CN111399298A - 一种全凝胶体系的全自愈合液晶光散射显示器件及其制备方法 - Google Patents
一种全凝胶体系的全自愈合液晶光散射显示器件及其制备方法 Download PDFInfo
- Publication number
- CN111399298A CN111399298A CN202010005082.4A CN202010005082A CN111399298A CN 111399298 A CN111399298 A CN 111399298A CN 202010005082 A CN202010005082 A CN 202010005082A CN 111399298 A CN111399298 A CN 111399298A
- Authority
- CN
- China
- Prior art keywords
- liquid crystal
- self
- full
- display device
- gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/13718—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/1392—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using a field-induced sign-reversal of the dielectric anisotropy
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/141—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/13756—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal selectively assuming a light-scattering state
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
Abstract
本发明涉及显示技术领域,尤其涉及一种全凝胶体系可全自愈合的液晶光散射显示器件的及其制备方法,其由中间层和位于中间层两侧的电极层组成,其中所述中间层为自组装液晶物理凝胶,所述电极层为柔性的具有自修复功能的水凝胶层。本发明克服了现有技术中的自愈合光散射器件自修复效率低,且自修复条件苛刻的缺陷,因此本发明在器件能够全自修复的基础上,简化修复条件和提高修复效率,制备出了一个全新的全凝胶体系全自修复的液晶显示器件,其进一步了拓宽液晶光散射显示器件的应用领域。
Description
技术领域
本发明涉及显示技术领域,尤其涉及一种全凝胶体系可全自愈合的液晶光散射显示器件的及其制备方法。
背景技术
随着柔性显示领域的进一步发展,一些商品化的柔性显示器已经进入大众的视野,目前,为了增加柔性显示屏的寿命,研究人员正在寻找使柔性显示屏能够自修复的方法,现还未有研究报道过可以全自修复的全凝胶体系的液晶显示器。
区别于化学水凝胶,物理凝胶通过如氢键作用,静电作用,配位作用等弱相互作用力结合,其在特定的环境下是动态可逆的,即可以自修复。
区别于液晶化学凝胶,液晶物理凝胶具有易制备,热可逆、凝胶因子种类多且用量少等诸多优点,且其可在外力撤去的同时,恢复凝胶的力学性能,即可自修复。
哈佛大学锁志刚课题组研究了软材料的原位粘结法,以提高水凝胶和高弹体之间的界面能,其制备的水凝胶高弹性,高韧性,耐高温性,但其未特别指出水凝胶的自修复性质。
中国专利文献上公开了“一种全自愈合可拉伸液晶光散射显示器件及其制备方法”,其公告号为“CN109164620A”,上述这篇专利中,提出了全自愈合的概念,但其采用的聚合物层自修复效率低,需要的自修复条件苛刻(即高温)会限制整体器件的使用与实际应用。
发明内容
本发明是为了克服现有技术中的自愈合光散射器件自修复效率低,且自修复条件苛刻的缺陷,本发明的第一个目的在于提供了一种具有较高自愈合效率,同时能够在常温下进行自修复的一种全凝胶体系可全自愈合的液晶光散射显示器件。
本发明的第二个发明目的在于还提供了一种全凝胶体系的全自愈合液晶光散射显示器件的制备方法,该工艺所需的实验条件不苛刻,步骤简单易行,有望实现大规模的工业化生产。
为实现上述发明目的,本发明通过以下技术方案实现:
一种全凝胶体系的全自愈合液晶光散射显示器件,其由中间层和位于中间层两侧的电极层组成,其中所述中间层为自组装液晶物理凝胶,所述电极层为柔性的具有自修复功能的水凝胶层。
本发明所述的全自愈合液晶光散射显示器件其内部的自组装液晶物理凝胶以及水凝胶层均具有自修复功能。由于本发明中的电极层为水凝胶,其是通过氢键、静电以及配位作用使得分子之间相互吸引从而形成凝胶态结构,这种作用效果相较于通过化学键连接的自修复聚合物而言,其修复条件更加简单,无需在高温下进行修复,同时修复效率也大幅提升。
作为优选,以自组装液晶物理凝胶总质量为基准,所述自组装液晶物理凝胶由98.0~99.9wt%的液晶化合物和0.1~2.0wt%的凝胶因子组成。
作为优选,所述凝胶因子的结构式如下式(A)、式(B)或式(C)所示:
作为优选,所述液晶化合物为向列相液晶5CB,近晶相液晶8CB,胆甾相5CB+S811或者铁电液晶PHD9中的一种。
作为优选,液晶化合物为下式(Ⅰ)、式(Ⅱ)或者式(Ⅲ)中的一种,其中式(Ⅰ)为在本领域中的牌号为80cb、式(Ⅱ)为SCE8、式(Ⅲ)为JL29;
作为优选,所述水凝胶层外侧还涂有一层AgNWs网络,其由银纳米线溶液涂覆在水凝胶层外侧后干燥得到,所述银纳米线溶液由按照重量份数计的甲醇:乙醇:银纳米线=1:(1~2):(1~3)配制而成。
作为优选,所述银纳米线层涂上一层由聚3,4-乙撑二氧噻吩以及聚苯乙烯磺酸盐构成的导电高分子层。其可在一定程度上提高导电性质,从而使整体器件驱动电压降低。
作为优选,所述的水凝胶层为聚丙烯酰胺水凝胶、聚乙烯醇水凝胶、聚丙烯酸水凝胶或者聚N-异丙基丙烯酰胺水凝胶中的一种。
一种全凝胶体系的全自愈合液晶光散射显示器件的制备方法,其特征在于,包括以下步骤:将凝胶因子按照相应的质量比与液晶混溶,待凝胶因子完全溶解后,降温,形成液晶凝胶,先在一层电极层上加液晶凝胶,而后将另一层电极层交叠,形成三明治型的显示器件,最后用丙烯酸类的树脂封装得到全自愈合液晶光散射显示器件。
作为优选,所述混溶温度为120~160℃,混溶时间为10~30min,所述液晶凝胶中还添加有液晶专业间隔球,控制整个柔性显示器件的厚度为8~22μm。
因此,本发明具有如下有益效果:在器件能够全自修复的基础上,简化修复条件和提高修复效率,制备出了一个全新的全凝胶体系全自修复的液晶显示器件,其进一步了拓宽液晶光散射显示器件的应用领域。
附图说明
图1为本发明凝胶体系的全自愈合液晶光散射显示器件的结构示意图。
其中:自组装液晶物理凝胶1,水凝胶层2。
具体实施方式
下面结合说明书附图以及具体实施例对本发明做进一步描述。下述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于下述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。
在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
如图1所示,如图所示,一种全凝胶体系的全自愈合液晶光散射显示器件,所述全凝胶体系的自愈合液晶光散射显示器件的整体结构形如“三明治”。其由中间层和位于中间层两侧的电极层组成,其中所述中间层为自组装液晶物理凝胶1,所述电极层为柔性的具有自修复功能的水凝胶层2,组成了三层全为凝胶层的全凝胶体系。
以下两个实施例将对比添加PEDOT:PSS层的自修复水凝胶薄膜以及未添加PEDOT:PSS的自修复水凝胶薄膜的导电性和透光率,以及做成器件后的透光性能和驱动电压对比,从电极层本身以及器件整体分别进行研究。
其中,所使用的PEDOT:PSS层原料为市售预先配置好的水溶液,其浓度为1.1wt%,卖方为Sigma-Aldrich。
实施例1
将已经聚合得到的聚丙烯酰胺水凝胶(PAAm),制成上述尺寸(以洁净玻璃为衬底),在其上面,旋涂AgNWS导电网络至表面电阻为60Ω,用60℃烘箱处理5Min,而后将水凝胶层从玻璃基板上剥离,即得到柔性可自修复的水凝胶膜。
实施例2
将已经聚合得到的聚丙烯酰胺水凝胶(PAAm),制成上述尺寸(以洁净玻璃为衬底),在其上面,旋涂AgNWS导电网络至表面电阻为60Ω,用60℃烘箱处理5Min,配置PEDOT:PSS水溶液(1wt%),在水凝胶表层旋涂上一层PEDOT:PSS,60℃烘箱处理10Min,而后将水凝胶层从玻璃基板上剥离,即得到柔性可自修复的水凝胶膜。
将实施例1,2对比,对自修复水凝胶薄膜的导电性和透光率以及做成器件后的透光性能和驱动电压做检测,结果如下表:
表1.测试结果
性能指标 | 电阻(Ω) | 膜透光率(%) | 器件透光率(%) | 器件驱动电压(V) |
实施例1 | 70.2 | 82 | 75 | 80 |
实施例2 | 58.1 | 73 | 70 | 50 |
由表一可以看出,通过在AgNWS网络上旋涂PEDOT:PSS后,所制备得到的水凝胶膜的电阻有了明显的下降,但膜的透光率也会有相应的损失。与之对应制备的器件透光率会有更明显的下降,但其驱动电压因为电极层导电性能的增加,得到了明显的改善。
实施例3
用实施例1中的所得到的水凝胶导电层用于“三明治”型的器件中,将99.9wt%的液晶化合物80cb和结构式为A的0.1%的凝胶因子于150℃下溶解混匀,待凝胶因子完全溶解后,降温,形成自组装液晶物理凝胶。先在一层水凝胶电极层上加自组装液晶物理凝胶,而后将另一层电极层交叠,形成三明治型的显示器件,最后用丙烯酸类的树脂封装。利用液晶专用间隔球将器件厚度控制在18μm,即得到一种全凝胶体系的全自愈合液晶光散射显示器件。
实施例4
实施例4与实施例3的区别在于,所用凝胶因子的结构式为B,其余工艺条件完全相同。
实施例5
实施例5与实施例3的区别在于,所用凝胶因子的结构式为C,其余工艺条件完全相同。
实施例6
用实施例2中的所得到的水凝胶导电层用于“三明治”型的器件中将99.8wt%的SCE8和结构式为A的0.2%的凝胶因子于150℃下溶解混匀,,待凝胶因子完全溶解后,降温,形成自组装液晶物理凝胶。先在一层水凝胶电极层上加自组装液晶物理凝胶,而后将另一层电极层交叠,形成三明治型的显示器件,最后用丙烯酸类的树脂封装。利用液晶专用间隔球将器件厚度控制在18μm,即得到一种全凝胶体系的全自愈合液晶光散射显示器件。
实施例7
实施例7与实施例6的区别在于,所用凝胶因子的结构式为B,其余工艺条件完全相同。
实施例8
实施例8与实施例6的区别在于,所用凝胶因子的结构式为C,其余工艺条件完全相同。
实施例9
利用聚乙烯醇(PVA)合成的水凝胶,用于导电层,导电层的制备与实施例1用中所述的相同。于“三明治”型的器件中将99.5wt%的JL29和结构式为A的0.5%的凝胶因子于155℃下溶解混匀,待凝胶因子完全溶解后,降温,形成自组装液晶物理凝胶。先在一层水凝胶电极层上加自组装液晶物理凝胶,而后将另一层电极层交叠,形成三明治型的显示器件,最后用丙烯酸类的树脂封装。利用液晶专用间隔球将器件厚度控制在18μm,即得到一种全凝胶体系的全自愈合液晶光散射显示器件。
实施例10
实施例10与实施例9的区别在于,所用凝胶因子的结构式为B,其余工艺条件完全相同。
实施例11
实施例11与实施例10的区别在于,所用凝胶因子的结构式为C,其余工艺条件完全相同。
实施例12
利用聚乙烯醇(PVA)合成的水凝胶,用于导电层,导电层的制备与实施例1用中所述的相同。于“三明治”型的器件中将99.5wt%的80cb和结构式为A的0.5%的凝胶因子于155℃下溶解混匀,待凝胶因子完全溶解后,降温,形成自组装液晶物理凝胶。先在一层水凝胶电极层上加自组装液晶物理凝胶,而后将另一层电极层交叠,形成三明治型的显示器件,最后用丙烯酸类的树脂封装。利用液晶专用间隔球将器件厚度控制在18μm,即得到一种全凝胶体系的全自愈合液晶光散射显示器件。
实施例13与实施例12的区别在于,所用水凝胶为聚丙烯酸水凝胶,其余工艺条件完全相同。
实施例14
实施例14与实施例13的区别在于,所用水凝胶为聚N-异丙基丙烯酰胺水凝胶(PNIPAm),其余工艺条件完全相同。
对实施例3-14制得的全凝胶体系的全自愈合液晶光散射显示器件的拉伸性能做检测,结果如表2所示:
分别将实施例3-14制得的全水凝胶体系的全自愈合可拉伸液晶光散射显示器件整体用刀片切断,而后将切断的两部分紧密放置,置于不同温度下,进行器件的自愈合实验,在不同的修复时间下,测量各实施例的柔性的液晶光散射器件的拉伸性能与电相应性质,测试条件及结果如表3所示:
由表3的结果可以看出,不同愈合温度和时间的处理对器件的显示与拉伸性能有一定的影响。在一定范围内,愈合时间过短会导致器件无法正常显示,并且,随着愈合时间与温度的增加,愈合后的液晶光散射器件都能够实现自修复,在保证正常显示的情况下,可以进行拉伸,并到达一定的拉伸倍率。其中,温度对愈合效果的影响比凝胶因子对愈合效果的影响大很多,且因为温度升高提升的自愈合效率将使得器件修复更完善,从而得到一个较好的拉伸倍率。
实现器件整体自修复且由物理水凝胶组成的电极层大大提高了自愈合效率。通过将柔性显示器的电极层和显示层整体切断,在常温下自修复后,器件的力学,电学以及其他响应性即可得到恢复,由此增加柔性显示器的使用寿命。以上所述仅为本发明的较佳实施例,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。
Claims (10)
1.一种全凝胶体系的全自愈合液晶光散射显示器件,其特征在于,其由中间层和位于中间层两侧的电极层组成,其中所述中间层为自组装液晶物理凝胶,所述电极层为柔性的具有自修复功能的水凝胶层。
2.根据权利要求1所述的一种全凝胶体系的全自愈合液晶光散射显示器件,其特征在于,以自组装液晶物理凝胶总质量为基准,所述自组装液晶物理凝胶由98.0~99.9wt%的液晶化合物和0.1~2.0wt%的凝胶因子组成。
4.根据权利要求2所述的一种全凝胶体系的全自愈合液晶光散射显示器件,其特征在于,所述液晶化合物为向列相液晶5CB,近晶相液晶8CB,胆甾相5CB+S811或者铁电液晶PHD9中的一种。
6.根据权利要求1所述的一种全凝胶体系的全自愈合液晶光散射显示器件,其特征在于,所述水凝胶层外侧还涂有一层AgNWs网络,其由银纳米线溶液涂覆在水凝胶层外侧后干燥得到,所述银纳米线溶液由按照重量份数计的甲醇:乙醇:银纳米线=1:(1~2):(1~3)配制而成。
7.根据权利要求6所述的一种全凝胶体系的全自愈合液晶光散射显示器件,其特征在于,所述银纳米线层涂上一层由聚3,4-乙撑二氧噻吩以及聚苯乙烯磺酸盐构成的导电高分子层。
8.根据权利要求1或6或7所述的一种全凝胶体系的全自愈合液晶光散射显示器件,其特征在于,所述的水凝胶层为聚丙烯酰胺水凝胶、聚乙烯醇水凝胶、聚丙烯酸水凝胶或者聚N-异丙基丙烯酰胺水凝胶中的一种。
9.一种如权利要求1~8中任意一项所述全凝胶体系的全自愈合液晶光散射显示器件的制备方法,其特征在于,包括以下步骤:将凝胶因子按照相应的质量比与液晶混溶,待凝胶因子完全溶解后,降温,形成自组装液晶物理凝胶,先在一层电极层上加自组装液晶物理凝胶,而后将另一层电极层交叠,形成三明治型的显示器件,最后用丙烯酸类的树脂封装得到全自愈合液晶光散射显示器件。
10.根据权利要求9所述一种全凝胶体系的全自愈合液晶光散射显示器件的制备方法,其特征在于,所述混溶温度为120~160℃,混溶时间为10~30min,所述液晶凝胶中还添加有液晶专业间隔球,控制整个柔性显示器件的厚度为8~22μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010005082.4A CN111399298A (zh) | 2020-01-03 | 2020-01-03 | 一种全凝胶体系的全自愈合液晶光散射显示器件及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010005082.4A CN111399298A (zh) | 2020-01-03 | 2020-01-03 | 一种全凝胶体系的全自愈合液晶光散射显示器件及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111399298A true CN111399298A (zh) | 2020-07-10 |
Family
ID=71431996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010005082.4A Pending CN111399298A (zh) | 2020-01-03 | 2020-01-03 | 一种全凝胶体系的全自愈合液晶光散射显示器件及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111399298A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023121833A1 (en) * | 2021-12-20 | 2023-06-29 | E Ink Corporation | A multi-layer device comprising a repair layer having conductive a hydrogel film or beads |
US12127469B2 (en) | 2022-11-29 | 2024-10-22 | E Ink Corporation | Multi-layer device comprising a repair layer having conductive a hydrogel film or beads |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101284927A (zh) * | 2008-06-02 | 2008-10-15 | 南京大学 | 聚苯乙烯/聚3,4-乙撑二氧噻吩导电高分子复合粒子的制备方法 |
CN106008799A (zh) * | 2016-05-23 | 2016-10-12 | 西南交通大学 | 一种具有高力学性能及自愈合性的水凝胶电极的制备方法 |
CN108962438A (zh) * | 2018-07-26 | 2018-12-07 | 深圳市华星光电技术有限公司 | 一种导电球及其制作方法、液晶显示装置 |
CN109164620A (zh) * | 2018-09-07 | 2019-01-08 | 浙江工业大学 | 一种全自愈合可拉伸液晶光散射显示器件及其制备方法 |
CN109294133A (zh) * | 2018-09-25 | 2019-02-01 | 南京工业大学 | 可拉伸自愈合水凝胶柔性应变传感器及其制备方法 |
CN110240714A (zh) * | 2019-06-26 | 2019-09-17 | 武汉工程大学 | 一种聚乙烯醇基导电水凝胶及其制备方法和应用 |
CN110265227A (zh) * | 2019-06-17 | 2019-09-20 | 中国科学院深圳先进技术研究院 | 一种自修复微型超级电容器及其制备方法 |
-
2020
- 2020-01-03 CN CN202010005082.4A patent/CN111399298A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101284927A (zh) * | 2008-06-02 | 2008-10-15 | 南京大学 | 聚苯乙烯/聚3,4-乙撑二氧噻吩导电高分子复合粒子的制备方法 |
CN106008799A (zh) * | 2016-05-23 | 2016-10-12 | 西南交通大学 | 一种具有高力学性能及自愈合性的水凝胶电极的制备方法 |
CN108962438A (zh) * | 2018-07-26 | 2018-12-07 | 深圳市华星光电技术有限公司 | 一种导电球及其制作方法、液晶显示装置 |
CN109164620A (zh) * | 2018-09-07 | 2019-01-08 | 浙江工业大学 | 一种全自愈合可拉伸液晶光散射显示器件及其制备方法 |
CN109294133A (zh) * | 2018-09-25 | 2019-02-01 | 南京工业大学 | 可拉伸自愈合水凝胶柔性应变传感器及其制备方法 |
CN110265227A (zh) * | 2019-06-17 | 2019-09-20 | 中国科学院深圳先进技术研究院 | 一种自修复微型超级电容器及其制备方法 |
CN110240714A (zh) * | 2019-06-26 | 2019-09-17 | 武汉工程大学 | 一种聚乙烯醇基导电水凝胶及其制备方法和应用 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023121833A1 (en) * | 2021-12-20 | 2023-06-29 | E Ink Corporation | A multi-layer device comprising a repair layer having conductive a hydrogel film or beads |
US12127469B2 (en) | 2022-11-29 | 2024-10-22 | E Ink Corporation | Multi-layer device comprising a repair layer having conductive a hydrogel film or beads |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | A highly stretchable, self-healing, recyclable and interfacial adhesion gel: preparation, characterization and applications | |
CN105140408B (zh) | 柔性透明复合离子液体凝胶导电电极的制备方法 | |
CN107300818A (zh) | 一种具有书写显示功能的液晶复合薄膜及其制备方法 | |
CN111333872B (zh) | 具有可逆粘附和自愈合性能的抗冻有机-水凝胶制备方法 | |
CN106992031B (zh) | 一种纳米银线石墨烯涂布导电膜的制作方法及其导电膜 | |
Hwang et al. | Star-shaped block copolymers: Effective polymer gelators of high-performance gel electrolytes for electrochemical devices | |
CN104637570A (zh) | 柔性透明导电薄膜及其制备方法 | |
US9454030B2 (en) | Polymer dispersed liquid crystal film and method for manufacturing the same | |
CN102522145A (zh) | 一种纳米银透明电极材料及其制备方法 | |
CN105957639A (zh) | 一种基于一维纳米材料柔性超延展导电薄膜的高效制备方法 | |
CN106336875A (zh) | 一种反式聚合物分散液晶薄膜的制备方法 | |
CN113161042B (zh) | 一种基于银纳米线的羧甲基纤维素钠柔性透明导电薄膜的制备方法 | |
JP6491759B2 (ja) | 液晶セル、および三次元構造液晶セル | |
WO2020206735A1 (zh) | 柔性导电薄膜及其制备方法、显示面板 | |
CN103197459A (zh) | 一种反式电控调光玻璃及其制造方法和应用 | |
CN109897644B (zh) | 一种高对比度、低电压驱动及快速响应电控液晶调光膜及其制备方法 | |
CN207367619U (zh) | 基于石墨烯具有高附着力的复合结构导电膜 | |
CN109164620B (zh) | 一种全自愈合可拉伸液晶光散射显示器件及其制备方法 | |
CN111399298A (zh) | 一种全凝胶体系的全自愈合液晶光散射显示器件及其制备方法 | |
KR20230174180A (ko) | 액정/고분자 복합 전자 제어 조광막 및 그 제조 방법 | |
JPH02305888A (ja) | 主鎖型カイラルスメクチック高分子液晶、高分子液晶組成物および高分子液晶素子 | |
CN103909715A (zh) | 溶剂诱导可逆定向变形共轭高分子和碳纳米管复合薄膜制备方法 | |
Li et al. | One-step in situ synthesis of tough and highly conductive ionohydrogels with water-retentive and antifreezing properties | |
Wu et al. | Highly Conductive, Transparent, Adhesive, and Self‐Healable Ionogel Based on a Deep Eutectic Solvent with Widely Adjustable Mechanical Strength | |
CN110802903B (zh) | 一种可拉伸的柔性透明电致变色薄膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200710 |
|
RJ01 | Rejection of invention patent application after publication |