步通过官能团转化或引入得到分子结构中含官能团COOH的药物。
所述经化学修饰的化疗药物优选为相对于化学修饰前活性不变或进一步改善的药物。
所述化学修饰可通过常规的化学合成手段实现。
优选地,所述分子结构中带有COOH的化疗药物,或经化学修饰的化疗药物选自盖诺(NVB)、阿霉素(ADM)、表阿霉素(EPI)、吡柔比星(THP)、长春新碱(VCR)、足叶乙甙(VP-16)、卫猛(VM-26)、环磷酰胺(CTX)、异环磷酰胺(IFO)、甲氨喋呤(MTX)、博莱霉素(BLM)、亚叶酸钙(CF)、氟尿嘧啶(5-Fu)、氟脲嘧啶脱氧核苷啶(FuDR)、阿糖胞苷(Ara-C)、顺铂(DDP)、卡铂(CBP)、草酸铂(艾恒)、平阳霉素(PYM)、尼莫司汀(ACNU)、丝裂霉素(MMC)、氮烯咪氨(DTIC)、羟基喜树碱(HCPT)、紫杉醇(PTX)中的至少一种。
作为实例,所述温敏型聚合物链PCLm-Azo-PAMAM/Drug采用如下方法制备:
1)将疏水性聚合物链PCLm、温敏型中间体Azo-linker和缩合剂,溶解在溶剂中反应,反应完成之后利用截留分子量为1000Da的透析袋透析,干燥得到固体;
2)将分子结构中带有COOH的化疗药物,或经化学修饰的化疗药物、树枝状分子PAMAM和缩合剂溶解在溶剂中进行反应,反应完成之后利用截留分子量为10000Da的透析袋透析,干燥得到固体;
3)将步骤1)和2)得到的固体与缩合剂溶解在溶剂中反应,反应完成之后利用截流分子量为1000000Da的透析袋透析,干燥得到固体即为温敏型聚合物链PCLm-Azo-PAMAM/Drug。
根据本发明的实施方案,步骤1)中,所述疏水性聚合物链PCLm、温敏型中间体Azo-linker、缩合剂的质量比为1:1~5:1~3;
根据本发明的实施方案,步骤2)中,树枝状分子PAMAM、分子结构中带有COOH的化疗药物,或经化学修饰的化疗药物的质量比为1:0.7~1.3;
根据本发明的实施方案,步骤3)中,步骤1)和2)得到的产物、缩合剂的质量比为1:1~2:1~3。
本发明还提供如上所方法制备得到的温敏型聚合物链PCLm-Azo-PAMAM/Drug。
本发明还提供如上所述温敏型聚合物链PCLm-Azo-PAMAM/Drug在制备用于肿瘤药物深入递送的温敏型纳米药物制剂中的应用。
本发明还提供用于肿瘤药物深入递送的温敏型纳米药物制剂的制备方法,包括:上述温敏型聚合物链PCLm-Azo-PAMAM/Drug、亲疏水性嵌段聚合物链PCLx-b-PEGy、疏水性聚合物链PCLn和光热转换材料通过自组装形成。
根据本发明的实施方案,所述疏水性聚合物链PCLn中n选自1500~5000的数,优选为2000-4000。
根据本发明的实施方案,所述亲疏水性嵌段聚合物链PCLx-b-PEGy中x、y相同或不同,彼此独立地选自1500~8000的数,优选2000~6000。
根据本发明的实施方案,所述光热转化材料为碳类材料选自石墨烯、碳纳米棒、全氟化碳;金属与非金属化合物如CuS、ZnS;有机小分子染料物质如吲哚菁绿(ICG)、吲哚族染料IR780、IR808或IR825。
根据本发明的实施方案,连有化疗药物的温敏性聚合物链PCLm-Azo-PAMAM/Drug与疏水聚合物链PCLn、亲疏水性嵌段聚合物链PCLx-b-PEGy、光热材料的质量比为1:0.7~1.5:0.7~1.5:0.07~0.15。
作为实例,所述肿瘤药物深入递送的温敏型纳米药物制剂通过如下方法制备:
4)将步骤3)得到的温敏型聚合物链PCLm-Azo-PAMAM/Drug、疏水性聚合物链PCLn、亲疏水性嵌段聚合物链PCLx-b-PEGy和光热转换材料溶解在溶剂中反应得到所述药物制剂。
本发明还提供如上所述方法制备的用于肿瘤药物深入递送的温敏型纳米药物制剂。
根据本发明的实施方案,所述用于肿瘤药物深入递送的温敏型纳米药物制剂的尺寸为20~500nm,优选为50~300nm,还优选为50~200nm。
根据本发明的实施方案,所述用于肿瘤药物深入递送的温敏型纳米药物制剂光热响应后的尺寸为5nm以下。
有益效果
1).本发明提供的肿瘤药物深入递送的温敏型纳米药物制剂在近红外光的照射下(例如波长为650~900nm的激光照射下),产生温和光热,使药物制剂中温敏型中间体Azo-linker断裂并产生非氧依赖性自由基,具有光热治疗(PTT)和光动力治疗(PDT)的效果。此外,温和光热能引起所述药物制剂在肿瘤血管部位的富集,提高所述药物制剂的靶向性,从而增加化疗药物在肿瘤部位的富集量。
2).本发明提供的肿瘤药物深入递送的温敏型纳米药物制剂在在光热响应后,释放出尺寸5nm以下连接化疗药物的树枝状分子。由于其尺寸较小,可以穿过基质细胞的间隙,同时克服肿瘤内部较高的流体渗透压,此外,树枝状分子表面氨基化带正电,因而更容易有效地被肿瘤细胞吞噬,使药物制剂高效地抑制肿瘤的增殖、转移和复发。从而实现对肿瘤的高效富集、定点释放、深入递送,协同治疗,达到安全高效的肿瘤治疗效果。
3).本发明的药物制剂所采用的原料相对容易得到,且具有可降解,毒副作用小等优点。并且,对于不同肿瘤,可在树枝状分子上连接不同的化疗药物,因而药物制剂的药效更优。
4).本发明的制备方法相对简单,可实现大规模生产。
附图说明
图1是本发明实施例1提供的光热响应型超纳米探针的制备方法流程图。
图2是本发明实施例1提供的化疗药物顺铂合成前药的1HNMR图。
图3是本发明实施例1提供的用于肿瘤药物深入递送的温敏型纳米药物制剂光热响应前后的TEM图。
图4是本发明实施例1提供的用于肿瘤药物深入递送的温敏型纳米药物制剂的DLS图。
图5是本发明实施例提供的用于肿瘤药物深入递送的温敏型纳米药物制剂的Zate图。
图6是本发明实施例1提供的包裹光热材料IR780的UV光谱示意图。
图7是本发明实施例2提供的温敏型中间体的热响应结果示意图。
图8是本发明实施例2提供的肿瘤药物深入递送的温敏型纳米药物制剂的细胞水平的治疗效果图。
图9是本发明实施例2提供的利用3D细胞球验证实施例1用于肿瘤药物深入递送的温敏型纳米药物制剂光热响应后的深入递送实验图。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
实施例1
1.1、连有化疗药物的温敏型聚合物链PCL4000-Azo-PAMAM/Drug的制备
1).称取疏水性聚合物链PCL400015mg、温敏型中间体VA-057 25mg、缩合剂EDC15mg和DMAP 5mg,分别溶解在低温的四氢呋喃中,然后混合在低温条件下反应12h,之后利用截留分子量为1000Da的透析袋透析,冻干,得到白色固体PCL4000-Azo-COOH;
2).称取化疗药物顺铂Pt(NH3)2Cl2 100mg溶解在2.5mL水中,再加入3.5mL30%w/v的过氧化氢溶液,在50℃下反应1h,之后用丙酮、乙醚交替各洗涤三次,抽滤、烘干,得到亮黄色固体Pt(NH3)2Cl2(OH)2,产率为49%;
3).称取上述步骤2)中得到的Pt(NH3)2Cl2(OH)2 50mg溶解在4mL无水DMSO中,再加入丁二酸酐12mg,在室温下反应12h,冻干,丙酮、乙醚交替各洗涤三次,抽滤、烘干。得到近白色固体[Pt(NH3)2Cl2(OH)(O2CCH2CH2CO2H)],产率为54%,其为[Pt(NH3)2Cl2(OH)(O2CCH2CH2CO2H)]的1H NMR图谱如图2所示。
4).称取上述步骤3)中得到的[Pt(NH3)2Cl2(OH)-(O2CCH2CH2CO2H)]12mg,树枝状分子PAMAM(G4)12mg,缩合剂EDC 30mg和NHS 30mg分别溶解在DMSO中,然后混合在室温下反应2h,得到PAMAM/Drug,之后利用截留分子量为10000Da的透析袋透析,冻干,得到浅黄色固体;
5).称取步骤1)和4)中得到的PCL4000-Azo-COOH 15.6mg和PAMAM/Drug12mg、活化剂EDC 25mg和NHS 25mg分别溶解在DMSO中,然后混合在室温下反应1h,得到连有化疗药物的温敏型聚合物链PCL4000-Azo-PAMAM/Drug,之后利用截流分子量为1000000Da的透析袋透析,冻干,得到浅黄色固体;
1.2、用于肿瘤药物深入递送的温敏型纳米药物制剂的制备
将上述步骤5)中得到的连有化疗药物的温敏型聚合物链PCL4000-Azo-PAMAM/Drug、亲疏水性嵌段聚合物链PCL5000-b-PEG5000、疏水性聚合物链PCL3700和光热转换材料IR780以质量比为1:1:1:0.1分别溶解在二甲亚砜中,然后混合搅拌均匀后,边搅拌边加入水,得到肿瘤药物深入递送的温敏型纳米药物制剂,之后利用截留分子量为1000000Da的透析袋透析即可,得到产物药物制剂。经检测,其为纳米粒子。产物药物制剂用于肿瘤药物深入递送的温敏型纳米药物制剂光热响应前后的TEM图如图3所示,图3表明光热条件下该纳米药物制剂发生响应,释放出PAMAM/Drug;图4、5分别为所述用于肿瘤药物深入递送的温敏型纳米药物制剂的DLS和Zate Potential图;图6是包裹了光热转换材料IR780的纳米粒子的UV光谱示意图。
实施例2
2.1脂肪族偶氮中间体Azo-linker温敏性的验证
取4份等量25mg的脂肪族偶氮中间体VA-057,分别溶解在5mL水中,加入0.2mL自由基指示剂亚甲基蓝,在不同的温度下加热15min,得到如图7所示结果,表明随着温度的升高,脂肪族偶氮中间体VA-057热响应速度越快,因此可以证明实施例1制备的纳米粒子的热响应速度越快。
2.2肿瘤药物深入递送的温敏型纳米药物制剂的细胞水平的治疗效果
为验证用于肿瘤药物深入递送的温敏型纳米药物制剂的细胞水平的治疗效果,分别合成以下五种探针:NN-PAMAM、NN-PAMAM@IR780、NN-PAMAM/Pt、NN-PAMAM/Pt@IR780、丁二酸酐-PAMAM/Pt@IR780进行相互对照验证实验。设置如图8所示的实验组及对照组,将纳米粒子浓度均为100μg/mL的以上5种探针分别加入到乳腺癌细胞(4T1)当中共培养12h,之后给细胞换液,将未被活细胞吞噬的纳米粒子除去。此外,NN-PAMAM/Pt@IR780和丁二酸酐-PAMAM/Pt@IR780组采用808nm激光进行照激光(3min)的方式对照处理,再共培养12h后,分别测定4T1细胞的存活率。如图8所示,结果表明:在相同浓度下,实施例1制备的药物制剂光热响应后的治疗效果更好。
其中,NN-PAMAM/Pt@IR780代表实施例1制备得到的温敏型纳米药物制剂。
NN-PAMAM/Pt代表采用上述实施例1相同方法,但是不使用IR780制备的温敏型药物制剂。
NN-PAMAM@IR780代表采用实施例1相同的方法,但是不使用化疗药物制备得到的温敏型纳米药物制剂。
NN-PAMAM代表采用实施例1相同的方法,但是不使用化疗药物和IR780制备的温敏型药物制剂。
丁二酸酐-PAMAM/Pt@IR780对应实施例1中采用丁二酸酐替代PCL4000-Azo-COOH后按照步骤1.1,1.2制备得到的纳米制剂。
2.3肿瘤药物深入递送的温敏型纳米药物制剂的深入递送效果评价
参照本发明实施例1中制备的用于肿瘤药物深入递送的温敏型纳米药物制剂的方法,合成出用两种荧光染料6-异硫氰酸荧光素(6-FITC)和罗丹明B(RhB)标记的两条聚合物链分别为PCL4000-Azo-PAMAM/FITC和PCL4000-RHB,并与亲疏水性嵌段聚合物PCL5000-b-PEG5000组装合成两种荧光染料标记的可深入递送的温敏型纳米制剂RhBNPsFITC来验证实施例1制备的药物制剂光热响应后的深入递送效果。
1).称取疏水性聚合物链PCL400015mg、温敏型中间体VA-057 25mg、缩合剂EDC15mg和DMAP 5mg,分别溶解在低温的四氢呋喃中,然后混合在低温条件下反应12h,之后利用截留分子量为1000Da的透析袋透析,冻干,得到白色固体PCL4000-Azo-COOH;
2).称取6-FITC 5.6mg,树枝状分子PAMAM(G4)12mg,缩合剂EDC 6.4mg和NHS3.9mg分别溶解在DMSO中,然后混合在室温下反应48h,得到PAMAM/FITC,之后利用截留分子量为10000Da的透析袋透析,冻干,得到浅橙色固体;
3).称取步骤1)和2)中得到的PCL4000-Azo-COOH 15.6mg和PAMAM/FITC12mg、活化剂EDC 25mg和NHS 25mg分别溶解在DMSO中,然后混合在室温下反应1h,得到连有6-FITC的温敏型聚合物链PCL4000-Azo-PAMAM/FITC,之后利用截流分子量为1000000Da的透析袋透析,冻干,得到橙色固体;
4)称取RHB 5.0mg,疏水性聚合物链PCL400012mg,缩合剂DIC 1.3mg和DMAP 1.3mg分别溶解在DMSO中,然后混合在室温下反应48h,得到PCL4000-RHB,之后利用截留分子量为10000Da的透析袋透析,冻干,得到粉色固体;
5)将连有6-FITC的温敏型聚合物PCL4000-Azo-PAMAM/FITC、亲疏水性嵌段聚合物链PCL5000-b-PEG5000、连有RHB的疏水性聚合物链PCL4000-RHB和光热转换材料IR780以质量比为1:1:1:0.1分别溶解在二甲亚砜中,然后混合搅拌均匀后,边搅拌边加入水,得到两种染料标记的深入递送的温敏型纳米药物制剂,之后利用截留分子量为1000000Da的透析袋透析即可。
将浓度为200μg/mL两种染料标记的深入递送的温敏型纳米药物制剂加入到4T13D细胞球中,采用不照激光和用808nm激光进行照激光(3min)的方式对照处理,再共培养2h,之后吸出3D细胞球并用PBS溶液清洗两遍将未被吞噬的纳米粒子除去,用激光共聚焦显微镜成像。两种染料标记的深入递送实验结果如图9所示,光热响应后连有6-FITC的树枝状分子可以深入递送到3D细胞球内部,为图中颜色较浅部分,而RHB由于其标记在纳米粒子上,仍在3D细胞球外部,为图中颜色较深部分,表明本发明的药物制剂确实可以通过光热响应以实现深入递送的效果。
基于该效果实验可知,采用不同药物分子制备成本发明的温敏型纳米药物制剂也能实现通过光热响应从而深入递送的效果。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种制备温敏型聚合物链PCLm-Azo-PAMAM/Drug的方法,其特征在于,包括:
S1)疏水性聚合物链PCLm与温敏型中间体Azo-linker通过缩合反应得到带有COOH结构的单元;
S2)树枝状分子PAMAM与分子结构中带有COOH的化疗药物,或经化学修饰的化疗药物发生缩合反应,得到PAMAM表面仍有剩余NH2的结构单元;
S3)步骤S1)得到的带有COOH结构的单元与步骤S2)反应得到的结构单元发生缩合反应。
2.根据权利要求1所述的方法,其特征在于,所述疏水性聚合物链PCLm中m为500~8000的数;
优选地,所述温敏型中间体Azo-linker选自偶氮二异丙基咪唑啉、偶氮二异丁基脒、偶氮二羧乙基-2-异丁基脒或者它们的酸性盐或水合物;
优选地,所述树枝状分子PAMAM选自末端功能基团为NH2的分子;
优选地,所述经化学修饰的化疗药物为将分子结构中不含有COOH官能团的化疗药物进一步通过官能团转化或引入得到分子结构中含官能团COOH的药物;
还优选地,所述经化学修饰的化疗药物为相对于化学修饰前活性不变或进一步改善的药物;
优选地,所述分子结构中带有COOH的化疗药物,或经化学修饰的化疗药物选自盖诺(NVB)、阿霉素(ADM)、表阿霉素(EPI)、吡柔比星(THP)、长春新碱(VCR)、足叶乙甙(VP-16)、卫猛(VM-26)、环磷酰胺(CTX)、异环磷酰胺(IFO)、甲氨喋呤(MTX)、博莱霉素(BLM)、亚叶酸钙(CF)、氟尿嘧啶(5-Fu)、氟脲嘧啶脱氧核苷啶(FuDR)、阿糖胞苷(Ara-C)、顺铂(DDP)、卡铂(CBP)、草酸铂(艾恒)、平阳霉素(PYM)、尼莫司汀(ACNU)、丝裂霉素(MMC)、氮烯咪氨(DTIC)、羟基喜树碱(HCPT)、紫杉醇(PTX)中的至少一种。
3.根据权利要求1或2所述的方法,其特征在于,所述温敏型聚合物链PCLm-Azo-PAMAM/Drug采用如下方法制备:
1)将疏水性聚合物链PCLm、温敏型中间体Azo-linker和缩合剂,溶解在溶剂中反应,反应完成之后利用截留分子量为1000Da的透析袋透析,干燥得到固体;
2)将分子结构中带有COOH的化疗药物,经化学修饰的化疗药物、树枝状分子PAMAM和缩合剂溶解在溶剂中进行反应,反应完成之后利用截留分子量为10000Da的透析袋透析,干燥得到固体;
3)将步骤1)和2)得到的固体与缩合剂溶解在溶剂中反应,反应完成之后利用截流分子量为1000000Da的透析袋透析,干燥得到固体即为温敏型聚合物链PCLm-Azo-PAMAM/Drug。
4.权利要求1-3任一项所述方法制备得到的温敏型聚合物链PCLm-Azo-PAMAM/Drug。
5.权利要求1-3任一项所述方法制备得到的温敏型聚合物链PCLm-Azo-PAMAM/Drug在制备用于肿瘤药物深入递送的温敏型纳米药物制剂中的应用。
6.一种用于肿瘤药物深入递送的温敏型纳米药物制剂的制备方法,其特征在于,包括:权利要求1-3任一项所述方法制备得到的温敏型聚合物链PCLm-Azo-PAMAM/Drug、亲疏水性嵌段聚合物链PCLx-b-PEGy、疏水性聚合物链PCLn和光热转换材料通过自组装形成。
7.根据权利要求6所述的制备方法,其特征在于,所述疏水性聚合物链PCLn中n选自1500~5000的数;
优选地,所述亲疏水性嵌段聚合物链PCLx-b-PEGy中x、y相同或不同,彼此独立地选自1500~8000的数;
优选地,所述光热转化材料为碳类材料选自石墨烯、碳纳米棒、全氟化碳;金属与非金属化合物、有机小分子染料物质。
8.权利要求6或7所述的方法制备的用于肿瘤药物深入递送的温敏型纳米药物制剂。
9.根据权利要求8所述用于肿瘤药物深入递送的温敏型纳米药物制剂,其特征在于,其尺寸为20~500nm。
10.根据权利要求8或9所述用于肿瘤药物深入递送的温敏型纳米药物制剂,其特征在于,其光热响应后的尺寸为5nm以下。
CN201910033393.9A 2019-01-14 2019-01-14 一种用于肿瘤药物深入递送的温敏型纳米药物制剂及其制备方法与应用 Active CN111434354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910033393.9A CN111434354B (zh) 2019-01-14 2019-01-14 一种用于肿瘤药物深入递送的温敏型纳米药物制剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910033393.9A CN111434354B (zh) 2019-01-14 2019-01-14 一种用于肿瘤药物深入递送的温敏型纳米药物制剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111434354A true CN111434354A (zh) 2020-07-21
CN111434354B CN111434354B (zh) 2021-10-08

Family

ID=71580003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910033393.9A Active CN111434354B (zh) 2019-01-14 2019-01-14 一种用于肿瘤药物深入递送的温敏型纳米药物制剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111434354B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111821419A (zh) * 2020-07-31 2020-10-27 浙江大学 一种自组装多肽纳米载体及其制备方法和应用
CN112592494A (zh) * 2020-10-31 2021-04-02 天津理工大学 基于树枝状阳离子聚酰胺和四苯乙烯的靶向结肠部位抗菌呈像纳米材料的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161750A1 (en) * 2006-01-10 2007-07-12 Sri Sports Limited Ionomer composition for golf ball, production method thereof and golf ball using the same
CN104507985A (zh) * 2012-07-30 2015-04-08 乐金华奥斯有限公司 光聚合树脂组合物及包含其的光聚合树脂
US20150359887A1 (en) * 2013-01-28 2015-12-17 Fondazione Istituto Italiano Di Tecnologia Heat-Sensitive Nanoparticle System
CN106188191A (zh) * 2016-07-13 2016-12-07 西安电子科技大学 基于gsh响应的诊治一体化有机分子探针及其制备方法
CN106310290A (zh) * 2016-10-27 2017-01-11 深圳先进技术研究院 一种肿瘤靶向性热敏前药及其制备方法与应用
CN106668873A (zh) * 2016-12-29 2017-05-17 中国科学院深圳先进技术研究院 一种纳米载药胶束、纳米抗癌药物及其制备方法和应用
CN106905532A (zh) * 2015-12-18 2017-06-30 天津国际生物医药联合研究院 侧链带pamam的聚合物胶束及其制备方法
CN107308457A (zh) * 2017-05-19 2017-11-03 四川大学 一种具有肿瘤微环境响应性降解的深层穿透纳米递药系统
US20180042844A1 (en) * 2016-08-15 2018-02-15 Wisconsin Alumni Research Foundation Perivascular drug delivery system
CN108354901A (zh) * 2018-05-21 2018-08-03 中国医学科学院生物医学工程研究所 用于肿瘤化疗与光热联合治疗的pH/还原双重敏感多功能纳米胶束及其应用
WO2019226963A1 (en) * 2018-05-23 2019-11-28 Ohio State Innovation Foundation Biomimetic vesicles and uses thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161750A1 (en) * 2006-01-10 2007-07-12 Sri Sports Limited Ionomer composition for golf ball, production method thereof and golf ball using the same
CN104507985A (zh) * 2012-07-30 2015-04-08 乐金华奥斯有限公司 光聚合树脂组合物及包含其的光聚合树脂
US20150359887A1 (en) * 2013-01-28 2015-12-17 Fondazione Istituto Italiano Di Tecnologia Heat-Sensitive Nanoparticle System
CN106905532A (zh) * 2015-12-18 2017-06-30 天津国际生物医药联合研究院 侧链带pamam的聚合物胶束及其制备方法
CN106188191A (zh) * 2016-07-13 2016-12-07 西安电子科技大学 基于gsh响应的诊治一体化有机分子探针及其制备方法
US20180042844A1 (en) * 2016-08-15 2018-02-15 Wisconsin Alumni Research Foundation Perivascular drug delivery system
CN106310290A (zh) * 2016-10-27 2017-01-11 深圳先进技术研究院 一种肿瘤靶向性热敏前药及其制备方法与应用
CN106668873A (zh) * 2016-12-29 2017-05-17 中国科学院深圳先进技术研究院 一种纳米载药胶束、纳米抗癌药物及其制备方法和应用
CN107308457A (zh) * 2017-05-19 2017-11-03 四川大学 一种具有肿瘤微环境响应性降解的深层穿透纳米递药系统
CN108354901A (zh) * 2018-05-21 2018-08-03 中国医学科学院生物医学工程研究所 用于肿瘤化疗与光热联合治疗的pH/还原双重敏感多功能纳米胶束及其应用
WO2019226963A1 (en) * 2018-05-23 2019-11-28 Ohio State Innovation Foundation Biomimetic vesicles and uses thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HONG-JUN LI ET AL: "Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy", 《PNAS》 *
LING CHEN ET AL: "Azo-functionalized Fe3O4 nanoparticles: a near-infrared light triggered drug delivery system for combined therapy of cancer with low toxicity", 《J. MATER. CHEM. B》 *
QI WANG ET AL: "A thermostable azo-linker for reversible photoregulation of DNA replication", 《TETRAHEDRON LETTERS》 *
常湾湾: "用于协同抗肿瘤的温敏型纳米药物组装体的合成及其瘤内深入递送性能的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
李洪军: "抗肿瘤多级纳米药物递送系统的研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
陈玲: "Azo功能化Fe3O4纳米粒在肿瘤光热-化疗联合治疗中的应用", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111821419A (zh) * 2020-07-31 2020-10-27 浙江大学 一种自组装多肽纳米载体及其制备方法和应用
CN112592494A (zh) * 2020-10-31 2021-04-02 天津理工大学 基于树枝状阳离子聚酰胺和四苯乙烯的靶向结肠部位抗菌呈像纳米材料的制备方法
CN112592494B (zh) * 2020-10-31 2022-08-02 天津理工大学 基于树枝状阳离子聚酰胺和四苯乙烯的靶向结肠部位抗菌呈像纳米材料的制备方法

Also Published As

Publication number Publication date
CN111434354B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
Luo et al. Metal–organic framework (MOF)-based nanomaterials for biomedical applications
Liu et al. Fluorescent imaging‐guided chemotherapy‐and‐photodynamic dual therapy with nanoscale porphyrin metal–organic framework
Zheng et al. Nanoscale mixed-component metal–organic frameworks with photosensitizer spatial-arrangement-dependent photochemistry for multimodal-imaging-guided photothermal therapy
Lei et al. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy
Ding et al. Nanoscale MOFs: From synthesis to drug delivery and theranostics applications
Zhang et al. A Versatile prodrug strategy to in situ encapsulate drugs in MOF nanocarriers: a case of cytarabine‐IR820 prodrug encapsulated ZIF‐8 toward chemo‐photothermal therapy
Zhang et al. Metal-organic framework-based nanomaterials for biomedical applications
Feng et al. Stimuli-responsive multifunctional metal–organic framework nanoparticles for enhanced chemo-photothermal therapy
Zhao et al. Redox-sensitive nanoscale coordination polymers for drug delivery and cancer theranostics
Qin et al. pH-responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy
He et al. Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers
Cheng et al. Gold nanosphere gated mesoporous silica nanoparticle responsive to near-infrared light and redox potential as a theranostic platform for cancer therapy
Soliman et al. Incorporation of Ru (II) polypyridyl complexes into nanomaterials for cancer therapy and diagnosis
Ma et al. Metal–organic frameworks towards bio-medical applications
Yang et al. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy
Wang et al. Copper sulfide engineered covalent organic frameworks for pH-responsive chemo/photothermal/chemodynamic synergistic therapy against cancer
Chen et al. Protonated 2D carbon nitride sensitized with Ce6 as a smart metal-free nanoplatform for boosted acute multimodal photo-sono tumor inactivation and long-term cancer immunotherapy
CN111434354B (zh) 一种用于肿瘤药物深入递送的温敏型纳米药物制剂及其制备方法与应用
Gao et al. AuNRs@ MIL-101-based stimuli-responsive nanoplatform with supramolecular gates for image-guided chemo-photothermal therapy
CN109172587A (zh) 一种pH响应双药物释放的金属有机框架-上转换纳米体系的制备方法与应用
Zou et al. Functional Nanomaterials Based on Self‐Assembly of Endogenic NIR‐Absorbing Pigments for Diagnostic and Therapeutic Applications
Cedrún-Morales et al. Nanosized metal–organic frameworks as unique platforms for bioapplications
Guan et al. Robust organic nanoparticles for noninvasive long-term fluorescence imaging
CN104984341B (zh) 一种近红外激光触发的复合纳米制剂的制备方法
Aghda et al. Design of smart nanomedicines for effective cancer treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant