CN111377741B - 包括碳化硅的制品及其制造方法 - Google Patents

包括碳化硅的制品及其制造方法 Download PDF

Info

Publication number
CN111377741B
CN111377741B CN201911321354.5A CN201911321354A CN111377741B CN 111377741 B CN111377741 B CN 111377741B CN 201911321354 A CN201911321354 A CN 201911321354A CN 111377741 B CN111377741 B CN 111377741B
Authority
CN
China
Prior art keywords
powder
silicon carbide
silicon
diboride
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911321354.5A
Other languages
English (en)
Other versions
CN111377741A (zh
Inventor
木谷耕治
沖仲元毅
三木勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019215791A external-priority patent/JP2020105067A/ja
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN111377741A publication Critical patent/CN111377741A/zh
Application granted granted Critical
Publication of CN111377741B publication Critical patent/CN111377741B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/05Boride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • B22F2302/105Silicium carbide (SiC)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供包括碳化硅的制品及其制造方法。提供了包括碳化硅作为主要组分、具有充足机械强度且由三维成形技术制造的制品。包括碳化硅作为主要组分的制品包括:碳化硅,熔点低于碳化硅升华点的金属硼化物,和金属硅。

Description

包括碳化硅的制品及其制造方法
技术领域
本公开内容涉及具有例如高耐热性、高导热性、轻质和高刚性的材料特征的使用基于碳化硅的材料的制品,并且更具体地涉及通过作为增材制造方法的粉末床熔融制造的制品并涉及其制造方法。
背景技术
为了少量地制造各种各样的金属部件或者为了制造具有复杂形状的金属部件,开发了使用粉末床熔融的三维成形技术。对于多个层而言,该技术包括重复以下步骤:以由待成形体的三维形状数据产生的切片数据为基础用能量束扫描造型材料的粉末层来局部熔融/固化造型材料,由此形成三维物体。将激光束、电子束等用作能量束。
另外,近些年,对通过这样的三维成形技术难以加工的陶瓷材料例如碳化硅的成形进行了研究。然而,大多数陶瓷例如碳化物、硼化物和氮化物具有的技术问题在于陶瓷在急剧施加能量时在没有熔化的情况下升华,并且在陶瓷熔融和固化时陶瓷在没有结晶的情况下变脆。在轻质性能、耐磨损性、耐热冲击性、化学稳定性等方面中优异并且期望在各个领域中得到应用的碳化硅是在常压下没有熔点并且在约2,545℃(还已知另一温度值例如2,700℃)下升华的材料。
在日本专利申请公开号2016-527161中,公开了能够使用例如共晶晶体或包晶晶体通过利用瞬间液相结合来成形的候选粉末。作为用于制造由碳化硅形成的成形体的候选粉末的实例,提出了碳化硅、氧化铝、稀土氧化物和氧化硅的混合物,碳化硅、氮化铝和稀土氧化物的混合物,和碳化硅和金属锗的混合物。
在日本专利申请公开号2016-527161中描述的粉末包括作为必要材料的氧化硅、氮化铝或者金属锗作为与碳化硅混合的材料,以便形成共晶晶体。然而,在1,900℃下氧化硅分解为一氧化硅和氧。另外,氮化铝在2,200℃下升华。同样金属锗在2,400℃或更低下汽化。由于前述原因,当与具有2,545℃升华点的碳化硅同时加热那些材料时,那些材料非常可能在碳化硅熔融之前挥发。另外,虽然没有公开成形体的强度,但是推测可形成粉末彼此部分结合并且具有低强度的成形体。
考虑到以上提到的问题,本公开内容的目的是提供包括碳化硅作为主要组分,并具有充足机械强度同时由三维成形技术制造的成形体。本公开内容的另一目的是提供这样的成形体的制造方法。
发明内容
根据本公开内容的一个方面,提供了制品,其包括:碳化硅,熔点低于碳化硅升华点的金属硼化物,和金属硅。
另外,根据本公开内容的一个方面,提供了制品的制造方法,包括:通过重复以下形成成形体:通过使用含有碳化硅的粉末和含有熔点低于碳化硅升华点的金属硼化物的粉末的混合粉末来形成粉末层;和以待成形体的形状数据为基础用能量束扫描并照射形成的粉末层以熔融和固化粉末;和进一步用金属硅渗透(impregnate)形成的成形体。
参考附图从示例性实施方案的以下描述本发明的进一步特征将变得清楚。
附图说明
图1是在根据本公开内容的一个方面的制造方法中使用的三维成形装置的示意图。
图2是用于说明用金属硅渗透成形体的状态的视图。
图3是根据本公开内容的一个方面在实施例中制造的成形体的示意图。
图4是根据本公开内容的一个方面制造的样品1的横截面的SEM图像。
图5是用于显示通过将在图4的横截面SEM图像中的仅深色区域拼接在一起获得的三维结构的视图。
图6是用于显示通过将在图4的横截面SEM图像中的仅浅色区域拼接在一起获得的三维结构的视图。
图7是根据本公开内容的一个方面制造的样品1的横截面的光学显微照片。
图8是根据本公开内容的一个方面制造的样品6的横截面的SEM图像。
图9是根据本公开内容的一个方面制造的样品6的横截面的光学显微照片。
具体实施方式
现在,参考附图描述本公开内容的实施方案。
首先,参考图1描述可应用于根据本公开内容的一个方面的制造方法的成形装置。成形装置包括腔室101,其中可通过气体引入机构113和排气机构114来控制其内部气氛。腔室101包括:经构造以形成三维物体的成形容器120,和经构造通过在成形容器120中铺开充当造型材料的粉末(下文中有时简称作“造型材料”或“粉末”)来形成粉末层111的粉末层形成机构106。
为了调节压力,排气机构114可包括压力调节机构例如蝶形阀,或者可具有其中可与气体供应和随气体供应而压力提高相关联地调节腔室中的气氛的构成(通常称为“吹扫”)。
成形容器120在其底部包括工作台(stage)107,其中可通过提升机构108在垂直方向上改变工作台的位置。通过控制单元(未示出)来控制提升机构108的移动方向和移动量,并且按照待形成的粉末层111的厚度确定工作台107的移动量。工作台107在其成形表面侧上包括设置基板109的结构(未示出)。基板109是由可熔融的材料例如不锈钢形成的板。当熔融和固化第一粉末层时基板109的表面与造型材料一起熔融,由此允许成形体固定至基板。由此,在成形过程中,可将成形体保持在基板109上而没有位置移动。在成形完成之后,基板109与成形体机械分离。
粉末层形成机构106包括:经构造以储存粉末材料的粉末储存单元;和经构造将粉末材料供应至成形容器120的供应机构。此外,可在基板109上设置每个经构造以将粉末层变平至预设厚度的刮板和辊中的任一个或两个。
成形装置还包括:经构造以熔融造型材料的能量束源102;经构造以两轴扫描能量束112的扫描镜103A和103B;和经构造将能量束聚焦在照射部分的光学系统104。从腔室101外部辐照能量束112,并因此腔室101包括经构造将能量束112引入至内部的引入窗105。通过控制单元以通过控制单元(未示出)获得的待成形体的三维形状数据和造型材料的特性为基础来控制能量束的功率密度和扫描位置。另外,提前调节成形容器120和光学系统104的位置,使得能量束以适当的束直径聚焦在粉末层111的表面附近。将影响成形精度的在表面上的束直径优选设为30μm-100μm。
接下来,描述根据本公开内容的一个方面的制造方法。首先,将基板109放置在工作台107上,并且用通过气体引入机构113引入的不活泼气体例如氮或氩吹扫腔室101的内部。在吹扫完成之后,通过粉末层形成机构106在基板109上形成粉末层111。以对应于由待成形体的三维形状数据产生的切片数据的切片间距(即层叠间距)的厚度来形成粉末层111。
在本公开内容的一个方面中用于成形的粉末是以下的混合粉末:作为主要组分的碳化硅的粉末;和熔点低于碳化硅升华点的金属硼化物的粉末。可包括除前述之外的化合物的粉末,只要没有大幅损害碳化硅的特性。碳化硅的粉末和金属硼化物的粉末的颗粒尺寸每种为优选3μm-100μm、更优选5μm-50μm,因为当颗粒尺寸过小时,粉末彼此聚集,并且不可形成具有均匀厚度的粉末层,并且当颗粒尺寸过大时,用于熔融粉末需要高的能量,并且成形变得困难。另外,影响成形精度的每层的粉末层厚度适当地为约30μm-约100μm。
现在,描述本公开内容的一个方面中的粉末粒径的测量方法。在每种粉末中包括的粒径具有在某一范围内的分布,并且规定了它的中值和最大粒径。通过按照JIS R 6001-2的“Bonded abrasives-Determination and designation of grain sizedistribution”的电阻测试方法来测量SiC的粒径,其符合本领域中粒径的标准化评价方法。按照JIS Z 8832的“Determination of particle size distributions-Electricalsensing zone method”测量除SiC之外的一硼化铬、二硼化铬等的粒径。
接下来,以切片数据为基础来扫描能量束112并辐照至粉末层111的预定区域中的粉末以使粉末熔融。优选使用能够输出具有如下波长的能量的源作为能量束源102,在该波长下造型材料具有50%或更大的高吸收率。特别地,在成形过程中,为了产生熔融金属硼化物围绕碳化硅的状态,优选使用金属硼化物具有高吸收率的波长区域内的能量束。当造型材料包括二硼化铬时,波长为1,000nm-1,120nm的半导体纤维激光器是适合的。
能量束112优选具有这样水平的能量强度,使得在使用能量束照射的区域中的粉末在几毫秒内熔融并固化,并且粉末颗粒彼此结合。当粉末层是层叠的时,对于成形而言需要熔融和固化位于用能量束112照射侧上的最外表面上的粉末层,并且也需要一定程度地熔融和固化在用能量束112照射的粉末层直接下方的粉末层。当熔融在用能量束112照射的粉末层直接下方的粉末层不充分时,粉末层容易彼此剥离,从而导致成形体具有低的强度。在熔融和固化在基板109直接上方铺开的第一粉末层时,考虑到基板的热容、导热率等来调节能量束的照射条件使得同时熔融基板109的表面。
随后,在通过提升机构108使用于成形的工作台107降低层叠间距之后,使粉末在已被能量束扫描的层上铺开,从而形成新的粉末层,并且用能量束112扫描和照射新的粉末层。如以上所述,当用能量束112照射新的粉末层时,首先再次熔融和固化已被能量束112扫描的层的一部分(具体地,与新的粉末层接触的部分)。当已经熔融和固化的区域位于新的粉末层的用能量束112照射的区域直接下方时,新的粉末层的用该束照射的区域与在部分已熔融并固化的部分区域中的熔融材料混合,与其固化并结合。当重复那些操作时,可形成用能量束112逐层地熔融和固化的区域彼此一体化的成形体110。
成形体110与基板109结合,并因此与基板一起从腔室101中取出。此后,用例如附着由金刚石等形成的磨粒的线锯或盘式刀片切割基板109和成形体110以彼此分离。这样地,可获得成形体110。
接下来,参考图2描述用金属硅渗透成形体的步骤实例。在由例如石墨的材料(即使在金属硅的熔点(1,414℃)下也不会经历挥发、变质等)形成的坩埚201的底部铺开具有均匀粒径的耐热性球体202使得厚度没有成为等于或大于两层的厚度,并且将成形体110放在其上。耐热性球体202具有产生间隙的效果,使得在渗透步骤过程中防止由于从成形体110漏出的金属硅的固化物坩埚201和成形体110彼此牢固地固定。
此外,预先以成形体110的形状和质量为基础获得成形体110的孔隙率,并且以比对应于孔隙的量更大的量将金属硅粉末203放在成形体上。此后,将成形体110和金属硅粉末203与坩埚201一起装入在真空热处理炉中,并且炉内部用氩吹扫(适当地减小压力),并从室温加热至温度超过1,414℃(其为金属硅的熔点)例如1,500℃。通过加热至超过熔点的温度而液化的金属硅渗入成形体的孔隙中。此后,进行冷却,并且当温度达到室温时引入干燥空气以使压力恢复至大气压,并从真空热处理炉中取出坩埚。在冷却时,在金属硅的熔点附近的温度下减小温度变化率,使得防止了由于取决于位置的不同凝固时间而产生的应变或应力。去除了通过从成形体110漏出的金属硅的固化物体附着至成形体表面的耐热性球体202,并且此外,通过研磨、抛光等整理成形体的形状和表面。这样地,可获得期望的制品。
[本公开内容的一个方面中使用的粉末材料]
在本公开内容的一个方面中,彼此混合碳化硅的粉末和与碳化硅形成共晶晶体或亚共晶晶体且熔点低于碳化硅升华点的金属硼化物的粉末以提供造型粉末。当通过使用这样的造型粉末来制造包括碳化硅和金属硼化物的共晶晶体或亚共晶晶体的成形体时,实现强度接近仅碳化硅的情况下的强度的成形体。
现在,以下描述共晶晶体/亚共晶晶体。
例如金属的材料X和材料Y的混合物具有混合物的熔点低于每种材料的熔点的材料比。在这种情况下,提供最低熔点的材料比被称作“共晶组成”并且最低的熔点被称作“共晶温度”。
在共晶组成中,在等于或高于熔点的温度下材料X和材料Y都形成液相,并且在低于熔点的温度下材料X和材料Y同时沉积。因此,材料X和材料Y由细的沉积相形成,并且获得具有称为薄片形状(lamella shape)等的分层形状的结构和具有高强度的共晶晶体。
接下来,考虑材料X和材料Y的混合物包括大于共晶组成中的量的材料X的情况。在这种情况下,虽然在等于或高于熔点的温度下材料X和材料Y形成液相,但是当温度下降到低于熔点时,材料X首先固化,并且材料X沉积(称为初始晶体)直至温度达到共晶温度。然后,当温度降低至共晶温度时,除已经沉积的材料X的晶体之外的液相具有共晶组成。当温度从该状态降低至小于共晶温度的温度时,材料X和材料Y同时沉积。即,实现了在其中混合了长大的材料X的晶体的结构,因为与从共晶组成开始材料X的沉积的情况相比、材料X的沉积开始得早。当以大于共晶组成中的量包括材料Y时,材料Y的晶体长大。那些状态每种称为亚共晶晶体。可通过用扫描电子显微镜观察成形体的横截面来确认共晶晶体或亚共晶晶体。
为了获得接近碳化硅的物理性质的物理性质,发明人对例如粉末组成和粒径的条件进行了研究,在该条件下实现共晶晶体的状态或包括大的碳化硅晶体的亚共晶晶体的状态。
实施例
以下通过实施例和比较例更详细描述本公开内容。在没有偏离本公开内容的主旨的情况下,本公开内容绝不限于以下实施例。
(粉末1)
准备粒径的中值为14.7μm的碳化硅粉末(由Pacific Rundum Co.,Ltd.制造,产品名:NC#800)作为碳化硅。准备熔点为2,200℃的二硼化铬粉末(由Japan New Metals Co.,Ltd.制造,产品名:CrB2-O,粒径的中值:约5μm)作为待混合的硼化铬。以碳化硅:二硼化铬的摩尔比=7:3来共混那些粉末从而得到具有其中产生共晶晶体或亚共晶晶体的组成的粉末,并使用球磨机混合那些粉末以获得粉末1。确定摩尔比的方式和混合粉末的方式对于其它粉末也相同。本文使用的粒径的中值与“中值直径”具有相同的意义,并且是指粉末中累积频度达到50%的粒径。可通过公知的激光衍射法或散射法测量粒径分布。
(粉末2)
以碳化硅:二硼化钒的摩尔比=1:1来共混与粉末1中相同的碳化硅粉末和熔点为2,400℃的二硼化钒粉末(粒径的中值:约4μm,由Japan New Metals Co.,Ltd.制造,产品名:VB2-O),并混合以获得粉末2。
(粉末3)
以碳化硅:一硼化铬的摩尔比=3:1来共混与粉末1中相同的碳化硅粉末和熔点为2,100℃的一硼化铬粉末(由Japan New Metals Co.,Ltd.制造,产品名:CrB-O,粒径的中值:约9μm),并混合以获得粉末3。
(粉末4)
以碳化硅:二硼化钛的摩尔比=1:1来共混与粉末1中相同的碳化硅粉末和熔点为2,920℃的二硼化钛粉末(由Japan New Metals Co.,Ltd.制造,产品名:TiB2-N,粒径的中值:约4μm),并混合以获得粉末4。
(粉末5)
以碳化硅:二硼化锆的摩尔比=1:1来共混与粉末1中相同的碳化硅粉末和熔点为3,200℃的二硼化锆(由Japan New Metals Co.,Ltd.制造,产品名:ZrB2-O,粒径的中值:约5μm),并混合以获得粉末5。
表1中汇总显示粉末的组成。
[使用粉末材料制造成形体]
通过使用以上提到的粉末1至5中每种作为材料和图1中说明的成形装置进行成形。具体地,对于每种粉末,在由不锈钢制成的基板109上制造四个每个具有4mm乘40mm底面积的矩形成形体。在图3中示出在成形完成之后四个成形体110和基板109的透视图。
使用波长为1,070nm的半导体纤维激光器作为能量束源102,并且以100W的激光功率和50μm的照射间距辐照至粉末层。另外,适合于成形的照射能量取决于粉末材料的种类而变化,并因此提前在100mm/秒-1,000mm/秒的范围内确定(condition)扫描速度,并且对于每种材料设定最适宜扫描速度。粉末层的厚度(层叠间距)设为30μm,并且尝试了成形300层。
然而,在使用包括二硼化钛的粉末4的成形和使用包括二硼化锆的粉末5的成形的每个中,在形成粉末层的过程中已经成形的部分开始剥离,并且成形未能继续,且因此这时成形停止。在使用粉末1的成形、使用粉末2的成形和使用粉末3的成形的每个中,获得了具有约9mm高度的矩形。
接下来,使用由Musashino Denshi,Inc.制造的线锯CS-203(产品名)作为切割设备。用附着金刚石磨粒的0.4mmφ的线锯将成形体110和基板109彼此分离。
现在,获得了使用粉末1作为材料粉末的四个成形体样品作为样品1(比较例1),获得了使用粉末2作为材料粉末的四个成形体样品作为样品2(比较例2),和获得了使用粉末3作为材料粉末的四个成形体样品作为样品3(比较例3)。如以上所述在没有完成的情况下结束使用粉末4作为粉末材料的成形和使用粉末5作为材料粉末的成形,但是按照编号分别指定样品4作为比较例4和样品5作为比较例5。
通过能量色散X-射线分析(EDX)来鉴定在样品1至5中每个包括的元素,并且通过X-射线衍射(XRD)来鉴定样品1至5中每个的分子结构。发现了虽然样品1包括微量的氧化物(其推测是由表面氧化引起),但是当忽略氧化物时样品1由作为原材料粉末的碳化硅和二硼化铬形成。类似地,发现了样品2由碳化硅和二硼化钒形成。
另外,通过FIB-SEM检查碳化硅和金属硼化物在部件中如何分布。FIB-SEM是一种系统,其中在用聚焦的离子束(FIB)挖掘样品时,使用扫描电子显微镜(SEM)重复观察暴露的样品表面或横截面,并且用计算机处理得到的SEM图像,由此三维地观察样品的结构。
在图4中显示样品1横截面的SEM图像。具有最深颜色的部分10表示孔隙,具有最浅颜色的区域12由二硼化铬形成,并且浓度在区域10的浓度和区域12的浓度之间的区域11由碳化硅形成。在由碳化硅形成的区域11和由二硼化铬形成的区域12之间的边界具有复杂的形状,并因此能够推测熔融了至少一种材料。另外,以SEM图像中观察的由碳化硅形成的区域11和由二硼化铬形成的区域12的分布为基础,能够确认形成了共晶晶体或亚共晶晶体。
在样品1获得的SEM图像中,由区域的颜色浓度来区分区域。在图5中显示通过将每个由碳化硅形成的区域11拼在一起获得的三维结构。另外,在图6中显示通过将每个由二硼化铬形成的区域12拼在一起获得的三维结构。
从图5和图6,能够理解样品1中的碳化硅和硼化铬各自具有三维网状结构,并且结构彼此复杂地缠在一起。由FIB-SEM确认三维网状结构的区域有60μm乘45μm乘160μm的尺寸,这比作为原材料的碳化硅粉末和二硼化铬粉末的粒径的中值大得多,并因此推测在成形过程中这些材料熔融并彼此连接。
接下来,计算在成形体110中包括的孔隙。认为在其中均匀地包括孔隙,因为成形体的导热率除端部、与板的接合部、最外表面等之外没有大幅变化。考虑到前述,如下限定孔隙率:获得在成形体除端部、与板的接合部、最外表面等之外的横截面中具有均匀孔隙的部分的光学显微照片;并且在对应于有2.44mm乘1.63mm尺寸的区域的视野中,对应于孔隙的深色部分与该视野的比认为是孔隙率。在图7中显示样品1横截面中具有均匀孔隙的区域的光学显微照片。在推测具有均匀孔隙的几个位置(10个或更多个位置)的每处,根据浓度设置阈值,并且在图像分析中,将浓度高于阈值的部分判断为孔隙。孔隙率计算为相对整个面积的其面积比,并且对孔隙率进行平均。结果是,孔隙率经计算为约30%。
[用金属硅渗透制造的成形体的步骤]
接下来,用金属硅渗透成形体110。如图2中所示,在由石墨制成的坩埚201底部铺开1mmφ的氧化铝球体202使得厚度没有成为等于或大于两层的厚度,并且将一个成形体110放在其上。
此外,将体积为对应于之前计算的孔隙率的体积1.5倍大的金属硅粉末203(比重:2.33,粒径:45μm或更小)放在成形体110上。
此后,将成形体110和金属硅粉末203与坩埚201一起装入在真空热处理炉(未示出)中,炉内部用氩吹扫,并然后以300℃/h的升温速率将温度从室温加热至1,000℃并保持在1,000℃下2小时。此后,在40分钟内将压力减小至绝对压力为1.5kPa,同时以300℃/h的升温速率将温度加热至1,200℃,并以120℃/h的升温速率将温度随后加热至1,500℃并保持在1,500℃下2小时。
此后,以120℃/h的降温速率将温度减小至1,424℃(其刚刚大于金属硅的熔点),并以6℃/h的降温速率逐渐将温度冷却至1,400℃。
随后,以300℃/h的降温速率冷却温度,并且当温度达到70℃或更小时引入干燥空气以使压力恢复至大气压,并从真空热处理炉中取出坩埚201。
通过以上提到的方法,两个样品1、两个样品2和两个样品3即共计6个样品每个用金属硅渗透。通过用金属硅渗透样品1获得的产物用作样品6(实施例1),通过用金属硅渗透样品2获得的产物用作样品7(实施例2),并且通过用金属硅渗透样品3获得的产物用作样品8(实施例3)。
此外,去除了在用金属硅渗透成形体的步骤中附着至成形体110表面的氧化铝球体,并且通过抛光整理它的形状和表面。因此,获得了尺寸为约4mm乘约40mm乘约9mm并且包括金属硅的制品。
[制品的特性]
接下来,样品1、样品2、样品3、样品6、样品7和样品8每个经受与日本工业标准的“Testing method for flexural strength of fine ceramics at room temperature”(JIS R 1601)相符的三点弯曲测试。另外,对于这些样品中的每个,抛光断裂面,并且以已抛光面的光学显微照片为基础计算孔隙率。
在图8中显示样品6的SEM图像。作为组成分析的结果,发现了,在每个占据一定程度面积的部分中,具有最深颜色的区域11由碳化硅形成,具有最浅颜色的区域12由二硼化铬形成,并且浓度在区域11的浓度和区域12的浓度之间的区域13由金属硅形成。另外,在那些材料之间以岛状并且以微量存在的黑色部分10对应于孔隙。采用与样品1相同的方式,以样品6的横截面的光学显微照片为基础计算样品6的孔隙率。图9中显示具有均匀孔隙的样品6的横截面的光学显微照片,将其用于计算孔隙率。根据浓度设置阀值,并且在图像分析中,将浓度高于阈值的部分判断为孔隙,并且,孔隙率计算为相对整个面积的其面积比。另外,采用与样品1中相同的方式,以SEM图像为基础判断是否形成了共晶晶体或亚共晶晶体。
对于其它样品,采用与样品1和6中相同的方式计算孔隙率并判断是否形成了共晶晶体或亚共晶晶体。结果示于表2中。
如下所述进行综合判断。由符号“C”表示不能成形具有形状为4mm乘40mm乘9mm尺寸的制品的情况。另外,由符号“B”表示能够成形制品但该制品的孔隙率为约30%并且没有获得充足弯曲强度的情况。即使这样的制品被考虑用于例如过滤器的应用。另外,由符号“A”表示获得的制品具有与烧结陶瓷的弯曲强度相当的弯曲强度(100MPa或更大)的情况,因为这样的制品被考虑使用在各种应用中。
接下来,考虑了为什么能够成形样品1、样品2和样品3的原因和为什么不能成形样品4和样品5的原因。
首先,考虑了为什么在样品1中获得成形体的原因,其中通过使用碳化硅和熔点低于碳化硅升华点(2,545℃)的二硼化铬(熔点:2,200℃)的混合粉末进行成形。当用激光束照射碳化硅和二硼化铬的混合粉末并提高温度时,首先,二硼化铬达到其熔点从而熔融。然后,推测实现了用熔融的二硼化铬覆盖碳化硅的颗粒表面的状态。虽然碳化硅单独会升华,但是碳化硅被认为在两种物质之间的界面处熔融,并且从碳化硅和熔融的二硼化铬之间的界面进行碳化硅的熔融。推测即使当提高温度以达到碳化硅的升华点时,挥发的碳化硅溶解在熔融的二硼化铬中,并因此抑制了碳化硅的挥发。因此,即使当通过用激光束照射,温度变为这样高的温度从而超过碳化硅的升华点时,维持了碳化硅和二硼化铬是熔融的状态。此后,当使用激光束的照射时间结束并且照射区域的温度转向降低时,碳化硅和二硼化铬各自开始沉积,并且推测实现了图4中说明的两种物质彼此混合而没有间隙的状态。认为这也适用于使用碳化硅和二硼化钒的混合粉末的样品2和使用碳化硅和一硼化铬的混合粉末的样品3。
接下来,考虑了为什么在样品4中没有获得期望的成形体的原因,其中通过使用碳化硅和二硼化钛(熔点:2,920℃)的混合粉末进行成形,二硼化钛是熔点高于碳化硅升华点的金属硼化物。当用激光束照射碳化硅和二硼化钛的混合粉末并提高温度时,在二硼化钛的熔点之前温度达到碳化硅的升华点。因此,碳化硅首先开始升华,并且此后二硼化钛开始熔融。在碳化硅的颗粒表面上,通过升华的气体抑制了在熔融的二硼化钛和碳化硅粉末之间的接触,并且它们的接触极其有限。另外,碳化硅在二硼化钛熔融时继续升华,并因此没有提高在这些物质之间的接触面积。如以上所述,碳化硅的熔融极其有限,并且即使通过冷却,碳化硅也很少沉积。因此,认为与样品1至3的情况不同,没有获得处于共晶晶体或亚共晶晶体彼此紧密缠结的状态下的成形体,并且获得了碳化硅和二硼化钛之间的边界具有弱结合的脆的成形体。
从以上提到的推测和实验结果,认为当通过使用包括碳化硅粉末和熔点低于碳化硅升华点的金属硼化物粉末的粉末材料进行成形时,实现了在没有间隙的情况下共晶晶体或亚共晶晶体彼此缠结的状态,并且能够以具有强结合的边界进行成形。
接下来,考虑了样品1、2和3和通过分别用金属硅渗透样品1、2和3获得的样品6、7和8。当在成形之后即刻用金属硅渗透成形体110中包括的孔隙时,约为30%的孔隙率几乎消失(1%或更小)。从该事实推测在成形之后即刻的成形体110中包括的几乎所有孔隙彼此三维联通。
另外,弯曲强度提高至约20倍至约30倍,其比金属硅的弯曲强度(通常认为约200MPa)高。由金属硅形成的三维结构自身被认为占据相对制品而言约30%的体积,并因此如下估计通过用金属硅渗透而引起的弯曲强度提高:200MPa×30%=约60MPa。然而,在现实中,成形条件下的弯曲强度从5MPa至230MPa提高了225MPa。这大概是因为由碳化硅、二硼化铬(或二硼化钒或一硼化铬)和金属硅形成的三维结构彼此接触并且彼此三维缠结,并且由此实现了不可容易预测的弯曲强度。另外,可推测用金属硅填充孔隙(这防止裂纹的产生和发展)还有助于强度提高。
[在碳化硅粉末和金属硼化物粉末之间的混合比]
接下来,通过使用由混合碳化硅粉末和二硼化铬粉末获得的粉末来检查适合于成形体的碳化硅和二硼化铬之间的混合比。使用与粉末1中相同的碳化硅粉末和相同的二硼化铬粉末作为碳化硅粉末和二硼化铬粉末。
当碳化硅和二硼化铬的混合粉末整体被限定为100%时,分别使用以7.0%、10%、30%、50%、65%和70%的摩尔比包括二硼化铬粉末的混合粉末作为粉末6至11。通过与在使用粉末1至5的成形中相同的方式使用那些粉末来制造作为样品9至14的制品,并且作为样品9至14的制品分别用作比较例6至11。
在粉末6的情况下,该粉末具有高比例的碳化硅,在成形30层之后形成下一个粉末层时,之前的粉末层即最外层剥离。虽然能够继续成形,但是每次形成新的粉末层时出现相同的现象,并且结果是不能够继续成形。同时,在粉末11的情况下,该粉末具有高比例的二硼化铬,在成形过程中在表面上形成球状突起,并且最外层剥离,因为形成粉末层时辊接触该突起,并且结果是不能够继续成形。之后分析了球状突起,并且结果是发现球状突起包括二硼化铬作为主要组分。其可能的原因是熔融的二硼化铬纯度提高,并因此在表面上形成的液滴具有高表面张力并彼此聚集从而直径增加,然后固化。
另外,通过与在样品10至13中相同的方式制造样品,并使样品经受用金属硅的渗透步骤来制造样品15至18。能够没有问题地进行用金属硅的渗透步骤。分别使用样品15至18作为实施例4至7。另外,使能够成形的样品每种与以上提到实施例中相同的方式经受三点弯曲测试并计算孔隙率。
结果示于表3中。在摩尔比栏中显示(碳化硅的mol%)/(二硼化铬的mol%)的值。
发现了当混合粉末的总量被限定为100%时,碳化硅和二硼化铬之间摩尔比(碳化硅:二硼化铬)落入90:10-35:65范围内的粉末适合于成形。即,发现了碳化硅与二硼化铬的摩尔比(碳化硅/二硼化铬)落入0.54或更大且9.00或更小的范围内的混合粉末适合于成形。此外,能够确认通过用金属硅渗透成形体获得的制品的弯曲强度比预期提高得更多。
虽然在以上提到的实施例中研究了着眼于碳化硅和二硼化铬,并且包括例如碳化硅和一硼化铬或碳化硅和二硼化钒的双组分体系,但是在没有改变主要特性的范围内适当添加各种含有硼的材料例如硼化钛、硼化镧和碳化硼没有脱离本公开内容。有时减小比重、提高强度等是有效的,并因此可适当使用各种含有硼的材料。
此外,虽然在以上提到的实施例中使用粒径的中值为5μm的粉末作为二硼化铬并且使用粒径的中值为9μm的粉末作为一硼化铬,但是仅由于它们的商业流通可获得性而使用那些粉末。使用那些粉末没有限制使用具有不同粒径的粉末。然而,待混合的金属硼化物优选粒径小于碳化硅的粒径,即10μm或更小的粒径,使得金属硼化物易于熔融。
另外,虽然在以上提到的实施例中通过使用激光的粉末床熔融来进行成形,但是成形方法不限于这种方法,并且还可应用每种经历相同热历史的其它三维成形方法。例如,还可应用使用电子束的粉末床熔融,和进一步包括同时喷出气体和材料粉末的直接能量沉积,和通过激光熔融粉末。
另外,虽然在以上提到的实施例中金属硅粉末放在成形体上并在用金属硅渗透成形体的步骤中熔融,但是可使用金属硅晶片、金属硅粒等替代金属硅粉末,并且此外,还可使用称为MI方法的方法,该方法包括将成形体浸入熔融的金属硅中并提起成形体。
可进行通过相关领域的三维成形方法难以进行的碳化硅的成形。例如,由碳化硅和金属硼化物的共晶晶体形成的成形体由于高耐热性、高导热率和高物理强度可使用于热交换器、引擎喷嘴、工作台等。
虽然已经参考示例性实施方案描述了本发明,但是应理解本发明不限于所公开的示例性实施方案。以下权利要求的范围应给予最广泛的解释,从而包含所有这样的变形和等同结构和功能。

Claims (3)

1.制品的制造方法,包括:
通过重复以下形成成形体:
形成包含含有碳化硅颗粒的第一粉末和含有金属硼化物颗粒的第二粉末的混合粉末的粉末层,金属硼化物的熔点低于碳化硅升华点,且金属硼化物的颗粒的粒径小于碳化硅的颗粒;和
以待成形体的形状数据为基础用能量束在扫描能量束下照射粉末层以熔融和固化该第一粉末和该第二粉末;和
用金属硅渗透该成形体,
其中该成形体包括碳化硅和金属硼化物的共晶晶体或亚共晶晶体。
2.根据权利要求1所述的制品的制造方法,
其中该金属硼化物包含选自以下的至少任一种:二硼化铬、二硼化钒和一硼化铬。
3.根据权利要求2所述的制品的制造方法,
其中该金属硼化物是二硼化铬,并且
其中该制品具有落入90:10-35:65范围内的碳化硅和二硼化铬之间的摩尔比,即碳化硅:二硼化铬。
CN201911321354.5A 2018-12-25 2019-12-20 包括碳化硅的制品及其制造方法 Active CN111377741B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-241871 2018-12-25
JP2018241871 2018-12-25
JP2019215791A JP2020105067A (ja) 2018-12-25 2019-11-28 炭化珪素を含む物品および製造方法
JP2019-215791 2019-11-28

Publications (2)

Publication Number Publication Date
CN111377741A CN111377741A (zh) 2020-07-07
CN111377741B true CN111377741B (zh) 2023-09-05

Family

ID=71099459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911321354.5A Active CN111377741B (zh) 2018-12-25 2019-12-20 包括碳化硅的制品及其制造方法

Country Status (2)

Country Link
US (2) US20200198007A1 (zh)
CN (1) CN111377741B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802714B2 (en) * 2019-05-31 2023-10-31 Hamilton Sundstrand Corporation Exhaust manifold for additive manufacturing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048157A1 (en) * 2002-09-11 2004-03-11 Neudecker Bernd J. Lithium vanadium oxide thin-film battery
US20040046497A1 (en) * 2002-09-11 2004-03-11 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
CN1726105A (zh) * 2002-11-12 2006-01-25 圣戈本陶瓷及塑料股份有限公司 浇注粗晶粒硅化碳化硅制品的方法及设备
US20090050314A1 (en) * 2007-01-25 2009-02-26 Holmes Kevin C Surface improvement for erosion resistance
CN102383126A (zh) * 2011-11-09 2012-03-21 南昌航空大学 一种具有预热与后热功能且高效的三光束激光熔覆无裂纹涂层的方法
CN102503427A (zh) * 2011-11-10 2012-06-20 哈尔滨工业大学 一种高韧性硼化物-碳化物复相陶瓷的制备方法
CN107262711A (zh) * 2016-03-31 2017-10-20 佳能株式会社 三维制造方法和三维制造装置
CN108480625A (zh) * 2018-03-12 2018-09-04 北京工业大学 一种基于选区激光熔化技术的碳化硅颗粒增强铝基复合材料成形方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179050A (en) * 1989-08-18 1993-01-12 Kabushiki Kaisha Toshiba Sic-based pressureless sintered product
US20100279007A1 (en) * 2007-08-14 2010-11-04 The Penn State Research Foundation 3-D Printing of near net shape products

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048157A1 (en) * 2002-09-11 2004-03-11 Neudecker Bernd J. Lithium vanadium oxide thin-film battery
US20040046497A1 (en) * 2002-09-11 2004-03-11 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
CN1726105A (zh) * 2002-11-12 2006-01-25 圣戈本陶瓷及塑料股份有限公司 浇注粗晶粒硅化碳化硅制品的方法及设备
US20090050314A1 (en) * 2007-01-25 2009-02-26 Holmes Kevin C Surface improvement for erosion resistance
CN102383126A (zh) * 2011-11-09 2012-03-21 南昌航空大学 一种具有预热与后热功能且高效的三光束激光熔覆无裂纹涂层的方法
CN102503427A (zh) * 2011-11-10 2012-06-20 哈尔滨工业大学 一种高韧性硼化物-碳化物复相陶瓷的制备方法
CN107262711A (zh) * 2016-03-31 2017-10-20 佳能株式会社 三维制造方法和三维制造装置
CN108480625A (zh) * 2018-03-12 2018-09-04 北京工业大学 一种基于选区激光熔化技术的碳化硅颗粒增强铝基复合材料成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马世昌.二硼化铬.《化学物质辞典》.陕西科学技术出版社,1994,第72页. *

Also Published As

Publication number Publication date
US20220324019A1 (en) 2022-10-13
CN111377741A (zh) 2020-07-07
US20200198007A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
CN111511486B (zh) 增材制造的部件及其制造方法
US6485533B1 (en) Porous grinding stone and method of production thereof
EP1035089B1 (en) Porous body infiltrating method
US20240100736A1 (en) Shaping method and shaping powder material
KR102140641B1 (ko) 비정질 상을 갖는 금속 합금으로 부품을 생산하는 방법
JP2011524466A (ja) 金属浸潤炭化ケイ素チタンおよび炭化アルミニウムチタン体
KR20160143798A (ko) 비정질상 금속 합금으로부터 부품을 제조하기 위한 방법
US11311850B2 (en) Diamond composites by lithography-based manufacturing
JPH05311274A (ja) 自己支持性複合セラミック体
US7407523B2 (en) Cutting tool insert and method for producing the same
KR20170031688A (ko) 부품을 제조하기 위한 방법
CN111377741B (zh) 包括碳化硅的制品及其制造方法
JP7235044B2 (ja) SiC-Siコンポジット部材の製造方法およびSiC-Siコンポジット部材
TW202020177A (zh) 經添加物方式製造之耐火金屬構件,添加物方式製造方法及粉末
JP2020105067A (ja) 炭化珪素を含む物品および製造方法
JPWO2019123989A1 (ja) 粉末材料、付加製造用粉末材料、および粉末材料の製造方法
US20210362267A1 (en) Method of manufacturing metal articles
US6042627A (en) Aluminum-boron-carbon abrasive article and method to form said article
US4661461A (en) Composite of Si3 N4 by infiltration
Wang Advanced processing methods for microelectronics industry silicon wafer handling components
Pisani Binder jetting 3D printing of copper
JPH06503062A (ja) 複合一体構造型ラップ盤及びその製造方法
Balasubramani Indentation Creep and Hardness Response of Tin-Alumina Metal Matrix Composites
KR940010456B1 (ko) 스퍼터링 타깃 및 그 제조방법
Zhu et al. Fabrication of Cu-based functional parts by direct laser sintering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant