CN111411351A - 高性能电驱动全氟磺酸ipmc柔性驱动器的制备方法 - Google Patents
高性能电驱动全氟磺酸ipmc柔性驱动器的制备方法 Download PDFInfo
- Publication number
- CN111411351A CN111411351A CN202010338857.XA CN202010338857A CN111411351A CN 111411351 A CN111411351 A CN 111411351A CN 202010338857 A CN202010338857 A CN 202010338857A CN 111411351 A CN111411351 A CN 111411351A
- Authority
- CN
- China
- Prior art keywords
- nafion film
- film
- nafion
- driven
- palladium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0009—Constructional details, e.g. manipulator supports, bases
- B25J9/0012—Constructional details, e.g. manipulator supports, bases making use of synthetic construction materials, e.g. plastics, composites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0009—Constructional details, e.g. manipulator supports, bases
- B25J9/0015—Flexure members, i.e. parts of manipulators having a narrowed section allowing articulation by flexion
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1646—Characteristics of the product obtained
- C23C18/165—Multilayered product
- C23C18/1651—Two or more layers only obtained by electroless plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1655—Process features
- C23C18/1658—Process features with two steps starting with metal deposition followed by addition of reducing agent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/54—Contact plating, i.e. electroless electrochemical plating
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Robotics (AREA)
- Electrochemistry (AREA)
- Inert Electrodes (AREA)
- Chemically Coating (AREA)
Abstract
本发明公开了高性能电驱动全氟磺酸IPMC柔性驱动器的制备方法,本发明以商用Nafion离子交换膜为基体,采用醇辅助化学镀的方法,选用两种不同的金属,在Nafion薄膜表面制备了均匀、致密的钯、铂电极,与传统的电镀相比,本发明极大地降低了制备金属电极的时间成本与经济成本,与传统Nafion人工肌肉的铂电极相比,本发明所提供的钯、铂电极具有更好的性能,大大加快了电驱动人工肌肉的响应速度,本发明在2V~8V、0.1Hz~30Hz的电压驱动下,就可以产生较大的形变和位移,且响应十分迅速,可以同时实现大形变和快速响应,这种高性能电驱动全氟磺酸IPMC柔性驱动器在柔性机器人、人造肌肉、传感器等领域有着广阔的应用前景和使用价值。
Description
技术领域
本发明涉及新型智能材料技术领域,特别涉及高性能电驱动全氟磺酸IPMC 柔性驱动器的制备方法。
背景技术
电活性聚合物(EAP)是一种具备驱动性能的新型智能高分子材料,在外加电场的作用下,电活性聚合物可以进行弯曲、伸长、收缩、扭转等动作,由于其致动性能与生物肌肉非常相似,并且生物相容性较好,也被称为“人造肌肉”。按照工作原理,电活性聚合物可以分为电子型和离子型两大类,其中,电子型EAP通过施加上千伏的高电压来生成驱动力,而离子型EAP的驱动力则源于低压电场下聚合物内部离子的扩散和迁移,相比于前者,后者在能耗与安全性上有着很大的优势。离子聚合物-金属复合材料(IPMC)是离子型电活性聚合物的一种,它在较低的驱动电压条件下就能够产生较大的位移和形变,还具有驱动能量密度高、柔性好、质量轻、无噪声、可操作性强等优点,可以很好地满足人造肌肉的需求,全氟磺酸(Nafion)离子交换膜是应用的最广泛的离子型电活性聚合物基体之一,在外加电场作用下,膜内的水合阳离子向阴极迁移,由于阴极发生溶胀而阳极发生缩水,薄膜就会向阳极的方向发生弯曲。目前,以Nafion 薄膜为基础的人造肌肉发展并不完善,如大形变和快速响应很难同时实现,这很大程度限制了Nafion人造肌肉的发展及应用,为了提升Nafion人造肌肉的性能,本发明选用了钯和铂两种不同的金属,分两次进行醇辅助化学镀来形成复合电极,从而制备出可快响应、大变形的、高性能电驱动的全氟磺酸IPMC柔性驱动器。
发明内容
本发明目的在于解决传统Nafion IPMC柔性驱动器很难同时实现大形变和快速响应的不足,提供高性能电驱动全氟磺酸IPMC柔性驱动器的制备方法,本发明选取稳定性较高的金属钯和铂作为电极,制备出一种高性能电驱动的全氟磺酸IPMC柔性驱动器。
高性能电驱动全氟磺酸IPMC柔性驱动器的制备方法,包括以下步骤:
步骤一、以Nafion薄膜为基体材料,将其裁剪成边长为30mm~50mm的正方形,用1000目砂纸对Nafion膜上下表面均进行打磨,使表面粗化,将Nafion 薄膜在去离子水中进行超声清洗10min~15min,将Nafion薄膜置于过氧化氢水溶液中浸泡4h~6h,取出,再将Nafion薄膜放在去离子水中煮沸0.5h~1.5h,将薄膜取出后置于硫酸溶液中浸泡4h~6h,然后,再次将Nafion膜放在去离子水中煮沸0.5h~1.5h;
步骤二、通过醇辅助的方法,在Nafion薄膜表面进行多次的化学镀,从而制备高质量的,致密且均匀的金属电极;
步骤三、使用真空干燥箱以80℃~85℃的温度对Nafion薄膜进行干燥,除去水分子,然后将Nafion薄膜置于去离子水中使其充分吸水溶胀,最后,将 Nafion薄膜置于饱和的氯化锂水溶液中浸泡40h~48h,使溶液中的正一价锂离子被充分地置换进入膜内。
所述通过醇辅助的方法,在Nafion薄膜表面进行多次的化学镀,从而制备高质量的,致密且均匀的金属电极包括以下步骤:
1)将预处理过后的Nafion薄膜置于质量分数为0.4%~0.7%的四氨合氯化钯水溶液中浸泡1h~2h,使钯氨离子充分渗透进入Nafion膜内;
2)将吸附离子后的Nafion薄膜转移到体积比为1:3的异丙醇/水混合溶液中,而后将异丙醇/水混合溶液加热升温并最终维持在40℃~45℃,滴加5mL~7mL 质量分数为4%~7%的硼氢化钠水溶液进行还原反应,共重复滴加10~15次,每次间隔20min~30min,且此过程中溶液需剧烈搅拌,硼氢化钠可以使Nafion膜上的钯氨离子被还原成为钯纳米颗粒并沉积在膜表面,这种多次少量的还原方法可以在Nafion薄膜表面得到更致密、均匀的金属电极;
3)将经过一次化学镀的Nafion薄膜取出,置于质量分数为0.4%~0.7%的四氨合氯化铂水溶液中浸泡22h~24h,使Nafion薄膜表面吸附铂氨离子;
4)重复步骤2),使铂氨离子被还原成铂纳米颗粒,最后,在Nafion薄膜的表面得到了均匀且质密的钯、铂双层电极;
所述Nafion薄膜的厚度为120μm~200μm;
所述过氧化氢水溶液质量分数为4%~7%;
所述硫酸溶液的质量分数为4%~7%。
本发明的工作原理和过程:
本发明所制备的高性能电驱动全氟磺酸IPMC柔性驱动器,是采用醇辅助化学镀的方法,在Nafion离子交换膜基体表面先后制备一层钯电极和一层铂电极,最后进行充分的离子交换,使阳离子被置换进入膜内而得到的,本发明够在较低的电压下快速响应并产生较大的弯曲形变,离子交换过程使Nafion薄膜内充满了大量的正一价的锂离子,在Nafion薄膜的上下表面施加2V~8V的电压后,Nafion薄膜的阳离子Li+会向阴极扩散,与此同时Li+会带动膜内的水分子一起向阴极侧迁移,致使Nafion薄膜的阴极由于水变多而膨胀,而阳极则失水发生收缩,使整个Nafion薄膜向阳极侧弯曲,从而产生了变形的驱动力。
本发明的有益效果:
本发明提供的电驱动全氟磺酸IPMC柔性驱动器材料,以商用Nafion离子交换膜为基体,采用醇辅助化学镀的方法,选用两种不同的金属,在Nafion薄膜表面制备了均匀、致密的钯、铂电极,与传统的电镀相比,本发明极大地降低了制备金属电极的时间成本与经济成本,与传统Nafion人工肌肉的铂电极相比,本发明所提供的钯、铂电极具有更好的性能,大大加快了电驱动人工肌肉的响应速度,本发明在2V~8V、0.1Hz~30Hz的电压驱动下,就可以产生较大的形变和位移,且响应十分迅速,可以同时实现大形变和快速响应,这种高性能电驱动全氟磺酸IPMC柔性驱动器在柔性机器人、人造肌肉、传感器等领域有着广阔的应用前景和使用价值。
附图说明
图1是本发明工作原理图;
图2是本发明制备流程图;
图3是本发明在频率为0.1Hz的电压驱动下,末端位移随着时间变化的曲线;
图4是本发明最大位移随着驱动电压不同而变化的曲线。
具体实施方式
请参阅图1至图4所示,高性能电驱动全氟磺酸IPMC柔性驱动器的制备方法,包括以下步骤:
步骤一、采用杜邦公司生产的Nafion 117薄膜厚度为180μm,将其裁剪成边长为30mm的正方形小片,使用1000目砂纸对Nafion薄膜上下表面均进行打磨使薄膜表面粗化,随后将膜在去离子水中进行超声清洗10min,将Nafion薄膜置于质量分数为5%的过氧化氢水溶液中浸泡4h,取出,然后将Nafion薄膜在去离子水中煮沸,持续1h,将薄膜取出,置于质量分数为5%的硫酸溶液中浸泡4h,然后再次在去离子水中煮沸,持续1h,Nafion薄膜在经过上述预处理后,表面粗糙度增加,经吸水溶胀,变得柔软且透明;
步骤二、通过醇辅助的方法,在Nafion薄膜表面进行多次的化学镀,从而制备高质量的,致密且均匀的金属电极;
1)将预处理过后的Nafion薄膜置于质量分数为0.5%的四氨合氯化钯水溶液中浸泡2h,使钯氨离子充分渗透进入Nafion膜内;
2)将Nafion薄膜置于异丙醇与水体积比为1:3的混合溶液中,浸泡使Nafion 薄膜充分吸水溶胀,将异丙醇与水的混合溶液加热至40℃并保持该温度,在剧烈搅拌下,滴加5mL质量分数为5%的硼氢化钠水溶液作为还原剂,重复十次,每次间隔30min,经过还原剂的作用,Nafion薄膜表面吸附的钯氨离子会被还原成单质钯,这种多次少量的方法可以使Nafion薄膜表面的金属钯更加均匀、致密;
3)将经过一次化学镀的Nafion薄膜取出,置于质量分数为0.5%的四氨合氯化铂水溶液中浸泡24h,使Nafion薄膜表面吸附铂氨离子;
4)重复步骤2),使铂氨离子被还原,最后,在Nafion薄膜的表面得到了均匀且质密的钯、铂双层电极;
步骤三、使用真空干燥箱以80℃的温度对Nafion薄膜进行干燥,除去水分子,然后将Nafion薄膜置于去离子水中使其充分吸水溶胀,最后,将Nafion薄膜置于饱和的氯化锂水溶液中浸泡46h,使溶液中的正一价锂离子充分地置换进入膜内。
实施例一
如图1所示,本发明所提供的一种高性能电驱动全氟磺酸IPMC柔性驱动器的制备流程有:Nafion薄膜的表面粗化,去除Nafion薄膜上的杂质,然后在薄膜首先进行化学镀钯,之后在薄膜表面再化学镀一层铂,这样就使柔性驱动器具有了钯、铂复合电极,最后将薄膜置于饱和氯化锂溶液中进行离子交换,使水合阳离子Li+充分的进入膜内。
实施例二
本发明所提供的高性能电驱动全氟磺酸IPMC柔性驱动器可以在较低的电压加持下发生较大的变形,并且响应速度非常快。利用函数发生器输出一定频率的方波函数电压施加在柔性驱动器上下表面的复合电极上,并利用激光位移测试系统测试了驱动器末端的位移变化,具体数据如表1所示:
表1 Nafion人工肌肉在不同频率不同偏压下的最大位移
随着电压的增加,柔性驱动器的末端最大位移也随之增大,图2展示了Nafion在频率为0.1Hz的不同电压的加持下,驱动器末端位移随着时间变化的曲线,由图可以看出,加持电压越大,末端位移量就越大,图3展示了柔性驱动器在不同频率的条件下,末端最大位移与加持电压的关系曲线,由图可以得知,当加持电压为±8V,频率为0.1Hz时,末端位移最大,可以达到12.6mm。
Claims (5)
1.高性能电驱动全氟磺酸IPMC柔性驱动器的制备方法,其特征在于:包括以下步骤:
步骤一、以Nafion薄膜为基体材料,将其裁剪成边长为30mm~50mm的正方形,用1000目砂纸对Nafion膜上下表面均进行打磨,使表面粗化,将Nafion薄膜在去离子水中进行超声清洗10min~15min,将Nafion薄膜置于过氧化氢水溶液中浸泡4h~6h,取出,再将Nafion薄膜放在去离子水中煮沸0.5h~1.5h,将薄膜取出后置于硫酸溶液中浸泡4h~6h,然后,再次将Nafion膜放在去离子水中煮沸0.5h~1.5h;
步骤二、通过醇辅助的方法,在Nafion薄膜表面进行多次的化学镀,从而制备高质量的,致密且均匀的金属电极;
步骤三、使用真空干燥箱以80℃~85℃的温度对Nafion薄膜进行干燥,除去水分子,然后将Nafion薄膜置于去离子水中使其充分吸水溶胀,最后,将Nafion薄膜置于饱和的氯化锂水溶液中浸泡40h~48h,使溶液中的正一价锂离子被充分地置换进入膜内。
2.根据权利要求1所述的高性能电驱动全氟磺酸IPMC柔性驱动器的制备方法,其特征在于:所述通过醇辅助的方法,在Nafion薄膜表面进行多次的化学镀,从而制备高质量的,致密且均匀的金属电极包括以下步骤:
1)将预处理过后的Nafion薄膜置于质量分数为0.4%~0.7%的四氨合氯化钯水溶液中浸泡1h~2h,使钯氨离子充分渗透进入Nafion膜内;
2)将吸附离子后的Nafion薄膜转移到体积比为1:3的异丙醇/水混合溶液中,而后将异丙醇/水混合溶液加热升温并最终维持在40℃~45℃,滴加5mL~7mL质量分数为4%~7%的硼氢化钠水溶液进行还原反应,共重复滴加10~15次,每次间隔20min~30min,且此过程中溶液需剧烈搅拌,硼氢化钠可以使Nafion膜上的钯氨离子被还原成为钯纳米颗粒并沉积在膜表面,这种多次少量的还原方法可以在Nafion薄膜表面得到更致密、均匀的金属电极;
3)将经过一次化学镀的Nafion薄膜取出,置于质量分数为0.4%~0.7%的四氨合氯化铂水溶液中浸泡22h~24h,使Nafion薄膜表面吸附铂氨离子;
4)重复步骤2),使铂氨离子被还原成铂纳米颗粒,最后,在Nafion薄膜的表面得到了均匀且质密的钯、铂双层电极。
3.根据权利要求1所述的高性能电驱动全氟磺酸IPMC柔性驱动器的制备方法,其特征在于:所述Nafion薄膜的厚度为120μm~200μm。
4.根据权利要求1所述的高性能电驱动全氟磺酸IPMC柔性驱动器的制备方法,其特征在于:所述过氧化氢水溶液质量分数为4%~7%。
5.根据权利要求1所述的高性能电驱动全氟磺酸IPMC柔性驱动器的制备方法,其特征在于:所述硫酸溶液的质量分数为4%~7%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010338857.XA CN111411351B (zh) | 2020-04-26 | 2020-04-26 | 高性能电驱动全氟磺酸ipmc柔性驱动器的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010338857.XA CN111411351B (zh) | 2020-04-26 | 2020-04-26 | 高性能电驱动全氟磺酸ipmc柔性驱动器的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111411351A true CN111411351A (zh) | 2020-07-14 |
CN111411351B CN111411351B (zh) | 2021-08-27 |
Family
ID=71490125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010338857.XA Expired - Fee Related CN111411351B (zh) | 2020-04-26 | 2020-04-26 | 高性能电驱动全氟磺酸ipmc柔性驱动器的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111411351B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112406252A (zh) * | 2020-10-12 | 2021-02-26 | 浙江理工大学 | 基于c-cnc纤维素的高性能电驱动ipmc柔性驱动器的制备方法 |
CN114367968A (zh) * | 2022-01-13 | 2022-04-19 | 重庆大学 | 一种基于金铂复合电极的全氟磺酸人工肌肉的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102953053A (zh) * | 2012-11-13 | 2013-03-06 | 西安交通大学 | 一种ipmc 驱动器的选择性镀工艺 |
CN109881188A (zh) * | 2019-03-25 | 2019-06-14 | 吉林大学 | 一种电控型人工肌肉的制备方法 |
-
2020
- 2020-04-26 CN CN202010338857.XA patent/CN111411351B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102953053A (zh) * | 2012-11-13 | 2013-03-06 | 西安交通大学 | 一种ipmc 驱动器的选择性镀工艺 |
CN109881188A (zh) * | 2019-03-25 | 2019-06-14 | 吉林大学 | 一种电控型人工肌肉的制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112406252A (zh) * | 2020-10-12 | 2021-02-26 | 浙江理工大学 | 基于c-cnc纤维素的高性能电驱动ipmc柔性驱动器的制备方法 |
CN114367968A (zh) * | 2022-01-13 | 2022-04-19 | 重庆大学 | 一种基于金铂复合电极的全氟磺酸人工肌肉的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111411351B (zh) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120043858A1 (en) | Energy Harvesting Devices Using Carbon Nanotube (CNT)-Based Electrodes | |
CN111411351B (zh) | 高性能电驱动全氟磺酸ipmc柔性驱动器的制备方法 | |
CN112652795B (zh) | 一种燃料电池复合质子交换膜及其制备方法 | |
US20040025639A1 (en) | Novel electrically active ionic polymer metal composites and novel methods of manufacturing them | |
CN112599863B (zh) | 一种可修复离子凝胶电解质及其制备方法和应用 | |
CN105719852A (zh) | 三维纳米多孔石墨烯/二氧化锰复合电极材料的制备方法 | |
CN109881188B (zh) | 一种电控型人工肌肉的制备方法 | |
CN108927019A (zh) | 一种嵌段共聚物膜与功能性孔膜杂化的盐差发电膜的制备方法 | |
CN110253702B (zh) | 一种木材基仿生人工肌肉的制备方法 | |
CN109802121A (zh) | 含有金属涂层的碳材料、其制备方法及应用 | |
CN112044469B (zh) | 一种导电聚合物/MoS2复合多层膜的制备方法及应用 | |
CN108010743A (zh) | 一种中空水凝胶柔性超级电容器电极材料的制备方法 | |
Yang et al. | Tough, self-healable, antifreezing and redox-mediated gel polymer electrolyte with three-role K3 [Fe (CN)] 6 for wearable flexible supercapacitors | |
CN111170307B (zh) | 一种纳米碳改性中空活性炭微管及其制备方法与应用 | |
CN110845752B (zh) | 一种具有仿生结构的复合石墨烯导热薄膜及其制备 | |
CN109326453A (zh) | 一种基于静电纺纳米纤维成纱技术的聚吡咯超级电容器复合电极材料及其制备方法 | |
CN105304916A (zh) | 用于直接甲醇燃料电池的超疏水多孔流场板及其制备方法 | |
CN107317043B (zh) | 一种铝合金双极板表面石墨烯/二氧化锡三明治结构薄膜的制备方法 | |
CN108007950B (zh) | Ipmc驱动过程中金属电极动态修复的方法 | |
CN105869909B (zh) | 一种复合电极的制备方法 | |
US20080003479A1 (en) | Ionic polymer metal composite electrolyte for fuel cell | |
CN109786124B (zh) | 一种柔性非对称超级电容器及其制备方法 | |
CN109741969A (zh) | 一种氧化钛纳米线/聚苯胺复合材料的制备方法 | |
CN102709576A (zh) | 一种高温燃料电池用复合质子交换膜及其制备方法 | |
CN110002431B (zh) | 一种碳纳米管薄膜及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210827 |