CN111421817A - 一种多轴光固化3d微纳加工设备及方法 - Google Patents

一种多轴光固化3d微纳加工设备及方法 Download PDF

Info

Publication number
CN111421817A
CN111421817A CN202010131785.1A CN202010131785A CN111421817A CN 111421817 A CN111421817 A CN 111421817A CN 202010131785 A CN202010131785 A CN 202010131785A CN 111421817 A CN111421817 A CN 111421817A
Authority
CN
China
Prior art keywords
axis
shaft
linear motor
guide rail
servo motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010131785.1A
Other languages
English (en)
Other versions
CN111421817B (zh
Inventor
段辉高
单武斌
王兆龙
刘鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202010131785.1A priority Critical patent/CN111421817B/zh
Publication of CN111421817A publication Critical patent/CN111421817A/zh
Application granted granted Critical
Publication of CN111421817B publication Critical patent/CN111421817B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/241Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

本发明公开了一种多轴光固化3D微纳加工设备及方法,属于3D微纳加工技术领域。包括轴座、Z轴导轨、Z轴直线电机、悬臂、工作台、溶液槽)、溶液槽支架、立柱、X轴导轨、X轴导轨支架、B轴伺服电机、B联轴器、B轴支架、光机、A轴伺服电机、A联轴器、A轴支架、Y轴直线电机、Y轴导轨、旋转台、旋转伺服电机和机身底座。本发明采用掩膜版成像替换当前学者提出的DMD芯片成像,提高打印精度,并实现大面积扫描;通过缩放镜使其进一步缩小提高打印精度,导致打印面积变小,从而大件零件打印无法满足精度和尺寸的要求,掩膜版技术比较成熟,精度容易实现亚微米甚至纳米级,能较好的克服此缺陷。

Description

一种多轴光固化3D微纳加工设备及方法
技术领域
本发明属于3D微纳加工技术领域,具体为一种多轴光固化3D微纳加工设备及方法。
背景技术
随着3D打印和微纳科技的迅猛发展,为了满足不同领域和行业的需求,近年国内外研究人员已经开发出多种类型微纳尺度3D打印工艺、打印材料,并应用于多种领域和行业。3D打印即快速成型(rapidprototyping,RP)技术一种基于离散堆积思想的增材制造技术,一种“自下而上”的材料累加制造方法.其通过计算机技术,根据零件的三维数字模型把材料逐层连接累加,从而制造出实体零件.将制造过程由复杂的三维加工降低为一系列简单的二维层片的加工,由于二维层片的加工难度与零件实体结构的复杂程度基本无关,因此大大降低了零件实体的加工难度,从而能够以一种统一的、自动的方法来完成形状结构各异的三维实体模型,从而3D打印技术相对传统加工技术具有不浪费材料,可以实现产品的自由结构设计,加工周期短从而达到节能环保的作用。
光固化快速成型技术是发展最早、现阶段最成熟、应用最广泛的一种3D打印技术.该技术以光敏树脂液体为原材料,树脂的光敏特性使得材料在受到特殊波段的光(多为紫外波段)照射后,会发生聚合反应出现固化.
当前国内外光固化3D微纳打印,在打印过程中基本采用纵轴轴向移动,逐层曝光打印,从而导致只能打印柱形零部件没有理论误差,对于斜面打印存在一定的梯度误差。
当前采用的光固化数字微镜器件(digital micro-mirror device,DMD)芯片,该技术具有造价高,分辨率低,单次扫描打印面积小的缺陷。针对此情况我们发明一款多轴3D微纳加工设备及加工方法,该设备采用多轴联动能较好的解决打印当前光固化3D打印设备打印存在梯度的问题,提高打印尺寸精度和质量,根据特定产品模型需求采用掩膜版成像能提高分辨率,实现大面积扫描来打印大件。
发明内容
本发明的目的在于提供一种结构稳定灵活,适用于空间结构3D微纳加工设备及方法。
本发明采用的技术方案是:一种多轴光固化3D微纳加工设备,包括轴座(1)、Z轴导轨(2)、Z轴直线电机(4)、悬臂(3)、工作台(5)、溶液槽(19)、溶液槽支架(20)、立柱(6)、X轴导轨(7)、X轴导轨支架(9)、B轴伺服电机(22)、B联轴器(17)、B轴支架(16)、光机(25)、A轴伺服电机(18)、A联轴器(17)、A轴支架(15)、Y轴直线电机(14)、Y轴导轨(12)、旋转台(13)、旋转伺服电机(11)和机身底座(10)。
轴座(1)与立柱(6)通过螺丝紧固连接,Z轴导轨(2)与立柱(6)在竖直方向平行且重合并用螺丝进行紧固连接;悬臂(3)的长度方向与Z直线电机(4)的移动方向垂直且一端与Z轴直线电机初级(26)重合,并通过螺丝紧固连接;悬臂(3)与工作台(5)通过螺丝紧固连接,溶液槽支架(20)与立柱(6)垂直并用螺丝紧固连接;溶液槽(19)与溶液槽支架(20)之间为间隙配合,通过控制Z轴直线电机(4)的工作状态来实现工作台在Z轴上的移动;
立柱(6)与X轴直线电机初级通过螺丝紧固连接在一起,X轴直线电机次级两端固定在轴座(1)上,轴座(1)通过螺丝固定在X轴导轨支架(9)的两端;X轴直线电机初级与X轴导轨(7)之间采用间隙配合进行导向,X轴导轨(7)与X轴导轨支架(9)平行且重合并用螺丝紧固连接,X轴导轨支架(9)的长边与机身底座(10)的一条边重合,两端与其相邻的两平行边重合,并用螺丝固定在机身底座(10)上;
光机(25)的旋转轴与B轴支架(16)的轴孔间隙配合,B轴伺服电机(22)的轴与光机(25)的旋转轴在同一轴线上,用B联轴器(20)紧固连接传动,B轴伺服电机与B轴支架通过螺栓紧固连接,通过控制B轴伺服电机(22)的工作状态来实现透镜射出的光源在B轴上的旋转;
B轴支架(16)的旋转轴与A轴支架(15)的轴孔间隙配合,A轴伺服电机(18)的输出轴与B轴支架(16)的旋转轴在同一轴线上;用A联轴器(17)紧固连接传动,A轴伺服电机(18)与A轴支架通过螺栓紧固连接,通过控制A轴伺服电机(18)的工作状态来实现透镜在A轴上的旋转;
A轴支架(15)与Y轴直线电机初级用螺丝紧固连接,Y轴直线电机次级的两端固定在轴座上且次级的轴线与旋转台的对称线重合,轴座通过螺丝固定在旋转台(13)上,Y轴导轨(12)对称安装在旋转台轴线两侧,用螺丝紧固连接,通过控制Y轴直线电机(14)的工作状态来实现透镜在Y轴上的移动;
旋转台(13)的轴与旋转伺服电机的轴在同一直线上,用旋转轴联轴器紧固连接传动,旋转伺服电机(11)与机身底座(10)用螺丝紧固连接在预留的位置,通过控制旋转伺服电机(11)的工作状态来实现透镜在水平面上的旋转;
所述X轴直线电机(8)、Y轴直线电机(14)、Z轴直线电机(4)为直线电机;所述X轴直线电机(8)、Y轴直线电机(14)、Z轴直线电机(4)配套的轴座(1)属于同一款轴座。
溶液槽(19)底部为透明,内部为光敏树脂材料,溶液槽(19)较易从溶液槽支架(20)上取下,便于清洗;所述X轴导轨和Y轴导轨为T形结构;所述伺服电机只在0至360度内旋转。
Z轴直线电机次级(27)两端固定在轴座上,Z轴直线电机初级(26)与Z轴导轨间隙配合导向;
本装置通过轴座、Z轴导轨、Z轴直线电机、悬臂、工作台、溶液槽、溶液槽支架、立柱、X轴直线电机、X轴导轨、X轴导轨支架、B轴伺服电机、B联轴器、B轴支架、透镜、A轴伺服电机、A联轴器、A轴支架、Y轴伺服电机、Y轴导轨、旋转台、旋转轴联轴器、旋转伺服电机、机身底座由上到下的顺序连接而成一个整体。
在3D打印设备的光机中放入相应模型的掩膜版,Z轴直线电机驱动的工作台(5)进入底端透明的料槽(9)内直至其底面与槽底面保持25~100μm(由打印时切片层厚度决定)的垂直间隙,投影仪的投影光在透过透明料槽底部后与液态光敏树脂相接触。此时光接触的液态光敏树脂瞬间聚合固化,而未与光接触的液态光敏树脂还是保持液态,实现液态光敏树脂的一层成型;接着Z轴直线电机(3)驱动工作台向上移动25~100μm(由打印时切片层厚度决定),进行下一层成型;如此交替反复进行,叠加制造,实现光固化3D打印零件成型。同时通过控制A轴伺服电机(18)和B轴伺服电机(22)的工作状态来实现光机射出的光源在A轴或B轴上的旋转;通过控制旋转伺服电机(11)的工作状态实现旋转台(13)实现光机装置在水平面内旋转;控制X轴直线电机(8)、Y轴直线电机(14)实现打印在水平面上的移动;从而形成多个自由度联合控制成型;
由于(digital micro-mirror device,DMD)芯片具有分辨率低,价格贵的缺陷,本技术采用掩膜版成像替换当前学者提出的DMD芯片成像,进一步提高打印精度,并实现大面积扫描;由于DMD像素的尺寸大多为14μm×14μm(或16μm×16μm),通过缩放镜使其进一步缩小提高打印精度,导致打印面积变小,从而大件零件打印无法满足精度和尺寸的要求,掩膜版技术比较成熟,精度容易实现亚微米甚至纳米级,能较好的克服此缺陷。
附图说明
图1是本发明装置的结构图。
图2是本发明装置的主视图。
图3是本发明装置的局部图。
图4是直线电机结构图
图5是本发明光机和组成及流程图。
具体实施方式
结合以上附图对本发明作进一步说明。
一种多轴3D微纳加工设备及方法,该机器包括轴座(1)、Z轴导轨(2)、Z轴直线电机(4)、悬臂(3)、工作台(5)、溶液槽(19)、溶液槽支架(20)、立柱(6)、X轴直线电机(8)、X轴导轨(7)、X轴导轨支架(9)、B轴伺服电机(22)、B联轴器(17)、B轴支架(16)、光机(25)、A轴伺服电机(18)、A联轴器(17)、A轴支架(15)、Y轴直线电机(14)、Y轴导轨(12)、旋转台(13)、旋转台联轴器(21)、旋转伺服电机(11)和机身底座(10)。
轴座(1)与立柱(6)通过螺丝紧固连接,Z轴导轨(2)与立柱(6)在竖直方向平行且重合并用螺丝进行紧固连接;Z轴直线电机次级(27)两端固定在轴座上,Z轴直线电机初级(26)与Z轴导轨间隙配合导向;悬臂(3)的长度方向与Z直线电机(4)的移动方向垂直且一端与Z轴直线电机初级(26)重合,并通过螺丝紧固连接;悬臂(3)与工作台(5)通过螺丝紧固连接,溶液槽支架(20)与立柱(6)垂直并用螺丝紧固连接;溶液槽(19)与溶液槽支架(20)之间为间隙配合,可取出,通过控制Z轴直线电机(4)的工作状态来实现工作台在Z轴上的移动;
立柱(6)与X轴直线电机初级通过螺丝紧固连接在一起,X轴直线电机次级两端固定在轴座(1)上,轴座(1)通过螺丝固定在X轴导轨支架(9)的两端;X轴直线电机初级与X轴导轨(7)之间采用间隙配合进行导向,X轴导轨(7)与X轴导轨支架(9)平行且重合并用螺丝紧固连接,X轴导轨支架(9)的长边与机身底座(10)的一条边重合,两端与其相邻的两平行边重合,并用螺丝固定在机身底座(10)上;
光机(25)的旋转轴与B轴支架(16)的轴孔间隙配合,B轴伺服电机(22)的轴与光机(25)的旋转轴在同一轴线上,用B联轴器(20)紧固连接传动,B轴伺服电机与B轴支架通过螺栓紧固连接,通过控制B轴伺服电机(22)的工作状态来实现透镜射出的光源在B轴上的旋转;
B轴支架(16)的旋转轴与A轴支架(15)的轴孔间隙配合,A轴伺服电机(18)的输出轴与B轴支架(16)的旋转轴在同一轴线上;用A联轴器(17)紧固连接传动,A轴伺服电机(18)与A轴支架通过螺栓紧固连接,通过控制A轴伺服电机(18)的工作状态来实现透镜在A轴上的旋转;
A轴支架(15)与Y轴直线电机初级用螺丝紧固连接,Y轴直线电机次级的两端固定在轴座上且次级的轴线与旋转台的对称线重合,轴座通过螺丝固定在旋转台(13)上,Y轴导轨(12)对称安装在旋转台轴线两侧,用螺丝紧固连接,通过控制Y轴直线电机(14)的工作状态来实现透镜在Y轴上的移动;
旋转台(13)的轴与旋转伺服电机的轴在同一直线上,用旋转轴联轴器紧固连接传动,旋转伺服电机(11)与机身底座(10)用螺丝紧固连接在预留的位置,通过控制旋转伺服电机(11)的工作状态来实现透镜在水平面上的旋转;
光机(25)组成及流程图,如图5所示,各部分的主要功能如下:
Figure BDA0002395976420000051
Figure BDA0002395976420000061
所述X轴直线电机(8)、Y轴直线电机(14)、Z轴直线电机(4)属于款直线电机,直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置,因此其精度高,其重复定位精度一般可达1um左右;所述X轴直线电机(8)、Y轴直线电机(14)、Z轴直线电机(4)配套的轴座(1)属于同一款轴座;所述掩膜版属于光刻掩膜版,国产掩膜版精度可达亚微米级,进口掩膜版可达纳米级;所述数字微镜器件(digital micro-mirror device,DMD)芯片,当前全球最大美国TI公司(德州仪器)研发的DMD芯片精度可达5.4um。
溶液槽(19)底部为透明,内部为光敏树脂材料,溶液槽(19)较易从溶液槽支架(20)上取下,便于清洗;所述X轴导轨和Y轴导轨为T形结构;所述伺服电机只在0至360度内旋转;所述直线电机结构见附图4。
本装置通过轴座、Z轴导轨、Z轴直线电机、悬臂、工作台、溶液槽、溶液槽支架、立柱、X轴直线电机、X轴导轨、X轴导轨支架、B轴伺服电机、B联轴器、B轴支架、透镜、A轴伺服电机、A联轴器、A轴支架、Y轴伺服电机、Y轴导轨、旋转台、旋转轴联轴器、旋转伺服电机、机身底座由上到下的顺序连接而成一个整体。
2、该技术可实现多轴联动,进一步提高打印精度。
具体打印流程为:在3D打印设备的光机中放入相应模型的掩膜版,Z轴直线电机驱动的工作台(5)进入底端透明的料槽(9)内直至其底面与槽底面保持25~100μm(由打印时切片层厚度决定)的垂直间隙,投影仪的投影光在透过透明料槽底部后与液态光敏树脂相接触。此时光接触的液态光敏树脂瞬间聚合固化,而未与光接触的液态光敏树脂还是保持液态,实现液态光敏树脂的一层成型;接着Z轴直线电机(3)驱动工作台向上移动25~100μm(由打印时切片层厚度决定),进行下一层成型;如此交替反复进行,叠加制造,实现光固化3D打印零件成型。同时通过控制A轴伺服电机(18)和B轴伺服电机(22)的工作状态来实现光机射出的光源在A轴或B轴上的旋转;通过控制旋转伺服电机(11)的工作状态实现旋转台(13)实现光机装置在水平面内旋转;控制X轴直线电机(8)、Y轴直线电机(14)实现打印在水平面上的移动;从而形成多个自由度联合控制成型;
3、光机装置部分,由于(digital micro-mirror device,DMD)芯片具有分辨率低,价格贵的缺陷,本技术采用掩膜版成像替换当前学者提出的DMD芯片成像,进一步提高打印精度,并实现大面积扫描;由于DMD像素的尺寸大多为14μm×14μm(或16μm×16μm),通过缩放镜使其进一步缩小提高打印精度,导致打印面积变小,从而大件零件打印无法满足精度和尺寸的要求,掩膜版技术比较成熟,精度容易实现亚微米甚至纳米级,能较好的克服此缺陷。
一种多轴光固化3D微纳加工设备及方法,首先根据所设计零件的性能选取合适的液体材料,并将选好的树脂液体材料倒入溶液槽里;将设计好参数并且切片好的三维模型导入到机器中,选取自己需要的模型,按下启动,机器的X轴、Y轴、Z轴、A轴、B轴回到参考坐标原点,机器中的处理器按照设置好的模型加工,透镜发出光,被光照到的材料迅速凝固,没光的地方材料还是原来的状态,机器可按照产品三维模型加工的需要,可以实现零件在X轴、Y轴、Z轴移动和透镜射出的光绕A轴、B轴转动,从而实现五轴联动。当加工完一层时,工作台按照参数自动上升一层,进行下一层的加工,当最后一层加工完后机器停止工作,此时的零件已完成,零件停在液体材料之上,此时工人可以将零件取下,当打印下一个零件时,工人只需要按下启动键。
注释:机器的参考坐标原点是X、Y、A、B轴协同,使透镜正对溶液槽正下方中心、工作台与溶液槽底部重合的位置。

Claims (8)

1.一种多轴光固化3D微纳加工设备,其特征在于:轴座(1)与立柱(6)通过螺丝紧固连接,Z轴导轨(2)与立柱(6)在竖直方向平行且重合并用螺丝进行紧固连接;悬臂(3)的长度方向与Z直线电机(4)的移动方向垂直且一端与Z轴直线电机初级(26)重合,并通过螺丝紧固连接;悬臂(3)与工作台(5)通过螺丝紧固连接,溶液槽支架(20)与立柱(6)垂直并用螺丝紧固连接;溶液槽(19)与溶液槽支架(20)之间为间隙配合,通过控制Z轴直线电机(4)的工作状态来实现工作台在Z轴上的移动;
立柱(6)与X轴直线电机初级通过螺丝紧固连接在一起,X轴直线电机次级两端固定在轴座(1)上,轴座(1)通过螺丝固定在X轴导轨支架(9)的两端;X轴直线电机初级与X轴导轨(7)之间采用间隙配合进行导向,X轴导轨(7)与X轴导轨支架(9)平行且重合并用螺丝紧固连接,X轴导轨支架(9)的长边与机身底座(10)的一条边重合,两端与其相邻的两平行边重合,并用螺丝固定在机身底座(10)上;
光机(25)的旋转轴与B轴支架(16)的轴孔间隙配合,B轴伺服电机(22)的轴与光机(25)的旋转轴在同一轴线上,用B联轴器(20)紧固连接传动,B轴伺服电机与B轴支架通过螺栓紧固连接,通过控制B轴伺服电机(22)的工作状态来实现透镜射出的光源在B轴上的旋转;
B轴支架(16)的旋转轴与A轴支架(15)的轴孔间隙配合,A轴伺服电机(18)的输出轴与B轴支架(16)的旋转轴在同一轴线上;用A联轴器(17)紧固连接传动,A轴伺服电机(18)与A轴支架通过螺栓紧固连接,通过控制A轴伺服电机(18)的工作状态来实现透镜在A轴上的旋转;
A轴支架(15)与Y轴直线电机初级用螺丝紧固连接,Y轴直线电机次级的两端固定在轴座上且次级的轴线与旋转台的对称线重合,轴座通过螺丝固定在旋转台(13)上,Y轴导轨(12)对称安装在旋转台轴线两侧,用螺丝紧固连接,通过控制Y轴直线电机(14)的工作状态来实现透镜在Y轴上的移动;
旋转台(13)的轴与旋转伺服电机的轴在同一直线上,用旋转轴联轴器紧固连接传动,旋转伺服电机(11)与机身底座(10)用螺丝紧固连接在预留的位置,通过控制旋转伺服电机(11)的工作状态来实现透镜在水平面上的旋转。
2.根据权利要求1所述的一种多轴光固化3D微纳加工设备,其特征在于:所述X轴直线电机(8)、Y轴直线电机(14)、Z轴直线电机(4)为直线电机;所述X轴直线电机(8)、Y轴直线电机(14)、Z轴直线电机(4)配套的轴座(1)属于同一款轴座。
3.根据权利要求1所述的一种多轴光固化3D微纳加工设备,其特征在于:溶液槽(19)底部为透明,内部为光敏树脂材料。
4.根据权利要求1所述的一种多轴光固化3D微纳加工设备,其特征在于:所述X轴导轨和Y轴导轨为T形结构。
5.根据权利要求1所述的一种多轴光固化3D微纳加工设备,其特征在于:所述伺服电机在0至360度内旋转。
6.根据权利要求1所述的一种多轴光固化3D微纳加工设备,其特征在于:Z轴直线电机次级(27)两端固定在轴座上,Z轴直线电机初级(26)与Z轴导轨间隙配合导向。
7.根据权利要求1所述的一种多轴光固化3D微纳加工设备,其特征在于:在3D打印设备的光机中放入相应模型的掩膜版,Z轴直线电机驱动的工作台(5)进入底端透明的料槽(9)内直至其底面与槽底面保持25~100μm的垂直间隙,投影仪的投影光在透过透明料槽底部后与液态光敏树脂相接触;此时光接触的液态光敏树脂瞬间聚合固化,而未与光接触的液态光敏树脂还是保持液态,实现液态光敏树脂的一层成型;接着Z轴直线电机(3)驱动工作台向上移动25~100μm,进行下一层成型;如此交替反复进行,叠加制造,实现光固化3D打印零件成型;通过控制A轴伺服电机(18)和B轴伺服电机(22)的工作状态来实现光机射出的光源在A轴或B轴上的旋转;通过控制旋转伺服电机(11)的工作状态实现旋转台(13)实现光机装置在水平面内旋转;控制X轴直线电机(8)、Y轴直线电机(14)实现打印在水平面上的移动;从而形成多个自由度联合控制成型。
8.利用权利要求1所述设备进行的一种多轴光固化3D微纳加工方法,首先根据所设计零件的性能选取树脂液体材料,并将选好的树脂液体材料倒入溶液槽里;将设计好参数并且切片好的三维模型导入到设备中,选取需要的模型,按下启动,设备的X轴、Y轴、Z轴、A轴、B轴回到参考坐标原点,设备中的处理器按照设置好的模型加工,透镜发出光,被光照到的材料迅速凝固,设备按照产品三维模型加工的需要,实现零件在X轴、Y轴、Z轴移动和透镜射出的光绕A轴、B轴转动,从而实现五轴联动;当加工完一层时,工作台按照参数自动上升一层,进行下一层加工,当最后一层加工完后设备停止工作,此时的零件已完成,零件停在液体材料之上,此时工人将零件取下,当打印下一个零件时,按下启动键。
CN202010131785.1A 2020-02-29 2020-02-29 一种多轴光固化3d微纳加工设备及方法 Active CN111421817B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010131785.1A CN111421817B (zh) 2020-02-29 2020-02-29 一种多轴光固化3d微纳加工设备及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010131785.1A CN111421817B (zh) 2020-02-29 2020-02-29 一种多轴光固化3d微纳加工设备及方法

Publications (2)

Publication Number Publication Date
CN111421817A true CN111421817A (zh) 2020-07-17
CN111421817B CN111421817B (zh) 2021-07-02

Family

ID=71547288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010131785.1A Active CN111421817B (zh) 2020-02-29 2020-02-29 一种多轴光固化3d微纳加工设备及方法

Country Status (1)

Country Link
CN (1) CN111421817B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188106A (ja) * 1984-10-05 1986-05-06 Takanori Arai 三次元形状伝送装置
CN201366596Y (zh) * 2009-02-09 2009-12-23 深圳市新沧海机械有限公司 一种多轴联动机构
JP5033117B2 (ja) * 2008-12-25 2012-09-26 長野日本無線株式会社 三次元造形機
CN204622619U (zh) * 2015-03-23 2015-09-09 大族激光科技产业集团股份有限公司 一种四轴联动平台
CN106042385A (zh) * 2016-06-30 2016-10-26 陈天润 桌面型多功能五轴加工设备
CN106378875A (zh) * 2016-09-14 2017-02-08 西安理工大学 适用于硬脆材料的微细切削加工系统及其应用
CN106626375A (zh) * 2016-09-29 2017-05-10 浙江迅实科技有限公司 一种快速3d打印装置及快速打印方法
CN107530972A (zh) * 2015-03-18 2018-01-02 埃托雷·毛里齐奥·科斯塔贝伯 具有改进的光学单元的立体光固化成型机
US20180297274A1 (en) * 2017-04-17 2018-10-18 Kantatsu Co., Ltd. Pattern forming sheet, pattern manufacturing apparatus, and pattern manufacturing method
CN208035378U (zh) * 2018-04-12 2018-11-02 深圳市汇丰创新技术有限公司 一种dlp光固化树脂打印机
TW201918363A (zh) * 2017-11-14 2019-05-16 義大利商Dws有限責任公司 多站光固化組
CN209869402U (zh) * 2019-04-23 2019-12-31 厦门光服科技有限公司 一种基于光固化成型的3d打印设备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188106A (ja) * 1984-10-05 1986-05-06 Takanori Arai 三次元形状伝送装置
JP5033117B2 (ja) * 2008-12-25 2012-09-26 長野日本無線株式会社 三次元造形機
CN201366596Y (zh) * 2009-02-09 2009-12-23 深圳市新沧海机械有限公司 一种多轴联动机构
CN107530972A (zh) * 2015-03-18 2018-01-02 埃托雷·毛里齐奥·科斯塔贝伯 具有改进的光学单元的立体光固化成型机
CN204622619U (zh) * 2015-03-23 2015-09-09 大族激光科技产业集团股份有限公司 一种四轴联动平台
CN106042385A (zh) * 2016-06-30 2016-10-26 陈天润 桌面型多功能五轴加工设备
CN106378875A (zh) * 2016-09-14 2017-02-08 西安理工大学 适用于硬脆材料的微细切削加工系统及其应用
CN106626375A (zh) * 2016-09-29 2017-05-10 浙江迅实科技有限公司 一种快速3d打印装置及快速打印方法
US20180297274A1 (en) * 2017-04-17 2018-10-18 Kantatsu Co., Ltd. Pattern forming sheet, pattern manufacturing apparatus, and pattern manufacturing method
TW201918363A (zh) * 2017-11-14 2019-05-16 義大利商Dws有限責任公司 多站光固化組
CN208035378U (zh) * 2018-04-12 2018-11-02 深圳市汇丰创新技术有限公司 一种dlp光固化树脂打印机
CN209869402U (zh) * 2019-04-23 2019-12-31 厦门光服科技有限公司 一种基于光固化成型的3d打印设备

Also Published As

Publication number Publication date
CN111421817B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN111531876B (zh) 一种可实现混合材料用的多轴光固化3d打印装置及方法
CN108312518B (zh) 一种内部立体直接光固化成型3d打印设备及其控制方法
CN101293419A (zh) 玻璃丝网印刷的数字全自动对版系统
CN100391721C (zh) 采用投影技术的快速成型的方法
CN210548098U (zh) 铺粉器机构与可在线检测质量的金属增材制造装置
CN111531875B (zh) 一种可调光源波长的高精度大面积快速3d打印装置及方法
CN109262152A (zh) 一种双工位fpc紫外激光切割设备
CN111421816B (zh) 一种树脂材料匹配相应光源用的多轴光固化3d微纳加工设备及其方法
CN201227883Y (zh) 玻璃丝网印刷的数字全自动对版系统
CN1060698C (zh) 可完成多种快速原型制造工艺的多功能设备
CN111421805B (zh) 一种可实现同步打印的多轴多材料多光源光固化3d快速打印装置及方法
CN111421817B (zh) 一种多轴光固化3d微纳加工设备及方法
US20240094699A1 (en) Height measurement method, quality compensation method, and height measurement system based on height measurement assembly of numerical control apparatus
WO2020172899A1 (zh) 一种内部立体光投影固化成型3d打印设备及其成型方法
CN111497241B (zh) Dlp型3d打印系统
CN2555148Y (zh) 静电吸附式快速成型机
CN213082378U (zh) 一种sla光固化树脂打印机的光斑自动调节机构
CN209157412U (zh) 一种双工位fpc紫外激光切割设备
CN113290845A (zh) 一种高粘度及多材料3d打印设备
CN111531874B (zh) 一种可手动调节分辨率、多轴、可变光波波长的光固化3d打印装置
CN212860469U (zh) 一种多轴3d微纳加工设备
CN111516263B (zh) 用于dlp型3d打印机的打印方法
CN117943841B (zh) 复杂异形陶瓷零件的光固化及铣削复合加工设备及方法
CN221113160U (zh) 一种旋转式自动锡膏印刷机
CN214294505U (zh) 一种桌面成形打印装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant