CN111403480A - 一种高压AlGaN/GaN HEMT器件及其制备方法 - Google Patents
一种高压AlGaN/GaN HEMT器件及其制备方法 Download PDFInfo
- Publication number
- CN111403480A CN111403480A CN202010204550.0A CN202010204550A CN111403480A CN 111403480 A CN111403480 A CN 111403480A CN 202010204550 A CN202010204550 A CN 202010204550A CN 111403480 A CN111403480 A CN 111403480A
- Authority
- CN
- China
- Prior art keywords
- gan
- gan layer
- algan
- hemt device
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002704 AlGaN Inorganic materials 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title abstract description 4
- 238000000407 epitaxy Methods 0.000 claims abstract description 15
- 238000001259 photo etching Methods 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 238000000137 annealing Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 150000002902 organometallic compounds Chemical class 0.000 claims 1
- 230000005684 electric field Effects 0.000 abstract description 13
- 230000015556 catabolic process Effects 0.000 abstract description 12
- 230000004888 barrier function Effects 0.000 abstract description 5
- 230000009471 action Effects 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7781—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66462—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种高压AlGaN/GaN HEMT器件及其制备方法。所述器件包括AlGaN/GaN外延,AlGaN/GaN外延上表面的两端分别连接源漏电极,所述源漏电极靠近源极侧设置p‑GaN层,在所述p‑GaN层由中心向两侧进行开槽,并在开槽处设置栅电极,形成T型栅。由于栅极两侧的p‑GaN层可以拉伸下方的AlGaN势垒层的能带,从而影响栅极边缘的电场分布,结合T型栅场板的作用,降低了靠近漏极侧栅极边缘的电场峰值,提高了器件的击穿电压。
Description
技术领域
本发明涉及半导体领域AlGaN/GaN HEMT器件,特别涉及一种高压AlGaN/GaN HEMT器件及其制备方法。
背景技术
GaN材料因具有高电子迁移率、低导通电阻、优异的散热能力以及高击穿等特性,广泛应用于高频功率放大器与高压功率开关等场合。特别是GaN高压器件,对于新能源汽车、轨道交通以及风力发电等重要应用领域显得尤为重要。目前大量的研究表明,器件的击穿短板往往在靠近漏极一侧的栅极边缘,在该处存在一个较高的电场峰值,容易导致器件提前击穿;同时高温退火后的源漏电极表面比较粗糙,也容易在边缘引入电场尖峰(W.Zhang, et al, IEEE J. Electron Devices Soc., 2018,6(99))。
针对优化器件的击穿电压方面,主要包括场板技术、优化源漏电极结构和退火后形貌、优化钝化层及栅介质工艺以及生长高阻缓冲层等。这些方法都能有效地优化器件的击穿特性。P-GaN层在GaN基电子器件中一般是作为制备常闭型器件的一种方式。p-GaN层能够拉伸下方AlGaN势垒层的能带从而对异质结界面处的二维电子气起到耗尽作用,从而实现常闭型HEMT器件(L. Efthymiou, et al, IEEE Electron Device Lett., 2019,40(08))。有学者(Yue Hao, et al, Phys. Status Solidi Appl. Mater. Sci., 2020,1900793)提出在栅极右侧对AlGaN势垒层进行p型掺杂以削弱栅极边缘的电场峰值,通过优化p型掺杂的密度和掺杂区域的尺寸,在器件(AlGaN沟道)中获得了2199V的击穿电压。
综上所述,引入p-GaN层有助于改变该层下方的2DEG密度,从而起到调节电场,提高器件击穿电压的作用。现有技术对AlGaN势垒层进行p型掺杂的工艺复杂且成本高;本发明基于传统的p-GaN层技术,提出了同时具有p-GaN层和栅场板结构的器件来实现高压性能,其中p-GaN层的刻蚀采用比较成熟的氧化湿法腐蚀方法;无需额外的步骤即可同时实现上述结构,工艺简单,重复性好。
发明内容
为了解决现有技术存在的问题,本发明提出了一种新的结构来实现高压HEMT器件。该器件利用栅极两侧的p-GaN层可以拉伸下方的AlGaN势垒层的能带,从而影响栅极边缘的电场分布,结合T型栅场板的作用,降低了靠近漏极侧栅极边缘的电场峰值,提高了器件的击穿电压;此外,通过优化p-GaN的厚度及掺杂浓度可以调节电场分布,并且不影响器件的直流特性。
本发明的目的至少通过如下技术方案之一实现的。
本发明提供的一种高压AlGaN/GaN HEMT器件,包括AlGaN/GaN外延、p-GaN层、源漏电极及栅电极;所述AlGaN/GaN外延上表面的两端连接源漏电极;所述p-GaN层与AlGaN/GaN外延上表面连接;所述p-GaN层由中心向两侧进行开槽,并在开槽处设置栅电极,形成T型栅。
进一步地,所述p-GaN层到源极的距离小于p-GaN层到漏极的距离,即在所述源漏电极靠近源极侧设置p-GaN层。
进一步地,所述p-GaN层的厚度为10-30nm,以保证p-GaN层下方的沟道导通。
进一步地,所述p-GaN层长度为5-7μm,所述p-GaN层的宽度为50-200μm。
进一步地,所述p-GaN层的Mg掺杂浓度为3×1015 cm-3 - 3×1019 cm-3。
进一步地,所述栅电极的栅长为为1-3μm。
进一步地,所述栅电极两侧均有栅场板,所述栅场板向p-GaN层两侧延伸,且位于p-GaN层之上。
本发明提供一种制备所述的高压AlGaN/GaN HEMT器件的方法,包括如下步骤:
(1)在AlGaN/GaN外延上沉积一层p-GaN层;
(2)定义p-GaN层光刻窗口,并进行p-GaN层的刻蚀;
(3)定义源漏电极光刻窗口,制备源漏电极并进行退火形成欧姆接触;
(4)定义栅电极光刻窗口,进行p-GaN层的刻蚀并制备T型栅电极,得到所述高压AlGaN/GaN HEMT器件。
进一步地,步骤(1)所述p-GaN层是由金属有机化合物化学气相沉淀(MOCVD)或分子束外延(MBE)制备得到的。
和现有技术相比,本发明具有以下有益效果和优点:
本发明提供的高压AlGaN/GaN HEMT器件是同时具有p-GaN层和栅场板结构的器件,具有高压性能;无需额外的步骤即可同时实现上述结构,工艺简单,重复性好;采用上述结构有效地调制了电场,降低了此处的电场峰值,有效地将击穿电压从610V提高到了1252V。
附图说明
图1为实施例的在AlGaN/GaN外延上沉积完p-GaN层后的示意图;
图2为实施例的刻蚀完部分p-GaN后的器件结构示意图;
图3为实施例的形成源漏电极后的器件结构示意图;
图4为实施例的形成T型栅后的器件结构示意图;
图5为实施例制备的有无p-GaN层结构的器件的击穿电压曲线图;
图中,AlGaN/GaN外延1, p-GaN层2,源漏电极3,栅电极4。
具体实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。
实施例
本实施例提供了一种高压AlGaN/GaN HEMT器件,其结构示意图如图4所示,所述器件包括AlGaN/GaN外延1,AlGaN/GaN外延上表面的两端分别连接源漏电极3,所述源漏电极靠近源极侧设置p-GaN层2,在所述p-GaN层正中间进行开槽,并在开槽处设置栅电极4,形成T型栅。
本实施例还提供了一种制备高压AlGaN/GaN HEMT器件的方法,包括以下步骤:
(1)在AlGaN/GaN1外延上沉积一层p-GaN层2,其厚度为30nm,掺杂浓度为3×1016 cm-3,如图1所示;
(2)定义p-GaN层光刻窗口,并进行p-GaN层的刻蚀,p-GaN正中间刻蚀的宽度为3μm,p-GaN层长度为7μm,宽度为200μm,如图2所示;
(3)定义源漏电极光刻窗口,制备源漏电极3并进行退火形成欧姆接触,如图3所示;
(4)定义栅电极光刻窗口,制备T型栅电极4,栅长为3μm,如图4所示,得到所述高压AlGaN/GaN HEMT器件。
图5为本实施例提供的有无p-GaN层结构的器件的击穿电压的对比图,其中实线代表着无p-GaN层结构的器件对应的击穿电压曲线,虚线代表着有p-GaN层结构的器件对应的击穿电压曲线,两者的栅源电压均设置为-5V以保证器件完全关断。从图5可以看出,在器件关断初期,两者的源漏电流比较接近,当源漏电压继续增大时(610V),实线对应的器件发生了局部击穿,源漏电流突然增大,这与局部电场峰值过高有关;虚线对应的器件在1252V才发生器件穿通现象,击穿电压提高了105%;这说明有p-GaN层结构的器件的电场峰值得到了抑制。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。
Claims (9)
1.一种高压AlGaN/GaN HEMT器件,其特征在于,包括AlGaN/GaN外延、p-GaN层、源漏电极及栅电极;所述AlGaN/GaN外延上表面的两端连接源漏电极;所述p-GaN层与AlGaN/GaN外延上表面连接;所述p-GaN层由中心向两侧进行开槽,并在开槽处设置栅电极,形成T型栅。
2.根据权利要求1所述的高压AlGaN/GaN HEMT器件,其特征在于,所述p-GaN层到源极的距离小于p-GaN层到漏极的距离。
3.根据权利要求1所述的高压AlGaN/GaN HEMT器件,其特征在于,所述p-GaN层的厚度为10-30nm。
4.根据权利要求1所述的高压AlGaN/GaN HEMT器件,其特征在于,所述p-GaN层长度为5-7μm,所述p-GaN层的宽度为50-200μm。
5.根据权利要求1所述的高压AlGaN/GaN HEMT器件,其特征在于,所述p-GaN层的Mg掺杂浓度为3×1015 cm-3 - 3×1019 cm-3。
6.根据权利要求1所述的高压AlGaN/GaN HEMT器件,其特征在于,所述栅电极的栅长为为1-3μm。
7.根据权利要求1所述的高压AlGaN/GaN HEMT器件,其特征在于,所述栅电极两侧均有栅场板,所述栅场板向p-GaN层两侧延伸,且位于p-GaN层之上。
8.一种制备权利要求1-7任一项所述的高压AlGaN/GaN HEMT器件的方法,其特征在于,包括如下步骤:
(1)在AlGaN/GaN外延上沉积一层p-GaN层;
(2)定义p-GaN层光刻窗口,并进行p-GaN层的刻蚀;
(3)定义源漏电极光刻窗口,制备源漏电极并进行退火形成欧姆接触;
(4)定义栅电极光刻窗口,进行p-GaN层的刻蚀并制备T型栅电极,得到所述高压AlGaN/GaN HEMT器件。
9.根据权利要求8所述的高压AlGaN/GaN HEMT器件的制备方法,其特征在于,步骤(1)所述p-GaN层是由金属有机化合物化学气相沉淀或分子束外延制备得到的。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010204550.0A CN111403480A (zh) | 2020-03-21 | 2020-03-21 | 一种高压AlGaN/GaN HEMT器件及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010204550.0A CN111403480A (zh) | 2020-03-21 | 2020-03-21 | 一种高压AlGaN/GaN HEMT器件及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111403480A true CN111403480A (zh) | 2020-07-10 |
Family
ID=71431142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010204550.0A Pending CN111403480A (zh) | 2020-03-21 | 2020-03-21 | 一种高压AlGaN/GaN HEMT器件及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111403480A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112614887A (zh) * | 2020-12-18 | 2021-04-06 | 华南师范大学 | 增强型AlGaN-GaN垂直超结HEMT及其制备方法 |
CN113257896A (zh) * | 2021-05-11 | 2021-08-13 | 华南师范大学 | 多场板射频hemt器件及其制备方法 |
CN113257901A (zh) * | 2021-05-11 | 2021-08-13 | 华南师范大学 | 栅极空气腔结构射频hemt器件及其制备方法 |
US20220037482A1 (en) * | 2020-07-29 | 2022-02-03 | GLOBALFOUNDRIES U.S.Inc. | Symmetric arrangement of field plates in semiconductor devices |
WO2024051635A1 (zh) * | 2022-09-07 | 2024-03-14 | 镓合半导体(上海)有限公司 | 一种hemt器件 |
-
2020
- 2020-03-21 CN CN202010204550.0A patent/CN111403480A/zh active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220037482A1 (en) * | 2020-07-29 | 2022-02-03 | GLOBALFOUNDRIES U.S.Inc. | Symmetric arrangement of field plates in semiconductor devices |
US11316019B2 (en) * | 2020-07-29 | 2022-04-26 | Globalfoundries U.S. Inc. | Symmetric arrangement of field plates in semiconductor devices |
CN112614887A (zh) * | 2020-12-18 | 2021-04-06 | 华南师范大学 | 增强型AlGaN-GaN垂直超结HEMT及其制备方法 |
CN113257896A (zh) * | 2021-05-11 | 2021-08-13 | 华南师范大学 | 多场板射频hemt器件及其制备方法 |
CN113257901A (zh) * | 2021-05-11 | 2021-08-13 | 华南师范大学 | 栅极空气腔结构射频hemt器件及其制备方法 |
CN113257896B (zh) * | 2021-05-11 | 2024-06-18 | 华南师范大学 | 多场板射频hemt器件及其制备方法 |
WO2024051635A1 (zh) * | 2022-09-07 | 2024-03-14 | 镓合半导体(上海)有限公司 | 一种hemt器件 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111403480A (zh) | 一种高压AlGaN/GaN HEMT器件及其制备方法 | |
US9419121B1 (en) | Semiconductor device with multiple carrier channels | |
JP4967708B2 (ja) | 化合物半導体装置及びそれを用いたドハティ増幅器 | |
CN102332469B (zh) | 纵向导通的GaN常关型MISFET器件及其制作方法 | |
CN102709320B (zh) | 纵向导通的GaN基MISFET 器件及其制作方法 | |
CN101414629B (zh) | 源场板高电子迁移率晶体管 | |
CN108054208B (zh) | 横向型氮化镓基场效应晶体管及其制作方法 | |
WO2020107754A1 (zh) | 一种提高GaN增强型MOSFET阈值电压的外延层结构及器件制备 | |
CN111370470B (zh) | 氮化镓mis栅控混合沟道功率场效应晶体管及其制造方法 | |
CN102082176A (zh) | GaN增强型MISFET器件及其制备方法 | |
WO2015077916A1 (zh) | GaN基肖特基二极管整流器 | |
CN109950323B (zh) | 极化超结的ⅲ族氮化物二极管器件及其制作方法 | |
CN110634950A (zh) | 氧化镓垂直结构半导体电子器件及其制作方法 | |
CN117219676A (zh) | 一种异质pn结栅极的增强型HEMT器件 | |
CN212783460U (zh) | 一种高压AlGaN/GaN HEMT器件 | |
CN117253917A (zh) | 一种通过表面陷阱屏蔽的GaN MIS HEMT及其制备方法 | |
CN112201689B (zh) | 基于ⅲ族氮化物异质结的场效应晶体管及其制备方法 | |
CN210897283U (zh) | 一种半导体器件 | |
CN116504805A (zh) | 具有垂直AlGaN/GaN结构的高电子迁移率晶体管及其制备方法 | |
WO2019103698A1 (en) | Vertical gan transistor with insulating channel and the method of forming the same | |
CN113594236B (zh) | 一种提高抗单粒子烧毁能力的增强型氮化镓高电子迁移率晶体管 | |
CN110970499A (zh) | GaN基横向超结器件及其制作方法 | |
CN102315261B (zh) | 半导体器件及其制造方法 | |
CN115172452A (zh) | 一种基于PN结的结型栅增强型GaN器件 | |
CN110676166B (zh) | P-GaN帽层的FinFET增强型器件及制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |