CN111375062A - 一种原位成胶化疗免疫联合治疗生物高分子药物组合物 - Google Patents

一种原位成胶化疗免疫联合治疗生物高分子药物组合物 Download PDF

Info

Publication number
CN111375062A
CN111375062A CN201811634727.XA CN201811634727A CN111375062A CN 111375062 A CN111375062 A CN 111375062A CN 201811634727 A CN201811634727 A CN 201811634727A CN 111375062 A CN111375062 A CN 111375062A
Authority
CN
China
Prior art keywords
component
freeze
sodium alginate
imiquimod
hydrochloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811634727.XA
Other languages
English (en)
Inventor
刘庄
巢宇
赵琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Baimai Biomedical Co ltd
Original Assignee
Suzhou Baimai Biomedical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Baimai Biomedical Co ltd filed Critical Suzhou Baimai Biomedical Co ltd
Priority to CN201811634727.XA priority Critical patent/CN111375062A/zh
Publication of CN111375062A publication Critical patent/CN111375062A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种原位成胶化疗免疫联合治疗生物高分子药物组合物,其含有:第一类组分为海藻酸盐,所述海藻酸盐能与体内的钙离子形成多孔凝胶,所述的海藻酸盐为海藻酸钠、海藻酸钾和海藻酸铵中的一种或多种;第二类组分为能引起免疫原性死亡的化疗药;第三类组分为免疫佐剂,属于化疗‑免疫药物组合物,从而提供新的能够产生协同抗癌作用,并且降低副作用,降低癌症转移概率,降低癌症复发概率,可以在有效杀灭原位肿瘤的同时通过免疫反应抑制、降低远端转移肿瘤的生长和肿瘤复发的概率。

Description

一种原位成胶化疗免疫联合治疗生物高分子药物组合物
技术领域
本发明涉及用作原位成胶化疗免疫联合治疗药物组合物,以及制备方法、应用。
背景技术
人体免疫系统是覆盖全身的防卫网络,保护身体的第一道防线为:皮肤、粘膜及其分泌液、细胞膜、呼吸道、胃肠道、尿道及肾脏;第二道防线为:吞噬作用、抗菌蛋白和炎症反应;第三道防线主要由免疫器官(扁桃体、淋巴结、胸腺、骨髓、和脾脏等)和免疫细胞(淋巴细胞、吞噬细胞等)借助血液循环和淋巴循环而组成的。免疫器官和免疫细胞功能的主要功能如下:一、保护:抵抗抗原的侵入,防止疾病的发生,维护人体的健康;二、清除:及时清除人体内的衰老的、死亡的、损伤的细胞;三、修补:随时识别和清除人体内产生的异常细胞(如肿瘤细胞)。
人体单纯的屏障和过滤机制并不能完全保护我们,身体有赖组成免疫系统的血细胞和蛋白质发挥防御能力。白血球负责在血管内巡逻,进行一系列防卫和免疫工作。例如释放抗体及净化血液。抗体为蛋白,全称免疫球蛋白,在血液及组织内循环以加强身体的防卫能力,是细胞免疫的主要成分,也助白血球发挥作用。淋巴细胞是可以记忆如何保护身体的特殊细胞,分为T淋巴细胞和B淋巴细胞,其中每种淋巴细胞又分为记忆细胞和效应细胞,其中效应B细胞的作用是产生免疫球蛋白在体液免疫中起作用,效应T细胞作用是与靶细胞结合并消灭它。记忆细胞的作用是记住抗原,在其下一次入侵时可以快速反应。所谓细胞免疫,是指白血球所担当的角色,而体液免疫则指抗体所扮演的角色,两个系统相互合作,互相引发对方的效能。其中,抗体(antibody)是指机体由于抗原的刺激而产生的具有保护作用的蛋白质。抗原(antigen,缩写Ag)是指能引起抗体生成的物质,它为任何可诱发免疫反应的物质。
一方面,化疗是目前临床治疗肿瘤的三种主要治疗方法之一,大部分的癌症患者都需要接受一定程度的化疗,对那些有转移倾向的或者已经转移的肿瘤,化疗更是主要的治疗手段。然而,传统化疗药对正常器官也有损伤,而且临床常用的化疗模式都是全身性给药,对病变部位并没有很好地选择性,化疗毒副作用非常大。
因此,进一步开发新的药物及给药方式,以便减少毒副作用,降低成本甚至增强疗效,是非常具有挑战性的难题。局部给药就是一种有效又安全的给药模式,将一系列的治疗试剂通过介入穿刺等手段直接给入病变部位往往能降低毒副作用并一定程度上增强疗效。然而这样一种给药方法对于肿瘤治疗来说往往局限于实体肿瘤,对于肿瘤的转移和复发并不能起到很好的效果。
如何能在局部治疗的同时又抑制肿瘤转移并预防其复发,一直是困扰全球的难题。
另一方面,正常情况下,免疫系统可以识别并清除肿瘤微环境中的肿瘤细胞,但肿瘤细胞能够采用不同策略,使人体的免疫系统受到抑制,不能正常的杀伤肿瘤细胞,从而在抗肿瘤免疫应答的各阶段得以幸存。肿瘤细胞的上述特征被称为免疫逃逸。肿瘤免疫治疗就是通过重新启动并维持肿瘤-免疫循环,恢复机体正常的抗肿瘤免疫反应,从而控制与清除肿瘤的一种治疗方法。包括单克隆抗体类免疫检查点抑制剂、治疗性抗体、癌症疫苗、细胞治疗和小分子抑制剂等。但是,大部分的化疗药都是针对快速增生的细胞,这里面包括肿瘤细胞和免疫细胞,化疗同时针对肿瘤细胞与免疫细胞,导致化疗与免疫疗法无法很好的联合。因此化疗药大多在杀伤肿瘤细胞的同时也会破坏人体正常的免疫系统从而造成一定的免疫抑制。所谓免疫抑制,是指对于免疫应答的抑制作用。也就是说大多数肿瘤患者在接受化疗之后,其自身免疫力也会随之下降,不能正常的发挥作用。导致,很多传统化疗药并不能很好地和肿瘤免疫治疗联合起来。
幸运的是,还是有一部分化疗由于不一样的作用原理能引起肿瘤细胞免疫原性死亡,从而激活机体的抗肿瘤免疫反应。化疗的主要目标是通过诱导细胞死亡来消灭癌细胞。近十年的研究显示,一些抗癌药物不仅能杀死癌细胞,还会引起患者机体的免疫应答。这一现象被称为免疫原性细胞死亡(immungentic cell death简称ICD)。研究人员指出,免疫原性细胞死亡可以激活免疫系统,使其特异性清除癌细胞。抗原呈递细胞吞噬死亡癌细胞之后,能引导免疫系统跟踪、识别和杀死其他癌细胞。因此,ICD类化疗药物在使得癌细胞免疫原性死亡之后,癌细胞残渣中的肿瘤相关抗原将被暴露给给免疫细胞,提供了帮助免疫细胞识别癌细胞的靶标,帮助免疫系统建立肿瘤细胞特异性的免疫反应。
然而,并不是有了肿瘤相关抗原免疫细胞就能有效的识别并杀死癌细胞。真正发挥作用,能追击消灭癌细胞的是免疫细胞中的杀伤性T细胞,所谓杀伤性T细胞是被激活的T细胞。T细胞需要抗原提呈细胞(antigen presenting cell,APC)摄取、处理并将这些抗原提呈给自己之后才能被激活真正发挥效应,而抗原提呈细胞的则需要免疫佐剂的帮助,才能更有效的将抗原提呈出去。因此,当我们的ICD类化疗药物在使癌细胞死亡变成肿瘤相关抗原之后,免疫佐剂的引入可以进一步刺激APC细胞对这些抗原的摄取和处理,并更有效提呈给T细胞,从而放大了这一抗肿瘤免疫反应。这就像是一个在体内产生肿瘤疫苗的方法,在ICD化疗药物和免疫佐剂的帮助下,原位肿瘤被杀死并变成了肿瘤疫苗。
困难的是,尽管产生了如此有效的免疫反应,还是不足以消灭患者体内残存的癌细胞。其原因是肿瘤有多种保护自己逃逸免疫的机制。“免疫检查点”是从英文“ImmuneCheckpoint”直接翻译过来的,“免疫检查点”其实是肿瘤逃避免疫系统对它攻击的关键点。免疫检查点是大量分布在免疫体系中的抑制性通路,对维持机体自身的耐受、免疫应答的时间和免疫应激的强弱起到关键的调节作用,这些检查点在免疫激活后开始参与反应,作为减少炎症的自然抑制反馈环路发挥作用,保障免疫反应对周围组织可能造成的损伤减少到最小,从而避免正常组织的附带受累,也是机体对自身保护的一种机制。在过去的二十年中,研究结果指出肿瘤正是利用了这种机制来逃逸免疫。免疫检查点是由配对的受体-配体分子共同组成,肿瘤细胞往往通过异常表达通常与抑制性免疫受体相互作用的配体,来保护“自己”免受免疫功能的消除。例如,肿瘤细胞利用了PD-1的启动开关—配体PD-L1。PD-L1在多种实体瘤中高表达,通过PD-L1与T细胞表面PD-1结合,就如同给T细胞使用了障眼法,对肿瘤细胞视而不见,或诱发T细胞的凋亡,使肿瘤细胞逃避了免疫系统的监视及杀伤,继续得以生存与扩散。
而基于免疫检查点抑制剂的免疫检查点阻断疗法(Immune CheckpointBlockade,ICB),可以帮助人体的免疫系统重新认识肿瘤细胞,进一步杀伤肿瘤。“免疫检查点抑制剂”这类药物,主要针对的就是肿瘤细胞逃避免疫攻击的几个关键环节,通过对这些环节的阻断,使得人体内的免疫细胞可以大量地增殖活化,并且顺利准确地找到肿瘤细胞,对肿瘤细胞进行精确地消灭。目前来看,“免疫检查点抑制剂”最常见的是两大类,一类叫做“CTLA-4”抑制剂,另一类就是大名鼎鼎的”PD-1/PD-L1”抑制剂。这些抑制剂,都是人工制造出来的蛋白质,这些蛋白质一经进入体内,就可以迅速地与存在于人体内的另一些蛋白质(这些蛋白质有的存在在免疫细胞上,有的存在在肿瘤细胞上)相结合,从而使免疫细胞具有了杀灭肿瘤细胞或者识别肿瘤细胞的能力。
除了抗体类的免疫检查点抑制剂外,近年来小分子类的免疫检查点抑制剂也备受关注。科学家们已经筛选出了一系列特异性识别免疫检查点受体(如PD1,PD-L1等)的小分子化合物,这些小分子化合物虽然目前还没有正式临床批准,但是多个化合物已经进入了临床试验,用于肿瘤免疫治疗。
吲哚胺2,3双加氧酶(indoleamine 2,3-dioxygenase,IDO),是人体色氨酸代谢的限速酶,该酶有两种亚型,分别为IDO-1和IDO-2,在分解色氨酸的代谢通路中起到重要作用。IDO通过抑制T细胞的效应器功能发挥其免疫调节作用:上调IDO蛋白的水平可以导致生长停滞和效应T细胞(细胞毒T细胞、辅助T细胞、NK细胞等)的凋亡;而效应T细胞数量下降自然就保护了癌细胞受到攻击。正因此,IDO通路成为了肿瘤免疫疗法的一个潜在靶点。各种抑制IDO通路的小分子IDO抑制剂被开发出来,在免疫治类中发挥类似于免疫检查点抑制剂的免疫调控功能,可单独使用或者和免疫检查点抗体(如anti-PD1)联合用于针对肿瘤的免疫治疗。
尽管以免疫检查点阻断为代表肿瘤免疫治疗近年来取得了令人鼓舞的成就,这一疗法还存在重要的局限性,包括临床响应率低(20%左右)、非特异性免疫反应带来的副作用等。特别是目前临床免疫检查点阻断疗法的临床响应率低,意味着大部分患者对于这一代价昂贵的疗法是没有响应的。为了进一步提升肿瘤治疗的疗效和相应率,有必要改善现有疗法的用药途径,并发展针对肿瘤的化疗-免疫联合治疗实现协同效应。例如,需要考虑如何更好的将ICD类化疗药物对肿瘤细胞的杀伤局限在肿瘤原位,避免对整个身体造成损害;如何更好的放大癌细胞死亡后其肿瘤相关抗原的免疫原性以获得更强的肿瘤特异性免疫反应;如何更有效结合免疫检查点抑制剂(如CTLA-4、PD-1/PD-L1抗体)或IDO抑制剂的作用从而进一步通过调节免疫平衡增强针对肿瘤的特异性免疫反应等一系列难题。这方面的新技术开发对癌症高发、而抗癌原研药研发较为落后的中国更是具有重要的现实意义。
发明内容
本发明要解决的技术问题是提供一种原位成胶化疗免疫联合治疗生物高分子药物组合物,研发新型化疗-免疫药物组合物,从而提供新的能够产生协同抗癌作用,并且降低副作用,降低癌症转移概率,降低癌症复发概率的抗癌药物组合物,其属于一种高效的肿瘤特异性免疫治疗方案,可以在有效杀灭原位肿瘤的同时通过免疫反应抑制、降低远端转移肿瘤的生长和肿瘤复发的概率。
本发明要解决的技术问题是提供一种原位成胶化疗免疫联合治疗生物高分子药物组合物,其含有:第一类组分为海藻酸盐,所述海藻酸盐能与体内的钙离子形成多孔凝胶,所述的海藻酸盐为海藻酸钠、海藻酸钾和海藻酸铵中的一种或多种;
第二类组分为能引起免疫原性死亡的化疗药;
第三类组分为免疫佐剂。
作为原位成胶化疗免疫联合治疗生物高分子药物组合物的一种优选方案:所述免疫佐剂为咪喹莫特(R837)、CpG寡核苷酸、单磷酰脂质A和瑞喹莫德中的一种或多种。
作为原位成胶化疗免疫联合治疗生物高分子药物组合物的一种优选方案:所述第二类组分能引起免疫原性死亡的化疗药为蒽环类药物如阿霉素,表阿霉素,米托蒽醌,奥沙利铂,环磷酰胺,硼替佐米,吉西他滨,五氟尿嘧啶和毒素如美登素中的一种或多种。
作为原位成胶化疗免疫联合治疗生物高分子药物组合物的一种优选方案:还包括有第四类组分免疫检查点抑制剂或IDO抑制剂,所述第四类组分免疫检查点抑制剂抗体通常有anti-CTLA-4、anti-PD-1和anti-PD-L1,小分子抑制剂类通常有CA-170、PM-327、BMS-8、BMS-37、BMS-202、BMS-230、BMS242、BMS-1001、BMS-1166、BMS-1001、BMS-1166和JQ1,肽类抑制剂有DPPA-1;
所述IDO抑制剂包括BMS-986205、IDO inhibitor 1、NLG919,NLG8189,PF-06840003,Epacadostat和4-苯基咪唑等小分子。
作为原位成胶化疗免疫联合治疗生物高分子药物组合物的一种优选方案:所述第一类组分为海藻酸钠,所述第二类组分为盐酸阿霉素;所述第三类组分为咪喹莫特,所述海藻酸钠,盐酸阿霉素及咪喹莫特的质量比为50~800比1~100比1~100。
作为原位成胶化疗免疫联合治疗生物高分子药物组合物的一种优选方案:所述海藻酸钠,盐酸阿霉素及咪喹莫特的质量比为200~400比10~75比10~75。
作为原位成胶化疗免疫联合治疗生物高分子药物组合物的一种优选方案:所述海藻酸钠浓度为5毫克每毫升以上。
制备原位成胶化疗免疫联合治疗生物高分子药物组合物的方法,所述方法包括:
将海藻酸钠和咪喹莫特盐酸盐冻干粉和盐酸阿霉素溶于水相溶液中,搅拌至溶液澄清透明,后将溶液冻干得到组合物冻干粉;
或者,将海藻酸钠和盐酸阿霉素溶于水相溶液,搅拌至溶液澄清透明,后冻干得到冻干粉,与咪喹莫特盐酸盐冻干粉通过固体与固体震荡混合均匀得到组合物冻干粉;
或者,将阿霉素盐酸盐和咪喹莫特盐酸盐溶于水相溶液中,搅拌至溶液澄清透明,后将海藻酸钠水相溶液中,滴入不断搅拌的混合溶液,保证混合液澄清透明没有絮状沉淀,将混合液取出冻干得到组合物冻干粉。
作为原位成胶化疗免疫联合治疗生物高分子药物组合物的一种优选方案:所述第一类组分为海藻酸钠,所述第二类组分为奥沙利铂;所述第三类组分为咪喹莫特盐酸盐,所述海藻酸钠,奥沙利铂及咪喹莫特的质量比为50~800比1~75比1~100。
作为原位成胶化疗免疫联合治疗生物高分子药物组合物的一种优选方案:所述海藻酸钠,奥沙利铂及咪喹莫特的质量比为200~400比10~75比10~75。
制备所述的原位成胶化疗免疫联合治疗生物高分子药物组合物的方法,所述方法包括:
将海藻酸钠和咪喹莫特盐酸盐冻干粉和奥沙利铂溶于水相溶液中,搅拌至溶液澄清透明后将溶液冻干得到组合物冻干粉;
或者,将海藻酸钠和奥沙利铂溶于水相溶液搅拌至溶液澄清透明后冻干得到冻干粉,然后再与咪喹莫特盐酸盐冻干粉通过固固震荡混合均匀得到组合物冻干粉。
或者,将奥沙利铂和咪喹莫特盐酸盐溶于水相溶液中,搅拌至溶液澄清透明,后将海藻酸钠溶于水相溶液中,滴入不断搅拌的混合溶液,保证混合液澄清透明没有絮状沉淀,将混合液取出冻干得到组合物冻干粉。
作为原位成胶化疗免疫联合治疗生物高分子药物组合物的一种优选方案:所述第一类组分为海藻酸钠,所述第二类组分为五氟尿嘧啶;所述第三类组分为咪喹莫特盐酸盐;
或者,所述第一类组分为海藻酸钠,所述第二类组分为环磷酰胺;所述第三类组分为咪喹莫特盐酸盐。
作为原位成胶化疗免疫联合治疗生物高分子药物组合物的一种优选方案:第一类组分为海藻酸钠;第二类组分为盐酸阿霉素或奥沙利铂;和第三类组分为咪喹莫特盐酸盐;第四类组分为anti-PDL1抗体。
作为原位成胶化疗免疫联合治疗生物高分子药物组合物的一种优选方案:第一类组分为海藻酸钾或海藻酸铵;第二类组分为盐酸阿霉素或奥沙利铂;和第三类组分为咪喹莫特盐酸盐;第四类组分为anti-PDL1抗体。
一种原位成胶化疗免疫联合治疗生物高分子药物组合物,组成为:第一类组分为海藻酸盐,所述海藻酸盐能与体内的钙离子形成多孔凝胶,所述的海藻酸盐为海藻酸钠、海藻酸钾和海藻酸铵中的一种或多种;第二类组分为能引起免疫原性死亡的化疗药;第三类组分为免疫佐剂。
一种原位成胶化疗免疫联合治疗生物高分子药物组合物,组成为:第一类组分为海藻酸盐,所述海藻酸盐能与体内的钙离子形成多孔凝胶,所述的海藻酸盐为海藻酸钠、海藻酸钾和海藻酸铵中的一种或多种;第二类组分能引起免疫原性死亡的化疗药为蒽环类药物如阿霉素,表阿霉素,米托蒽醌,奥沙利铂,环磷酰胺,硼替佐米,吉西他滨,五氟尿嘧啶和毒素如美登素中的一种或多种;第三类组分为免疫佐剂,所述免疫佐剂为咪喹莫特(R837)、CpG寡核苷酸、单磷酰脂质A和瑞喹莫德中的一种或多种。
一种原位成胶化疗免疫联合治疗生物高分子药物组合物,组成为:第一类组分为海藻酸盐,所述海藻酸盐能与体内的钙离子形成多孔凝胶,所述的海藻酸盐为海藻酸钠、海藻酸钾和海藻酸铵中的一种或多种;第二类组分能引起免疫原性死亡的化疗药为蒽环类药物如阿霉素,表阿霉素,米托蒽醌,奥沙利铂,环磷酰胺,硼替佐米,吉西他滨,五氟尿嘧啶和毒素如美登素中的一种或多种;第三类组分为免疫佐剂,所述免疫佐剂为咪喹莫特(R837)、CpG寡核苷酸、单磷酰脂质A和瑞喹莫德中的一种或多种;
第四类组分免疫检查点抑制剂或IDO抑制剂,所述第四类组分免疫检查点抑制剂抗体通常有anti-CTLA-4、anti-PD-1和anti-PD-L1,小分子抑制剂类通常有CA-170、PM-327、BMS-8、BMS-37、BMS-202、BMS-230、BMS242、BMS-1001、BMS-1166、BMS-1001、BMS-1166和JQ1,肽类抑制剂有DPPA-1;
所述IDO抑制剂包括BMS-986205、IDO inhibitor 1、NLG919,NLG8189,PF-06840003,Epacadostat和4-苯基咪唑小分子。
一种原位成胶化疗免疫联合治疗生物高分子药物组合物,组成为:第一类组分为海藻酸钠,第二类组分为盐酸阿霉素;第三类组分为咪喹莫特,所述海藻酸钠,盐酸阿霉素及咪喹莫特的质量比为50~800比1~100比1~100。
本发明提供了一系列药物组合物。在这个组合物体系中,主要有四类组分,可以由第一类组分与其他几类组分根据实际情况进行不同组合,包括:
第一类组分:海藻酸钠类辅料,能与人体或动物体内钙离子等离子产生凝胶;
第二类组分:引起免疫原性死亡的化疗药;
第三类组分:免疫佐剂;
第四类组分:免疫检查点抑制剂或IDO抑制剂。
第一类组分,辅料,通常有海藻酸钠、海藻酸钾和海藻酸铵等,这类多糖在遇到钙离子等二价离子后会相互交联形成凝胶,因此当药物被包裹其中后,形成的凝胶能有效地缓释其中的药物,从而增强疗效,减弱副作用。
海藻酸钠是一种天然多糖,具有药物制剂辅料所需的稳定性、溶解性、粘性和安全性。海藻酸钠已经在食品工业和医药领域得到了广泛应用。海藻酸钠是应用最广泛的水溶性海藻酸盐。海藻酸钠遇到钙离子可迅速发生离子交换,生成凝胶,而人体或动物体内有充足的钙离子,因此,可以体内原位成胶。
而海藻酸钾和海藻酸铵两种海藻酸盐,虽然所含阳离子与海藻酸钠不同,但同样可以与钙离子交联形成多孔的凝胶,从而起到缓释药物的作用。目前海藻中提取的通常是海藻酸钠,所以海藻酸钠是更优选择。
第二类组分,能引起免疫原性死亡的化疗药,有蒽环类药物如阿霉素,表阿霉素,米托蒽醌等,还有奥沙利铂,环磷酰胺,硼替佐米,吉西他滨,五氟尿嘧啶和毒素如美登素等等。这些药物都已经被临床批准,并且近年来研究表明,这些药物会引起癌细胞免疫原性死亡,这些死亡的癌细胞会表达容易被免疫细胞尤其是抗原提呈细胞识别并摄取的钙网织蛋白,帮助免疫细胞识别肿瘤细胞,引起有效的抗肿瘤免疫反应。
第三类组分,免疫佐剂,简称佐剂,即非特异性免疫增生剂,指那些同抗原一起或预先注入机体内能增强机体对抗原的免疫应答能力或改变免疫应答类型的辅助物质。免疫佐剂种类很多,目前尚无统一的分类方法,应用比较多的是福氏佐剂和细胞因子佐剂。免疫佐剂的免疫生物学作用是增强免疫原性、增强抗体的滴度、改变抗体产生的类型、引起或增强迟发超敏反应,但免疫佐剂的具体作用机制尚未完全明了,不同佐剂作用的机制也不尽相同。通常有咪喹莫特(R837)、CpG寡核苷酸、单磷酰脂质A和瑞喹莫德等等,他们都是Toll样受体(Toll-like receptors简称TLR)的激动剂,能够帮助抗原提呈细胞提呈抗原,因此免疫佐剂可以将化疗产生的肿瘤相关抗原更好地提呈给T细胞,从而放大免疫反应。
第四类组分,免疫调控剂包括免疫检查点抑制剂或IDO抑制剂。免疫检查点抑制剂包括抗体类抑制剂或小分子抑制剂,抗体类抑制剂通常有anti-CTLA-4、anti-PD-1和anti-PD-L1,小分子抑制剂类通常有CA-170、PM-327、BMS-8、BMS-37、BMS-202、BMS-230、BMS242、BMS-1001、BMS-1166、BMS-1001、BMS-1166和JQ1,肽类抑制剂有DPPA-1。IDO抑制剂包括BMS-986205、IDO inhibitor 1、NLG919,NLG8189,PF-06840003,Epacadostat和4-苯基咪唑等小分子,能够抑制IDO酶从而增强抗原提呈细胞的作用。由于肿瘤细胞会欺骗免疫系统,逃逸免疫反应,所以需要这些抗体来抑制保护肿瘤的免疫反应,使得免疫细胞能更好地杀伤肿瘤细胞。
第一类组分辅料也可简称组分一;第二类组分ICD类化疗药物也可简称组分二;第三类组分免疫佐剂也可简称组分三;第四类组分免疫检查点抑制剂也可简称组分四。
冻干粉是在无菌环境下将药液冷冻成固态,抽真空将水分升华干燥而成的无菌粉注射剂。
组分一、组分二、组分三与组分四的混合药液与冻干制剂的制备过程如下。
本专利主要涉及到四类原料成分:第一类组分辅料海藻酸钠(固体粉末),第二类组分ICD类化疗药物(固体粉末),第三类组分免疫佐剂(固体粉末),第四类组分免疫检查点抑制剂(anti-CTLA-4、anti-PD-1或anti-PD-L1抗体,临床使用的商业化产品,以冻干粉或注射液形式为原料)。
制备方案一:将组分一辅料、组分二ICD类化疗药物、组分三免疫佐剂的固体粉末按一定比例混和后入大烧杯中,加入去离子水(或生理盐水、或磷酸缓冲溶液),在室温25摄氏度用搅拌桨以转速50到500转每分搅拌至溶液澄清透明;根据需要,将组分四免疫检查点抑制剂根据产品说明书配制成注射液,加入上述混和溶液中;将上述溶液搅拌均匀后,取出分瓶冻干。冻干粉复溶后,不能出现浑浊和絮状沉淀。
制备方案二:分别称取目标质量的组分一、组分二、组分三,分别加入去离子水(或生理盐水、或磷酸缓冲溶液)配制为三份独立的溶液;根据需要,将组分四根据产品说明书配制成注射液;将上述溶液以合适的体积比混合,室温25摄氏度用搅拌桨以转速50到500转每分搅拌至溶液均匀不浑浊,取出分瓶冻干。冻干粉复溶后,不能出现浑浊和絮状沉淀。方案一和方案二差别不大。
制备方案三:分别称取目标质量的组分一、组分二、组分三,分别加入去离子水(或生理盐水、或磷酸缓冲溶液)配制为三份独立的溶液;根据需要,将组分四根据产品说明书配制成注射液;对于含盐酸盐的ICD药物,需要先将组分二、组分三、组分四的溶液搅拌混合,并在搅拌过程中(25摄氏度,搅拌桨以转速50到300转每分)将组分一溶液缓慢滴入,至整个溶液搅拌均匀,相比于方案一和方案二,当组分二或组分三为盐酸盐类药物时,考虑到pH值对溶液稳定性的影响,需按该方案制备组合物,使得制备的组合物混合溶液没有絮状沉淀的现象,保证混合均匀,溶液澄清透明随后取出分瓶冻干。冻干粉复溶后,不会出现浑浊和絮状沉淀。
四类组分的混合药液与冻干制剂的使用方案说明。
使用方案一:将上述四类组分的组合物冻干粉针剂通过生理盐水复溶后,通过临床介入给药和直接穿刺给药的方式,将组合物溶液直接注射到患者肿瘤部位,注射时采用多点注射的方式,保证组合物溶液均匀充满整个肿瘤。在组合物注射入肿瘤后,首先,利用第一类组分海藻酸盐遇到钙离子会形成凝胶的特性,第一类组分在遇到组织内的钙离子后会快速凝胶化,形成多孔的网状交联结构,使得混合在海藻酸盐里的其他三类组分能够得到缓慢释放,从而增强其效果降低毒副作用;其次,第二类组分ICD化疗药不仅能有效地杀伤肿瘤细胞而且能使其产生免疫原性死亡,产生肿瘤相关抗原,激活肿瘤特异的免疫反应;再次,第三类组分免疫佐剂增强了抗原提呈细胞的能力进一步放大了相应的免疫反应;最后,利用第四类组分免疫检查点抑制剂或IDO抑制剂使得转移的肿瘤不能逃逸免疫反应,使得免疫治疗能更有效地杀伤肿瘤,从而抑制肿瘤的转移和复发。(实施例十二)
使用方案二:将上述第一、二、三类组分的组合物冻干粉针剂通过生理盐水复溶后,通过临床介入给药和直接穿刺给药的方式,将组合物溶液直接注射到患者肿瘤部位,注射时采用多点注射的方式,保证组合物溶液均匀充满整个肿瘤。该治疗方式推荐与第四类组分免疫检查点抑制剂联用:联用的方案包括在注射液中根据病人的个体情况加入免疫检查点抑制剂(anti-CTLA-4、anti-PD-1或anti-PD-L1抗体)或IDO抑制剂,一次性瘤内局部注射;也可以是在一、二、三类组分混和液注射的局部治疗后,静脉给药注射免疫检查点抑制剂。(实施例十二中参照例)
使用方案三(四类组分的组合物喷涂创口,然后喷涂钙离子溶液形成凝胶):肿瘤患者在正常手术切除病灶部位后,考虑到手术切除不能完全清除病灶部位的肿瘤细胞的问题,可以将上述四类组分的冻干粉针剂通过生理盐水复溶,然后用注射器或者喷瓶喷在手术切除后的创口部位,随后可以在该部位喷洒适量的氯化钙溶液使其凝胶化,最后在将创口缝合。该方案有助于消灭残存的癌细胞,并且能抑制肿瘤转移和复发。(实施例十六)
使用方案四(三类组分的组合物喷涂创口,然后喷涂钙离子溶液形成凝胶+再加第四类组分联合使用):肿瘤患者在正常手术切除病灶部位后,考虑到手术切除不能完全清除病灶部位的肿瘤细胞的问题,可以将上述第一、二、三类组分的冻干粉针剂通过生理盐水复溶,然后用注射器或者喷瓶喷在手术切除后的创口部位,随后可以在该部位喷洒适量的氯化钙溶液使其凝胶化,最后在将创口缝合。该方案有助于消灭残存的癌细胞,并且能抑制肿瘤转移和复发。该治疗方式推荐在治疗后与第四类组分免疫检查点抑制剂或IDO抑制剂联用:联用的方案包括在注射液中根据病人的个体情况加入免疫检查点抑制剂(anti-CTLA-4、anti-PD-1或anti-PD-L1抗体)或IDO抑制剂,一次性瘤内局部注射;也可以是在一、二、三类组分混和液注射的局部治疗后,静脉给药注射免疫检查点抑制剂。
采用本专利的技术方案,会具有如下的有益技术效果:
一:海藻酸盐是一种天然多糖,其本身安全无毒,生物相容性好,可以降解,是很好的生物材料。然而在医药领域,常用的使用方式是将海藻酸盐和钙离子在体外结合形成凝胶植入式材料,这样的使用方式既限制了其在体内的应用,往往需要配合手术或者介入,操作难度大,对患者造成的损伤大,又不利于联合药物治疗。因此,我们采用将海藻酸盐注射到肿瘤内部,利用肿瘤组织内自有的钙离子使海藻酸钠在肿瘤原位成胶,利用形成的交联网状结构缓释混合在海藻酸盐中的药物,缓释效果更好。该技术有广阔的使用前景,既可以使用注射器直接注射用于治疗肿瘤,操作简单,侵入性小;又可以使用喷雾器在手术后对伤口部位喷洒,配合手术清扫残留的癌细胞,有望针对不同的病人做个性化的治疗,且成本较低。
二:临床常规的化疗大多是静脉给药或是灌注式给药,该治疗方式没有很好的选择性和靶向性,对病灶和正常组织都有损伤,副作用大,患者会承受极大的生理和心理的伤害。并且,常规的化疗需要维持一定的血药浓度,使用剂量大,给药次数多,不仅大大增加了副作用,而且提高了给药的成本。我们采用直接肿瘤内给药的策略并配合凝胶缓释技术,使得化疗药更长时间停留在病灶部位,最大的发挥药物的作用,大大降低了药物对正常组织的损害。直接瘤内给药和缓释使得病灶内的有效药物浓度能长时间的保持在很高的范围,在保证药效的同时可以减少给药的次数,进一步降低副作用和成本。
三:该技术方案中提到的第三类组分免疫佐剂,在临床上还没有用来直接治疗肿瘤的先例。这些小分子免疫调节剂其本身并不具有抗病毒和抗肿瘤的效果,往往只是作为疫苗的辅助佐剂增强抗原的免疫原性。例如咪喹莫特(R873),通常是作为软膏制剂用来治疗成人外生殖器和肛周尖锐湿疣的药物,还没有在临床肿瘤治疗上使用。本专利的技术采用ICD化疗药和免疫佐剂一同注射的方式,在ICD药物杀伤肿瘤产生肿瘤抗原的同时,抗原和佐剂起到了类似肿瘤疫苗的作用,不仅可以抑制转移瘤,而且还能预防肿瘤复发。本专利的技术开创了免疫佐剂配合化疗药物直接治疗肿瘤的新策略。
四:目前,不管是科研前线还是临床上,免疫检查点抑制疗法都饱受关注。然而,尽管这类抗体在一些病人身上起到了奇迹般的效果,但是其有效性并不是百分之百。也就是说,针对不同的适应症不同的病人,检查点抑制剂的效果有待进一步研究。目前的研究表明,肿瘤可以分为热肿瘤和冷肿瘤,对于那些突变多,抗原表达高的肿瘤,往往检查点抑制疗法的效果显著。我们的方案,通过化疗杀死肿瘤提供抗原,又配合佐剂放大其免疫反应,意味着对大多数的肿瘤,本专利的方案都可以把其变成热肿瘤,大大提高检查点抑制剂的有效性。
五:本专利相关组分混合而成的药物组合物能够产生与众不同、意想不到的协同抗癌作用,并且能够降低常规治疗的副作用,降低癌症转移概率,降低癌症复发概率,提供了一种高效的肿瘤特异性免疫治疗方案,可以在有效杀灭原位肿瘤的同时通过免疫反应抑制、降低远端转移肿瘤的生长和肿瘤复发的概率,能够在相对控制成本的前提下,有助于患者延长生存周期,提高生活质量。
附图说明
图1是实施例一中海藻酸钠与咪喹莫特盐酸盐组合物冻干粉针剂的制备流程,以及其使用说明。
图2是实施例一中海藻酸钠与咪喹莫特盐酸盐组合物冻干粉针剂复溶成胶后的扫描电镜图片。
图3是实施例一中海藻酸钠浓度不同时的咪喹莫特药物释放曲线及数据统计。
图4是实施例一中咪喹莫特浓度不同时的咪喹莫特药物释放曲线及数据统计。
图5是实施例二中海藻酸钠与CpG寡核苷酸组合物冻干粉针剂复溶成胶后的扫描电镜图片。
图6是实施例二中海藻酸钠浓度不同时的CpG药物释放曲线及数据统计。
图7是实施例二中CpG浓度不同时的CpG药物释放曲线及数据统计。
图8是实施例三中海藻酸钠与盐酸阿霉素组合物冻干粉针剂复溶成胶后的扫描电镜图片。
图9是实施例三中海藻酸钠浓度不同时的盐酸阿霉素药物释放曲线及数据统计。
图10是实施例三中盐酸阿霉素浓度不同时的盐酸阿霉素药物释放曲线及数据统计。
图11是实施例四中海藻酸钠与奥沙利铂组合物冻干粉针剂复溶成胶后的扫描电镜图片。
图12是实施例四中海藻酸钠浓度不同时的奥沙利铂药物释放曲线及数据统计。
图13是实施例四中奥沙利铂浓度不同时的奥沙利铂药物释放曲线及数据统计。
图14是实施例五中海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐冻干粉针剂复溶成胶后的扫描电镜图片。
图15为实施例五中海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐冻干粉针剂复溶后流变性能测试。
图16为实施例六中海藻酸钠与奥沙利铂和咪喹莫特盐酸盐冻干粉针剂复溶成胶后的扫描电镜图片。
图17为实施例九中海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐以及anti-PDL1抗体冻干粉针剂复溶成胶后的扫描电镜图片。
图18为实施例九中海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐以及anti-PDL1抗体冻干粉针剂复溶后抗体活性检测。
图19为实施例十三中海藻酸钠和咪喹莫特盐酸盐组合物联合射频消融治疗和anti-PDL1抗体治疗在小鼠结肠癌肿瘤模型上肿瘤生长曲线及数据统计。
图20为实施例十三中海藻酸钠和咪喹莫特盐酸盐组合物联合HIFU治疗和anti-PDL1抗体治疗在小鼠结肠癌肿瘤模型上肿瘤生长曲线及数据统计。
图21为实施例十三中海藻酸钠和咪喹莫特盐酸盐组合物联合HIFU治疗和anti-PDL1抗体治疗在小鼠结肠癌肿瘤模型上引起第二次种植肿瘤的生长曲线及数据统计。
图22为实施例十四中海藻酸钠与奥沙利铂组合物冻干粉小鼠结肠癌治疗后肿瘤生长曲线及数据统计。
图23为实施例十四中海藻酸钠与奥沙利铂组合物冻干粉小鼠结肠癌治疗后小鼠体重曲线及数据统计。
图24为实施例十五中海藻酸钠与奥沙利铂和咪喹莫特盐酸盐以及anti-PDL1抗体在小鼠双边肿瘤模型上治疗后原位肿瘤生长曲线。
图25为实施例十五中海藻酸钠与奥沙利铂和咪喹莫特盐酸盐以及anti-PDL1抗体在小鼠双边肿瘤模型上治疗后远端肿瘤生长曲线及数据统计。
图26为实施例十五中海藻酸钠与奥沙利铂和咪喹莫特盐酸盐以及anti-PDL1抗体在小鼠双边肿瘤模型上治愈后再次接种肿瘤后的肿瘤生长曲线及数据统计。
图27为实施例十六中海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐以及anti-PDL1抗体在小鼠原位乳腺癌肿瘤模型上治疗后小鼠荧光成像的数据。
图28为实施例十七中海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐以及anti-PDL1抗体在小鼠脑癌模型上治疗后肿瘤生长曲线及数据统计。
图29为实施例十八中海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐以及anti-PDL1抗体在小鼠肿瘤手术切除模型上治疗后小鼠荧光成像的数据。
具体实施例
实施例一:海藻酸钠(第一类组分)与咪喹莫特(第三类组分)盐酸盐组合物冻干粉针剂的制备以及使用
步骤一:咪喹莫特(第三类组分)盐酸盐的制备。称取咪喹莫特50~100毫克于50毫升玻璃混和容器中,向其中加入1毫升1M稀盐酸,待白色粉末状的咪喹莫特充分溶解至无色透明后加入去离子水稀释,使得咪喹莫特的终浓度为2.5~5毫克每毫升。将溶液冻干,获得咪喹莫特盐酸盐冻干粉。该步骤目的是使得不溶于水的咪喹莫特变成溶于水的盐酸盐形式。需足够长的冻干时间已确保盐酸残留的完全去除。
步骤二:海藻酸钠(第一类组分)与咪喹莫特(第三类组分)盐酸盐组合物冻干粉针剂的制备,可以采用如下三种方法。
方法一:称取海藻酸钠10~80毫克和咪喹莫特盐酸盐冻干粉0.1~10毫克溶于1毫升水相溶液中,用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明后,温度保持在20~40摄氏度,pH在~6.5。将溶液冻干得到组合物冻干粉针剂。
方法二:称取海藻酸钠10~80毫克溶于1毫升水相溶液,用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明后,冻干得到冻干粉针剂,然后与0.1~10毫克咪喹莫特盐酸盐冻干粉通过固体与固体震荡混合均匀得到组合物冻干粉针剂。
方法三将0.1~10毫克咪喹莫特盐酸盐冻干粉溶于1毫升水相溶液,用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明,后将海藻酸钠10~80毫克溶于水相溶液中,以体积比1比20滴入不断搅拌的咪喹莫特盐酸盐溶液,保证混合液澄清透明没有絮状沉淀。待海藻酸钠溶液全部加完后,将混合液取出冻干得到组合物冻干粉针剂。
图1为海藻酸钠(第一类组分)与咪喹莫特(第三类组分)盐酸盐组合物冻干粉针剂的制备流程,以及其使用说明。
图2为图1所述方法制备的一种组合物冻干粉针剂成胶后的扫描电镜图片。从图中可以看出,组合物在冻干复溶后仍具备不错的成胶能力,并且从电镜图片中可以看出其成胶后有很多微米级别的孔道,对药物缓释有重要帮助。
步骤三:海藻酸钠(第一类组分)与咪喹莫特(第三类组分)盐酸盐组合物冻干粉针剂中咪喹莫特释放曲线。药物缓释载体是指让药物缓慢进入血液,减小血液药物浓度,制备能够缓慢释放药物成分的缓释性长效药品在治疗中经常是非常需要的。药物释放曲线指的是我们在体外模拟组合物成胶后,其中包裹药物的释放情况。
如下为固定咪喹莫特用量,改变海藻酸钠用量,得到的释放曲线。
制备海藻酸钠(第一类组分)与咪喹莫特(第三类组分)盐酸盐组合物冻干粉针剂,其中海藻酸钠浓度为1、10、20、40和80毫克,咪喹莫特为2毫克,将组合物冻干粉针剂分别复溶于1毫升水相溶液并震荡至澄清透明,后加入200微升5毫克每毫升氯化钙溶液使其成胶,加入氯化钙的原因是要在体外模拟组合物注射入肿瘤后遇到钙离子的成胶后缓释药物的情况,并将该胶体浸泡浸泡在1毫升磷酸缓冲溶液中搅拌,在第0、0.25、0.5、1、2、4、8天测定磷酸缓冲溶液中药物的含量既为咪喹莫特的释放。
图3为海藻酸钠浓度不同时的咪喹莫特药物释放曲线及统计表格,从图中可知,在海藻酸钠浓度为5毫克每毫升及其以上时,咪喹莫特有一个明显的缓释现象,所以组合物中海藻酸钠的浓度优选为5毫克每毫升到80毫克每毫升。海藻酸钠浓度为10毫克每毫升时,已经比较优化了,海藻酸钠浓度为20毫克每毫升时基本达到峰值,浓度再提高时,效果提升不明显了。
如下为固定海藻酸钠用量,改变咪喹莫特用量,得到的释放曲线。
制备海藻酸钠(第一类组分)与咪喹莫特(第三类组分)盐酸盐组合物冻干粉针剂,其中咪喹莫特浓度为1、2.5、5、7.5和10毫克(最大溶解度),海藻酸钠为20毫克,将组合物冻干粉针剂分别复溶于1毫升水相溶液并震荡至澄清透明,后加入5毫克每毫升氯化钙溶液使其成胶,并将该胶体浸泡在1毫升磷酸缓冲溶液中搅拌,在第0、0.25、0.5、1、2、4、8天测定磷酸缓冲溶液中药物的含量既为咪喹莫特的释放。
图4为咪喹莫特浓度不同时的咪喹莫特药物释放曲线及统计表格,从图中可知,在咪喹莫特浓度高于7.5毫克每毫升时,组合物在成胶时有明显的快速的药物释放,并且后续的释放也比低浓度时要快,然而缓释作用依然明显,所以组合物冻干粉针剂中咪喹莫特的浓度选为0.1~10毫克每毫升。这表明,不管咪喹莫特浓度高低,都是有效的,高浓度虽然释放会快,但是也有明显的缓释作用。
通过上述实验得到海藻酸钠与咪喹莫特盐酸盐的优选质量配比为50~800比1~100,更优选的质量配比为200~400比10~75。
实施例二:海藻酸钠(第一类组分)与CpG寡核苷酸(第三类组分)组合物冻干粉针剂
步骤一:海藻酸钠与CpG寡核苷酸组合物冻干粉针剂的制备
称取海藻酸钠10~80毫克和CpG寡核苷酸0.1~5毫克溶于1毫升水相溶液中,充分震荡至溶液澄清透明后将溶液冻干得到组合物冻干粉针剂。
图5为该组合物冻干粉针剂复溶成胶后的扫描电镜图片。从图中可以看出,组合物在冻干复溶后仍具备不错的成胶能力,并且从电镜图片中可以看出其成胶后有很多微米级别的孔道,对药物缓释有重要帮助。
步骤二:海藻酸钠与CpG寡核苷酸组合物冻干粉针剂中CpG释放曲线
如下为固定CpG寡核苷酸用量,改变海藻酸钠用量,得到的释放曲线。
制备海藻酸钠与CpG寡核苷酸组合物冻干粉针剂,其中海藻酸钠浓度为1、10、20和40毫克,CpG寡核苷酸为0.2毫克,将组合物冻干粉针剂分别复溶于1毫升水相溶液并震荡至澄清透明,后加入200微升5毫克每毫升氯化钙溶液使其成胶,并将该胶体浸泡在1毫升磷酸缓冲溶液中搅拌,在第0、0.25、0.5、1、2、4、8天测定磷酸缓冲溶液中药物的含量既为CpG寡核苷酸的释放。
图6为海藻酸钠浓度不同时的CpG药物释放曲线,从图中可知,在海藻酸钠浓度为20毫克及其以上时,CpG寡核苷酸有一个明显的缓释现象,所以组合物冻干粉针剂中海藻酸钠的浓度选为5毫克每毫升到80毫克每毫升。海藻酸钠浓度为1毫克每毫升时,效果不太明显,海藻酸钠浓度为10毫克每毫升时,效果已经比较优化了,海藻酸钠浓度为20毫克每毫升时基本达到峰值,浓度再提高时,效果提升不明显了。
如下为固定海藻酸钠用量,改变CpG寡核苷酸用量,得到的释放曲线。
制备海藻酸钠与CpG寡核苷酸组合物冻干粉针剂,其中CpG寡核苷酸浓度为0.1、0.25、0.5、1和2毫克,海藻酸钠为20毫克,将组合物冻干粉针剂分别复溶于1毫升水相溶液并震荡至澄清透明,后加入5毫克每毫升氯化钙溶液使其成胶,并将该胶体浸泡在1毫升磷酸缓冲溶液中搅拌,在第0、0.25、0.5、1、2、4、8天测定磷酸缓冲溶液中药物的含量既为CpG寡核苷酸的释放。
图7为CpG寡核苷酸浓度不同时的CpG药物释放曲线,从图8中可知,CpG寡核苷酸浓度高于1毫克每毫升时,出现了比较明显的急性释放,而后续的释放速度并没有太大变化,出于成本考虑,CpG寡核苷酸的价格差不多1万人民币/毫克,所以组合物冻干粉针剂中CpG寡核苷酸的浓度选为0.1~2毫克每毫升,优选为CpG寡核苷酸的浓度选为0.1~0.5毫克每毫升。
通过上述实验得到海藻酸钠与CpG寡核苷酸的最佳质量配比为50~800比1~20,更优选的质量配比为200~400比1~20。
实施例三:海藻酸钠(第一类组分)与盐酸阿霉素(第二类组分)组合物冻干粉针剂
步骤一:海藻酸钠与盐酸阿霉素组合物冻干粉针剂的制备:
方法一:称取海藻酸钠20~80毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液中,用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明,后将溶液冻干得到组合物冻干粉针剂。
方法二:将0.1~10毫克阿霉素盐酸盐溶于1毫升水相溶液,用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明,后将海藻酸钠10~80毫克溶于水相溶液中,以体积比1比20滴入不断搅拌的阿霉素盐酸盐溶液,保证混合液澄清透明没有絮状沉淀。待海藻酸钠溶液全部加完后,将混合液取出冻干得到组合物冻干粉针剂。
图8为该组合物冻干粉针剂复溶成胶后的扫描电镜图片。从图中可以看出,组合物在冻干复溶后仍具备不错的成胶能力,并且从电镜图片中可以看出其成胶后有很多微米级别的孔道,对药物缓释有重要帮助。
步骤二:海藻酸钠与盐酸阿霉素组合物冻干粉针剂中阿霉素释放曲线
制备海藻酸钠与盐酸阿霉素组合物冻干粉针剂,其中海藻酸钠浓度为1、10、20和40毫克,盐酸阿霉素为2毫克,将组合物冻干粉针剂分别复溶于1毫升水相溶液并震荡至澄清透明,后加入200微升5毫克每毫升氯化钙溶液使其成胶,并将该胶体浸泡在1毫升磷酸缓冲溶液中搅拌,在第0、0.25、0.5、1、2、4、8天测定磷酸缓冲溶液中药物的含量既为盐酸阿霉素的释放。
图9为海藻酸钠浓度不同时的盐酸阿霉素药物释放曲线,从图中可知,在海藻酸钠浓度为10毫克及其以上时,盐酸阿霉素有一个明显的缓释现象,所以组合物冻干粉针剂中海藻酸钠的浓度优选为5毫克每毫升到80毫克每毫升。
制备海藻酸钠与盐酸阿霉素组合物冻干粉针剂,其中盐酸阿霉素浓度为1、2.5、5、7.5和10毫克(最大溶解度),海藻酸钠为20毫克,将组合物冻干粉针剂分别复溶于1毫升水相溶液并震荡至澄清透明,后加入5毫克每毫升氯化钙溶液使其成胶,并将该胶体浸泡在1毫升磷酸缓冲溶液中搅拌,在第0、0.25、0.5、1、2、4、8天测定磷酸缓冲溶液中药物的含量既为盐酸阿霉素的释放。
图10为盐酸阿霉素浓度不同时的盐酸阿霉素药物释放曲线,从图中可知,盐酸阿霉素浓度高于7.5毫克时,出现了比较明显的快速释放,并且后续的释放也比低浓度时要快,然而缓释作用依然明显,所以组合物冻干粉针剂中阿霉素的浓度选为0.1~10毫克每毫升。
通过上述实验得到海藻酸钠与盐酸阿霉素的优选质量配比为50~800比1~100,更优选的质量配比为200~400比10~75。
实施例四:海藻酸钠(第一类组分)与奥沙利铂(第二类组分)组合物冻干粉针剂
步骤一:海藻酸钠与奥沙利铂组合物冻干粉针剂的制备
称取海藻酸钠10~80毫克和奥沙利铂1~7.5毫克溶于1毫升水相溶液中,用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明,后将溶液冻干得到组合物冻干粉针剂。
图11为该组合物冻干粉针剂复溶成胶后的扫描电镜图片。从图中可以看出,组合物在冻干复溶后仍具备不错的成胶能力,并且从电镜图片中可以看出其成胶后有很多微米级别的孔道,对药物缓释有重要帮助。
步骤二:海藻酸钠与奥沙利铂组合物冻干粉针剂中奥沙利铂释放曲线
制备海藻酸钠与奥沙利铂组合物冻干粉针剂,其中海藻酸钠浓度为1、10、20和40毫克,奥沙利铂为2毫克,将组合物冻干粉针剂分别复溶于1毫升水相溶液并震荡至澄清透明,后加入200微升5毫克每毫升氯化钙溶液使其成胶,并将该胶体浸泡在1毫升磷酸缓冲溶液中搅拌,在第0、0.25、0.5、1、2、4、8天测定磷酸缓冲溶液中药物的含量既为奥沙利铂的释放。
图12为海藻酸钠浓度不同时的奥沙利铂药物释放曲线,从图中可知,在海藻酸钠浓度为10毫克及其以上时,奥沙利铂有一个明显的缓释现象,所以组合物冻干粉针剂中海藻酸钠的浓度选为5毫克每毫升到80毫克每毫升。
制备海藻酸钠与奥沙利铂组合物冻干粉针剂,其中奥沙利铂浓度为1、2.5、5和7.5毫克(最大溶解度),海藻酸钠为20毫克,将组合物冻干粉针剂分别复溶于1毫升水相溶液并震荡至澄清透明,后加入5毫克每毫升氯化钙溶液使其成胶,并将该胶体浸泡在1毫升磷酸缓冲溶液中搅拌,在第0、0.25、0.5、1、2、4、8天测定磷酸缓冲溶液中药物的含量既为奥沙利铂的释放。
图13为奥沙利铂浓度不同时的奥沙利铂药物释放曲线,从图中可知,奥沙利铂浓度高于7.5毫克时,出现了比较明显的急性释放,出现了比较明显的急性释放,并且后续的释放也比低浓度时要快,然而缓释作用依然明显,所以组合物冻干粉针剂中奥沙利铂的浓度选为0.1~7.5毫克每毫升。
通过上述实验得到海藻酸钠与奥沙利铂的优选质量配比为50~800比1~75,更优选的质量配比为200~400比10~75。
实施例五:海藻酸钠(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特(第三类组分)盐酸盐冻干粉针剂
步骤一:海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐冻干粉针剂的制备
方法一(组分一、二、三溶于水相溶液中,搅拌,然后混合溶液冻干):称取海藻酸钠10~80毫克(第一类组分)和咪喹莫特(第三类组分)盐酸盐冻干粉0.1~10毫克和盐酸阿霉素(第二类组分)0.1~10毫克溶于1毫升水相溶液中,用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明,后将溶液冻干得到组合物冻干粉针剂。
方法二(组分一、二溶于水相溶液中,搅拌后混合溶液冻干得到冻干粉,与组分三的冻干粉固固混合):称取海藻酸钠(第一类组分)10~80毫克和盐酸阿霉素(第二类组分)0.1~10毫克溶于1毫升水相溶液,用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明,后冻干得到冻干粉,与0.1~10毫克咪喹莫特(第三类组分)盐酸盐冻干粉通过固体与固体震荡混合均匀得到组合物冻干粉针剂。
方法三(组分二、三溶于水相溶液中,搅拌后得到澄清溶液,将组分一的溶液按1:20滴入前述混合液中,然后将最终的混合液冻干后得到冻干粉):将0.1~10毫克阿霉素盐酸盐和0.1~10毫克咪喹莫特盐酸盐溶于1毫升水相溶液中,用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明,后将海藻酸钠20~80毫克溶于1毫升水相溶液中,以体积比1比20滴入不断搅拌的混合溶液,保证混合液澄清透明没有絮状沉淀。待海藻酸钠溶液全部加完后,将混合液取出冻干得到组合物冻干粉针剂。
该组合物中第一类组分、第二类组分和第三类组分的优选质量比为50~800比1~100比1~100,更优选的质量配比为200~400比10~75比10~75。。
图14为该组合物冻干粉针剂复溶成胶后的扫描电镜图片。从图中可以看出,组合物在冻干复溶后仍具备不错的成胶能力,并且从电镜图片中可以看出其成胶后有很多微米级别的孔道,对药物缓释有重要帮助。
步骤二:海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐冻干粉针剂复溶后流变性质的测定
将海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐冻干粉针剂溶解于1毫升磷酸缓冲溶液溶液中。分别检测20微升1,5,10和20毫克每毫升海藻酸钠的组合物与20微升10毫克每毫升的钙离子溶液混合后的流变力学性质。
图15为不同浓度海藻酸钠和阿霉素与咪喹莫特组合物冻干粉针剂复溶后在接触钙离子后的流变力学性质。从图中可以看出,当海藻酸钠浓度为1毫克每毫升时,其存储模量小于损耗模量,表现出流体的行为,当海藻酸钠浓度达到10毫克每毫升以上时,其存储模量大于损耗模量,表现出凝胶的行为,证明海藻酸钠在10毫克每毫升以上时遇到钙离子会形成胶体。
实施例六:海藻酸钠(第一类组分)与奥沙利铂(第二类组分)和咪喹莫特盐酸盐(第三类组分)冻干粉针剂
方法一:称取海藻酸钠10~80毫克和咪喹莫特盐酸盐冻干粉0.1~10毫克和奥沙利铂0.1~7.5毫克溶于1毫升水相溶液中,用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明后将溶液冻干得到组合物冻干粉针剂。
方法二:称取海藻酸钠10~80毫克和奥沙利铂0.1~7.5毫克溶于1毫升水相溶液用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明后冻干得到冻干粉,然后再与0.1~10毫克咪喹莫特盐酸盐冻干粉通过固固震荡混合均匀得到组合物冻干粉针剂。
方法三:将0.1~10毫克奥沙利铂和0.1~10毫克咪喹莫特盐酸盐溶于1毫升水相溶液中,用搅拌桨以50~300转每分的速度搅拌至溶液澄清透明,后将海藻酸钠20~80毫克溶于1毫升水相溶液中,以体积比1比20滴入不断搅拌的混合溶液,保证混合液澄清透明没有絮状沉淀。待海藻酸钠溶液全部加完后,将混合液取出冻干得到组合物冻干粉针剂。
该组合物中第一类组分、第二类组分和第三类组分的质量比为50~800比1~75比1~100,更优选的质量配比为200~400比10~75比10~75。。
图16为该组合物冻干粉针剂成胶后的扫描电镜图片。从图中可以看出,组合物在冻干复溶后仍具备不错的成胶能力,并且从电镜图片中可以看出其成胶后有很多微米级别的孔道,对药物缓释有重要帮助。
实施例七:海藻酸钠(第一类组分)与五氟尿嘧啶(第二类组分)和咪喹莫特盐酸盐(第三类组分)冻干粉针剂
方法一:称取海藻酸钠10~80毫克和五氟尿嘧啶1~5毫克和咪喹莫特盐酸盐0.1~10毫克溶于1毫升2毫克每毫升的氢氧化钠溶液中,充分震荡至溶液澄清透明后将溶液冻干得到组合物冻干粉针剂。
方法二:称取海藻酸钠10~80毫克和五氟尿嘧啶1~5毫克溶于1毫升水相溶液震荡至溶液澄清透明后冻干得到冻干粉与0.1~10毫克咪喹莫特盐酸盐冻干粉通过震荡混合均匀得到组合物冻干粉针剂。
实施例八:海藻酸钠(第一类组分)与环磷酰胺(第二类组分)和咪喹莫特盐酸盐(第三类组分)冻干粉针剂
方法一:称取海藻酸钠10~80毫克和环磷酰胺1~5毫克和咪喹莫特盐酸盐0.1~10毫克溶于1毫升水相溶液中,充分震荡至溶液澄清透明后将溶液冻干得到组合物冻干粉针剂。
方法二:称取海藻酸钠10~80毫克和环磷酰胺1~5毫克溶于1毫升水相溶液震荡至溶液澄清透明后冻干得到冻干粉与0.1~10毫克咪喹莫特盐酸盐冻干粉通过震荡混合均匀得到组合物冻干粉针剂。
实施例九:海藻酸钠(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及anti-PDL1抗体(第四类组分)冻干粉针剂
方法一:称取海藻酸钠10~80毫克和咪喹莫特盐酸盐冻干粉0.1~10毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液中,充分震荡至溶液澄清透明后加入100微克~5毫克anti-PDL1溶液混合均匀将溶液冻干得到组合物冻干粉针剂。
方法二:称取海藻酸钠10~80毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液震荡至溶液澄清透明后加入100微克~5毫克anti-PDL1溶液混合均匀冻干得到冻干粉与0.1~10毫克咪喹莫特盐酸盐冻干粉通过震荡混合均匀得到组合物冻干粉针剂。
图17为该组合物冻干粉针剂成胶后的扫描电镜图片。从图中可以看出,组合物在冻干复溶后仍具备不错的成胶能力,并且从电镜图片中可以看出其成胶后有很多微米级别的孔道,对药物缓释有重要帮助。
图18为抗体anti-PDL1冻干后的活性测试,从实验结果可以看出,冻干后anti-PDL1抗体结合细胞表面PDL1抗体流式所跑出的峰值和单纯的anti-PDL1抗体峰值一致,说明冻干并不影响anti-PDL1抗体的活性。
实施例十:海藻酸钠(第一类组分)与奥沙利铂(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及anti-PDL1抗体(第四类组分)冻干粉针剂
方法一:称取海藻酸钠10~80毫克和咪喹莫特盐酸盐冻干粉0.1~10毫克和奥沙利铂0.1~7.5毫克溶于1毫升水相溶液中,充分震荡至溶液澄清透明后加入100微克~5毫克anti-PDL1溶液混合均匀将溶液冻干得到组合物冻干粉针剂。
方法二:称取海藻酸钠10~80毫克和奥沙利铂0.1~10毫克溶于1毫升水相溶液震荡至溶液澄清透明后加入100微克~5毫克anti-PDL1溶液混合均匀冻干得到冻干粉与0.1~10毫克咪喹莫特盐酸盐冻干粉通过震荡混合均匀得到组合物冻干粉针剂。
实施例十一:其他海藻酸盐(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及以及anti-PDL1抗体(第四类组分)冻干粉针剂
制备:海藻酸钾(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及以及anti-PDL1抗体(第四类组分)冻干粉针剂
方法一:称取海藻酸钾10~80毫克和咪喹莫特盐酸盐冻干粉0.1~10毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液中,充分震荡至溶液澄清透明后加入100微克~5毫克anti-PDL1溶液混合均匀将溶液冻干得到组合物冻干粉针剂。
方法二:称取海藻酸钾10~80毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液震荡至溶液澄清透明,后加入100微克~5毫克anti-PDL1溶液混合均匀冻干得到冻干粉,然后与0.1~10毫克咪喹莫特盐酸盐冻干粉,通过固固震荡混合均匀得到组合物冻干粉针剂。
制备:海藻酸铵(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及以及anti-PDL1抗体(第四类组分)冻干粉针剂
方法一:称取海藻酸铵10~80毫克和咪喹莫特盐酸盐冻干粉0.1~10毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液中,充分震荡至溶液澄清透明后加入100微克~5毫克anti-PDL1溶液混合均匀将溶液冻干得到组合物冻干粉针剂。
方法二:称取海藻酸铵10~80毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液震荡至溶液澄清透明后加入100微克~5毫克anti-PDL1溶液混合均匀冻干得到冻干粉与0.1~10毫克咪喹莫特盐酸盐冻干粉通过震荡混合均匀得到组合物冻干粉针剂。
不同阳离子的海藻酸盐都能与其他三类组分构成良好的组合物,并仍具备成胶缓释的能力。
实施例十二:海藻酸盐(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及IDO抑制剂4-苯基咪唑(第四类组分)冻干粉针剂
制备:海藻酸钠(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及4-苯基咪唑(第四类组分)冻干粉针剂
方法一:称取海藻酸钠10~80毫克和咪喹莫特盐酸盐冻干粉0.1~10毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液中,充分震荡至溶液澄清透明后加入100微克~5毫克4-苯基咪唑溶液混合均匀将溶液冻干得到组合物冻干粉针剂。
方法二:称取海藻酸钠10~80毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液震荡至溶液澄清透明,后加入100微克~5毫克4-苯基咪唑溶液混合均匀冻干得到冻干粉,然后与0.1~10毫克咪喹莫特盐酸盐冻干粉,通过固固震荡混合均匀得到组合物冻干粉针剂。
制备:海藻酸钾(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及以及4-苯基咪唑(第四类组分)冻干粉针剂
方法一:称取海藻酸钾10~80毫克和咪喹莫特盐酸盐冻干粉0.1~10毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液中,充分震荡至溶液澄清透明后加入100微克~5毫克4-苯基咪唑溶液混合均匀将溶液冻干得到组合物冻干粉针剂。
方法二:称取海藻酸钾10~80毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液震荡至溶液澄清透明后加入100微克~5毫克4-苯基咪唑溶液混合均匀冻干得到冻干粉与0.1~10毫克咪喹莫特盐酸盐冻干粉通过震荡混合均匀得到组合物冻干粉针剂。
制备:海藻酸铵(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及以及4-苯基咪唑(第四类组分)冻干粉针剂
方法一:称取海藻酸铵10~80毫克和咪喹莫特盐酸盐冻干粉0.1~10毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液中,充分震荡至溶液澄清透明后加入100微克~5毫克4-苯基咪唑溶液混合均匀将溶液冻干得到组合物冻干粉针剂。
方法二:称取海藻酸铵10~80毫克和盐酸阿霉素0.1~10毫克溶于1毫升水相溶液震荡至溶液澄清透明后加入100微克~5毫克4-苯基咪唑溶液混合均匀冻干得到冻干粉与0.1~10毫克咪喹莫特盐酸盐冻干粉通过震荡混合均匀得到组合物冻干粉针剂。
如下为不同组合物的协同增效治疗效果相关实验及数据统计。
实施例十三:海藻酸钠(第一类组分)和咪喹莫特盐酸盐(第三类组分)组合物冻干粉针剂在结肠癌模型上的疗效研究
步骤一:海藻酸钠(第一类组分)和咪喹莫特盐酸盐(第三类组分)组合物冻干粉针剂联合射频消融治疗和免疫检查点抑制疗法anti-PDL1抗体的疗效研究。
在小鼠背部左右两端分别种植小鼠结肠癌肿瘤(左边视为原位肿瘤,右边视为远端肿瘤),并将荷瘤小鼠分为四组,每组5只做治疗实验。
第一组:左边原位肿瘤单独射频消融治疗(参照例);
第二组:左边原位肿瘤射频消融治疗后尾静脉注射anti-pdl1抗体(参照例);
第三组:左边原位肿瘤瘤内注射海藻酸钠和咪喹莫特盐酸盐组合物冻干粉针剂(实施例一)后射频消融治疗;
第四组:左边原位肿瘤瘤内注射海藻酸钠和咪喹莫特盐酸盐组合物冻干粉针剂(实施例一)后射频消融治疗加尾静脉注射anti-PDL1抗体治疗。
小鼠在经过不同的治疗后每隔两天用游标卡尺测量其右边远端肿瘤的长和宽,肿瘤的体积为(长乘以(宽的平方))除以2。实验结果表明,小鼠左边的原位肿瘤都被射频消融治疗所消灭,而第四组小鼠的右边远端肿瘤得到了明显的抑制,说明了海藻酸钠和咪喹莫特盐酸盐组合物在射频消融治疗后能更好地激起抗肿瘤免疫反应,并且和anti-PDL1抗体有很好的协同效果。(图19)
步骤二:海藻酸钠(第一类组分)和咪喹莫特盐酸盐(第三类组分)组合物冻干粉针剂联合高能聚焦超声刀(HIFU)和免疫检查点抑制疗法anti-PDL1抗体的疗效研究。
在小鼠背部左右两端分别种植小鼠结肠癌肿瘤(左边视为原位肿瘤,右边视为远端肿瘤),并将荷瘤小鼠分为四组,每组5只做治疗实验。
第一组:左边原位肿瘤单独HIFU治疗(参照例);
第二组:左边原位肿瘤HIFU治疗后尾静脉注射anti-pdl1抗体(参照例);
第三组:左边原位肿瘤瘤内注射海藻酸钠和咪喹莫特盐酸盐组合物冻干粉针剂(实施例一)后HIFU治疗;
第四组:左边原位肿瘤瘤内注射海藻酸钠和咪喹莫特盐酸盐组合物冻干粉针剂(实施例一)后HIFU治疗加尾静脉注射anti-PDL1抗体治疗。
小鼠在经过不同的治疗后每隔两天用游标卡尺测量其右边远端肿瘤的长和宽,肿瘤的体积为(长乘以(宽的平方))除以2。实验结果表明,小鼠左边的原位肿瘤都被HIFU治疗所消灭,而第四组小鼠的右边远端肿瘤得到了明显的抑制,说明了海藻酸钠和咪喹莫特盐酸盐组合物在HIFU治疗后能更好地激起抗肿瘤免疫反应,并且和anti-PDL1抗体有很好的协同效果。(图20)
步骤三:海藻酸钠(第一类组分)和咪喹莫特盐酸盐(第三类组分)组合物冻干粉针剂联合高能聚焦超声刀(HIFU)和免疫检查点抑制疗法anti-PDL1抗体引起免疫记忆效果研究。
将结肠癌荷瘤小鼠分为六组,每组5只。
第一组:生理盐水组;
第二组:尾静脉anti-PDL1抗体治疗(参照例);
第三组:单独HIFU治疗(参照例);
第四组:HIFU治疗后尾静脉anti-pdl1抗体治疗(参照例);
第五组:瘤内注射海藻酸钠和咪喹莫特盐酸盐组合物冻干粉针剂(实施例一)后HIFU治疗;
第六组:瘤内注射海藻酸钠和咪喹莫特盐酸盐组合物冻干粉针剂(实施例一)后HIFU治疗并尾静脉anti-PDL1抗体治疗。
在小鼠肿瘤被HIFU治疗所消除40天后,在这些经过不同治疗的小鼠身上再次种植结肠癌肿瘤细胞,用游标卡尺测量其右边远端肿瘤的长和宽,肿瘤的体积为(长乘以(宽的平方))除以2。实验结果表明,第五组和第六组小鼠再次种植的肿瘤生长明显比对照组要慢,受到显著抑制,第六组小鼠的肿瘤生长比第五组还要慢甚至有部分不再能长出肿瘤。说明海藻酸钠(第一类组分)和咪喹莫特盐酸盐(第三类组分)组合物冻干粉针剂联合高能聚焦超声刀(HIFU)和免疫检查点抑制疗法anti-PDL1抗体能显著引起小鼠的免疫记忆从而预防肿瘤复发。(图21)
实施例十四:海藻酸钠(第一类组分)和奥沙利铂(第二类组分)组合物冻干粉针剂在结肠癌模型上的疗效研究
将结肠癌荷瘤小鼠分为6组,每组5只做治疗实验。
第一组:小鼠分别瘤内注射生理盐水(参照例);
第二组:奥沙利铂(1.5毫克每千克体重)(单独化疗药参照例);
第三组:瘤内注射奥沙利铂与海藻酸钠组合物冻干粉针剂(0.375毫克每千克体重)(实施例四);
第四组:瘤内注射奥沙利铂与海藻酸钠组合物冻干粉针剂(0.75毫克每千克体重)(实施例四);
第五组:瘤内注射奥沙利铂与海藻酸钠组合物冻干粉针剂(1.5毫克每千克体重)(实施例四);
第六组:尾静脉注射奥沙利铂(3毫克每千克体重)(单独化疗药参照例)。
在瘤内注射后,每隔两天用游标卡尺测量肿瘤的长和宽,肿瘤的体积为(长乘以(宽的平方))除以2。从肿瘤生长曲线(图22)可以看出,瘤内注射海藻酸钠和奥沙利铂的组合物冻干粉针剂在0.75毫克千克体重的剂量时,其治疗效果已经超过了尾静脉注射3毫克每千克体重和单纯药物注射1.5毫克每千克体重;而瘤内注射海藻酸钠和奥沙利铂的组合物冻干粉针剂在1.5毫克千克体重的计量时,其肿瘤生长受到了明显的抑制,疗效显著。从小鼠的体重(图23)可以看出,尾静脉注射奥沙利铂组小鼠在前四天体重出现明显下降,说明静脉注射存在一定的毒副作用,而瘤内注射则没有表现出明显的毒副作用。明显看出采用本专利技术方案的组合物进行瘤内给药副作用比静脉给药低。
实施例十五:海藻酸钠(第一类组分)与奥沙利铂(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及anti-PDL1抗体(第四类组分)冻干粉针剂在双边肿瘤(左右两边各有一个肿瘤)模型上的疗效研究。
在小鼠背部左右两端分别种植小鼠结肠癌肿瘤(左边视为原位肿瘤,右边视为远端肿瘤),并将荷瘤小鼠分为7组,每组6只做联合免疫的治疗实验。
第一组:小鼠分别瘤内注射生理盐水(参照例);
第二组:奥沙利铂和咪喹莫特与anti-PDL1复合溶液(参照例);
第三组:海藻酸钠与奥沙利铂组合物冻干粉针剂(实施例四)联合anti-PDL1静脉注射(参照例);
第四组:瘤内注射海藻酸钠与奥沙利铂和anti-PDL1组合物冻干粉针剂(实施例四);
第五组:瘤内注射海藻酸钠与奥沙利铂和咪喹莫特组合物冻干粉针剂(实施例六);
第六组:瘤内注射海藻酸钠与奥沙利铂和咪喹莫特anti-PDL1组合物冻干粉针剂(实施例十);
第七组:海藻酸钠与奥沙利铂和咪喹莫特组合物冻干粉针剂(实施例六)联合anti-PDL1静脉注射(参照例)。
对左侧原位肿瘤进行注射在瘤内注射原位肿瘤后,对右侧远端肿瘤不进行注射,每隔两天用游标卡尺测量原位肿瘤和远端肿瘤的长和宽,肿瘤的体积为(长乘以(宽的平方))除以2。从原位肿瘤生长曲线和远端肿瘤生长曲线(图24和图25)可以看出,第6组和第7组小鼠的原位瘤和远端肿瘤都得到了有效的抑制,几乎不再生长。在第6组和第7组小鼠存活两个月后,再次种植结肠癌细胞,发现肿瘤生长受到明显的抑制,说明有效的防止了肿瘤的复发(图26)。
实施例十六:海藻酸钠(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及anti-PDL1抗体(第四类组分)冻干粉针剂在乳腺癌转移瘤模型上的疗效研究
将乳房垫原位肿瘤4T1乳腺癌的小鼠分为6组,每组6只做转移瘤模型的治疗实验。
第一组:小鼠分别瘤内注射生理盐水(参照例);
第二组:阿霉素和咪喹莫特盐酸盐与anti-PDL1抗体(参照例);
第三组:瘤内注射海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐组合物冻干粉针剂(实施例五);
第四组:瘤内注射海藻酸钠与盐酸阿霉素和anti-PDL1抗体组合物冻干粉针剂(实施例五);
第五组:瘤内注射海藻酸钠与阿霉素和咪喹莫特以及anti-PDL1抗体组合物冻干粉针剂(实施例九);
第六组:海藻酸钠与阿霉素和咪喹莫特盐酸盐组合物冻干粉针剂(实施例五)联合anti-PDL1抗体静脉注射(参照例)。
第一组对照组直接通过手术去除小鼠肿瘤。小鼠在第十五天进行治疗,并每隔五天拍摄小动物活体荧光成像。从实验结果可以看出,第五组和第六组都有很好的治疗效果。(图27)
实施例十七:海藻酸钠(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及anti-PDL1抗体(第四类组分)冻干粉针剂在小鼠脑癌上的疗效探究
将脑癌小鼠分为九组,每组六只做脑癌治疗实验。
第一组:小鼠颅内注射生理盐水(参照例);
第二组:小鼠腹腔注射替莫咗咪(参照例);
第三组:小鼠颅内注射咪喹莫特盐酸盐和anti-PDL1抗体以及海藻酸钠组合物(参照例);
第四组:小鼠颅内注射海藻酸钠与阿霉素组合物冻干粉针剂(实施例三);
第五组:小鼠颅内注射盐酸阿霉素和咪喹莫特盐酸盐以及anti-PDL1抗体组合物(参照例);
第六组:小鼠颅内注射海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐组合物冻干粉针剂(实施例五);
第七组:小鼠颅内注射海藻酸钠与盐酸阿霉素和anti-PDL1抗体组合物(参照例);
第八组:小鼠颅内注射海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐以及anti-PDL1抗体组合物冻干粉针剂(实施例九);
第九组:小鼠颅内注射海藻酸钠与盐酸阿霉素和咪喹莫特盐酸盐冻干粉针剂联用anti-PDL1抗体治疗(参照例)。
观察小鼠死亡情况。图28为小鼠的死亡率曲线,从图中可以看出,第八组和第九组小鼠存活时间比对照组长一倍,表明其治疗效果更佳。
实施例十八:海藻酸钠(第一类组分)与盐酸阿霉素(第二类组分)和咪喹莫特盐酸盐(第三类组分)以及anti-PDL1抗体(第四类组分)冻干粉针剂在小鼠肿瘤手术切除后模型上疗效研究
将皮下乳腺癌小鼠随机分为三组,每组六只做海藻酸钠与阿霉素和咪喹莫特以及anti-PDL1抗体复合凝胶治疗实验。小鼠在手术切除大部分皮下肿瘤(切除小鼠皮下肿瘤保留其癌旁皮肤和肌肉)后。
第一组不处理(参照例);
第二组单纯手术(参照例);
第三组手术后在创口部位涂抹海藻酸钠与阿霉素和咪喹莫特以及anti-PDL1抗体复合凝胶(实施例九)。
通过观察手术后肿瘤的转移和复发情况来判断治疗效果,通过小动物生物自发光成像来得出结论。从图29中可知,关键组第三组小鼠的肿瘤得到很好地抑制转移和复发的效果,证明了我们的海藻酸钠与阿霉素和咪喹莫特以及anti-PDL1抗体复合凝胶的作用。
对所公开的实施例的上述说明,使得本技术领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对于本领域技术人员而言将是显而易见的。本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理与特点相一致的最宽的范围。

Claims (18)

1.一种原位成胶化疗免疫联合治疗生物高分子药物组合物,其含有:第一类组分为海藻酸盐,所述海藻酸盐能与体内的钙离子形成多孔凝胶,所述的海藻酸盐为海藻酸钠、海藻酸钾和海藻酸铵中的一种或多种;
第二类组分为能引起免疫原性死亡的化疗药;
第三类组分为免疫佐剂。
2.根据权利要求1所述的原位成胶化疗免疫联合治疗生物高分子药物组合物,其特征在于:
所述免疫佐剂为咪喹莫特(R837)、CpG寡核苷酸、单磷酰脂质A和瑞喹莫德中的一种或多种。
3.根据权利要求1所述的原位成胶化疗免疫联合治疗生物高分子药物组合物,其特征在于:
所述第二类组分能引起免疫原性死亡的化疗药为蒽环类药物如阿霉素,表阿霉素,米托蒽醌,奥沙利铂,环磷酰胺,硼替佐米,吉西他滨,五氟尿嘧啶和毒素如美登素中的一种或多种。
4.根据权利要求1所述的原位成胶化疗免疫联合治疗生物高分子药物组合物,其特征在于:
还包括有第四类组分免疫检查点抑制剂或IDO抑制剂,所述第四类组分免疫检查点抑制剂抗体通常有anti-CTLA-4、anti-PD-1和anti-PD-L1,小分子抑制剂类通常有CA-170、PM-327、BMS-8、BMS-37、BMS-202、BMS-230、BMS242、BMS-1001、BMS-1166、BMS-1001、BMS-1166和JQ1,肽类抑制剂有DPPA-1;
所述IDO抑制剂包括BMS-986205、IDO inhibitor 1、NLG919,NLG8189,PF-06840003,Epacadostat和4-苯基咪唑等小分子。
5.根据权利要求1所述的原位成胶化疗免疫联合治疗生物高分子药物组合物,其特征在于:
所述第一类组分为海藻酸钠,所述第二类组分为盐酸阿霉素;所述第三类组分为咪喹莫特,所述海藻酸钠,盐酸阿霉素及咪喹莫特的质量比为50~800比1~100比1~100。
6.根据权利要求5所述的原位成胶化疗免疫联合治疗生物高分子药物组合物,其特征在于:
所述海藻酸钠,盐酸阿霉素及咪喹莫特的质量比为200~400比10~75比10~75。
7.根据权利要求5所述的原位成胶化疗免疫联合治疗生物高分子药物组合物,其特征在于:所述海藻酸钠浓度为5毫克每毫升以上。
8.制备根据权利要求5所述的原位成胶化疗免疫联合治疗生物高分子药物组合物的方法,所述方法包括:
将海藻酸钠和咪喹莫特盐酸盐冻干粉和盐酸阿霉素溶于水相溶液中,搅拌至溶液澄清透明,后将溶液冻干得到组合物冻干粉;
或者,将海藻酸钠和盐酸阿霉素溶于水相溶液,搅拌至溶液澄清透明,后冻干得到冻干粉,与咪喹莫特盐酸盐冻干粉通过固体与固体震荡混合均匀得到组合物冻干粉;
或者,将阿霉素盐酸盐和咪喹莫特盐酸盐溶于水相溶液中,搅拌至溶液澄清透明,后将海藻酸钠水相溶液中,滴入不断搅拌的混合溶液,保证混合液澄清透明没有絮状沉淀,将混合液取出冻干得到组合物冻干粉。
9.根据权利要求1所述的原位成胶化疗免疫联合治疗生物高分子药物组合物,其特征在于:
所述第一类组分为海藻酸钠,所述第二类组分为奥沙利铂;所述第三类组分为咪喹莫特盐酸盐,所述海藻酸钠,奥沙利铂及咪喹莫特的质量比为50~800比1~75比1~100。
10.根据权利要求1所述的原位成胶化疗免疫联合治疗生物高分子药物组合物,其特征在于:所述海藻酸钠,奥沙利铂及咪喹莫特的质量比为200~400比10~75比10~75。
11.制备根据权利要求9所述的原位成胶化疗免疫联合治疗生物高分子药物组合物的方法,所述方法包括:
将海藻酸钠和咪喹莫特盐酸盐冻干粉和奥沙利铂溶于水相溶液中,搅拌至溶液澄清透明后将溶液冻干得到组合物冻干粉;
或者,将海藻酸钠和奥沙利铂溶于水相溶液搅拌至溶液澄清透明后冻干得到冻干粉,然后再与咪喹莫特盐酸盐冻干粉通过固固震荡混合均匀得到组合物冻干粉。
或者,将奥沙利铂和咪喹莫特盐酸盐溶于水相溶液中,搅拌至溶液澄清透明,后将海藻酸钠溶于水相溶液中,滴入不断搅拌的混合溶液,保证混合液澄清透明没有絮状沉淀,将混合液取出冻干得到组合物冻干粉。
12.根据权利要求1所述的原位成胶化疗免疫联合治疗生物高分子药物组合物,其特征在于:所述第一类组分为海藻酸钠,所述第二类组分为五氟尿嘧啶;所述第三类组分为咪喹莫特盐酸盐;
或者,所述第一类组分为海藻酸钠,所述第二类组分为环磷酰胺;所述第三类组分为咪喹莫特盐酸盐。
13.根据权利要求1所述的原位成胶化疗免疫联合治疗生物高分子药物组合物,其特征在于:第一类组分为海藻酸钠;第二类组分为盐酸阿霉素或奥沙利铂;和第三类组分为咪喹莫特盐酸盐;第四类组分为anti-PDL1抗体。
14.根据权利要求1所述的原位成胶化疗免疫联合治疗生物高分子药物组合物,其特征在于:第一类组分为海藻酸钾或海藻酸铵;第二类组分为盐酸阿霉素或奥沙利铂;和第三类组分为咪喹莫特盐酸盐;第四类组分为anti-PDL1抗体。
15.一种原位成胶化疗免疫联合治疗生物高分子药物组合物,组成为:第一类组分为海藻酸盐,所述海藻酸盐能与体内的钙离子形成多孔凝胶,所述的海藻酸盐为海藻酸钠、海藻酸钾和海藻酸铵中的一种或多种;第二类组分为能引起免疫原性死亡的化疗药;第三类组分为免疫佐剂。
16.一种原位成胶化疗免疫联合治疗生物高分子药物组合物,组成为:第一类组分为海藻酸盐,所述海藻酸盐能与体内的钙离子形成多孔凝胶,所述的海藻酸盐为海藻酸钠、海藻酸钾和海藻酸铵中的一种或多种;第二类组分能引起免疫原性死亡的化疗药为蒽环类药物如阿霉素,表阿霉素,米托蒽醌,奥沙利铂,环磷酰胺,硼替佐米,吉西他滨,五氟尿嘧啶和毒素如美登素中的一种或多种;第三类组分为免疫佐剂,所述免疫佐剂为咪喹莫特(R837)、CpG寡核苷酸、单磷酰脂质A和瑞喹莫德中的一种或多种。
17.一种原位成胶化疗免疫联合治疗生物高分子药物组合物,组成为:第一类组分为海藻酸盐,所述海藻酸盐能与体内的钙离子形成多孔凝胶,所述的海藻酸盐为海藻酸钠、海藻酸钾和海藻酸铵中的一种或多种;第二类组分能引起免疫原性死亡的化疗药为蒽环类药物如阿霉素,表阿霉素,米托蒽醌,奥沙利铂,环磷酰胺,硼替佐米,吉西他滨,五氟尿嘧啶和毒素如美登素中的一种或多种;第三类组分为免疫佐剂,所述免疫佐剂为咪喹莫特(R837)、CpG寡核苷酸、单磷酰脂质A和瑞喹莫德中的一种或多种;
第四类组分免疫检查点抑制剂或IDO抑制剂,所述第四类组分免疫检查点抑制剂抗体通常有anti-CTLA-4、anti-PD-1和anti-PD-L1,小分子抑制剂类通常有CA-170、PM-327、BMS-8、BMS-37、BMS-202、BMS-230、BMS242、BMS-1001、BMS-1166、BMS-1001、BMS-1166和JQ1,肽类抑制剂有DPPA-1;
所述IDO抑制剂包括BMS-986205、IDO inhibitor 1、NLG919,NLG8189,PF-06840003,Epacadostat和4-苯基咪唑小分子。
18.一种原位成胶化疗免疫联合治疗生物高分子药物组合物,组成为:第一类组分为海藻酸钠,第二类组分为盐酸阿霉素;第三类组分为咪喹莫特,所述海藻酸钠,盐酸阿霉素及咪喹莫特的质量比为50~800比1~100比1~100。
CN201811634727.XA 2018-12-29 2018-12-29 一种原位成胶化疗免疫联合治疗生物高分子药物组合物 Pending CN111375062A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811634727.XA CN111375062A (zh) 2018-12-29 2018-12-29 一种原位成胶化疗免疫联合治疗生物高分子药物组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811634727.XA CN111375062A (zh) 2018-12-29 2018-12-29 一种原位成胶化疗免疫联合治疗生物高分子药物组合物

Publications (1)

Publication Number Publication Date
CN111375062A true CN111375062A (zh) 2020-07-07

Family

ID=71212984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811634727.XA Pending CN111375062A (zh) 2018-12-29 2018-12-29 一种原位成胶化疗免疫联合治疗生物高分子药物组合物

Country Status (1)

Country Link
CN (1) CN111375062A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021042777A1 (zh) * 2019-09-03 2021-03-11 苏州百迈生物医药有限公司 一种治疗肿瘤的多组分凝胶缓释药物组合物
CN112546226A (zh) * 2021-01-06 2021-03-26 苏州大学 生物发光工程化细菌组合物及其制备方法与应用
CN113663122A (zh) * 2021-08-24 2021-11-19 陕西科技大学 一种抗炎、抗菌、抗肿瘤的多功能水凝胶材料及其制备方法和应用
CN114681613A (zh) * 2020-12-30 2022-07-01 苏州百迈生物医药有限公司 一种原位成胶化疗免疫药物组合物及其制备方法
WO2022142739A1 (zh) * 2020-12-30 2022-07-07 苏州百迈生物医药有限公司 一种米托蒽醌组合物及其制备方法
WO2022143893A1 (zh) * 2020-12-30 2022-07-07 苏州百迈生物医药有限公司 一种膀胱灌注药物组合物及其制备方法和应用
CN115192721A (zh) * 2021-12-09 2022-10-18 苏州百迈生物医药有限公司 一种膀胱灌注药物复方制剂及其制备方法和应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021042777A1 (zh) * 2019-09-03 2021-03-11 苏州百迈生物医药有限公司 一种治疗肿瘤的多组分凝胶缓释药物组合物
CN112516073A (zh) * 2019-09-03 2021-03-19 苏州百迈生物医药有限公司 一种治疗肿瘤的多组分凝胶缓释药物组合物
CN114681613A (zh) * 2020-12-30 2022-07-01 苏州百迈生物医药有限公司 一种原位成胶化疗免疫药物组合物及其制备方法
WO2022142739A1 (zh) * 2020-12-30 2022-07-07 苏州百迈生物医药有限公司 一种米托蒽醌组合物及其制备方法
WO2022143893A1 (zh) * 2020-12-30 2022-07-07 苏州百迈生物医药有限公司 一种膀胱灌注药物组合物及其制备方法和应用
CN112546226A (zh) * 2021-01-06 2021-03-26 苏州大学 生物发光工程化细菌组合物及其制备方法与应用
CN113663122A (zh) * 2021-08-24 2021-11-19 陕西科技大学 一种抗炎、抗菌、抗肿瘤的多功能水凝胶材料及其制备方法和应用
CN115192721A (zh) * 2021-12-09 2022-10-18 苏州百迈生物医药有限公司 一种膀胱灌注药物复方制剂及其制备方法和应用
CN115192721B (zh) * 2021-12-09 2023-11-07 苏州百迈生物医药有限公司 一种膀胱灌注药物复方制剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110917345B (zh) 一种化疗免疫组合药物及其制备方法
CN111375064A (zh) 一种化疗免疫联合治疗的药物组合物
CN111375062A (zh) 一种原位成胶化疗免疫联合治疗生物高分子药物组合物
CN111375065A (zh) 一种用于肿瘤治疗的生物高分子药物组合物
WO2021042778A1 (zh) 一种治疗肿瘤的温敏型凝胶药物组合物
CZ308996A3 (cs) Kombinace dávkových množství farmaceutického prostředku pro léčení rakoviny u člověka, použití dávkových množství léčiva proti rakovině a kyseliny hyaluronové a farmaceutické prostředky
CN102309458A (zh) 海藻酸钠交联莫西沙星缓释微球、其制备方法和用途以及含有所述微球的血管靶向栓塞剂
US20230103552A1 (en) Systems and pharmaceutical compositions for treatment by direct injection of a targeted population of cells
WO2021042777A1 (zh) 一种治疗肿瘤的多组分凝胶缓释药物组合物
Liu et al. Immunogenic cell death-inducing chemotherapeutic nanoformulations potentiate combination chemoimmunotherapy
US8481075B2 (en) Preparation and application of biodegradable-material-made microsphere vascular embolus containing liposome-encapsulated cytokines
Chen et al. Melphalan-loaded methoxy poly (ethylene glycol)-poly (d, l-lactide) copolymer nanomicelles in the treatment of multiple myeloma
US20230248642A1 (en) Injectable high-drug-loaded nanocomposite gels and process for making the same
CN104324032B (zh) 抗结核药物三联复方微球血管靶向栓塞缓释剂及其制备方法和用途
CN110870918A (zh) 包含氨基酸类营养素和抗肿瘤化疗药物的药物组合物及其应用
CN109662968A (zh) 含A-失碳-5α雄甾烷化合物的升白制剂及其应用
US20140005199A1 (en) Implant for the controlled release of pharmaceutically active agents
CN102526714B (zh) 治疗肿瘤的药物组合物及其制备方法
CN110870913A (zh) 氨基酸类营养素作为疫苗佐剂的应用以及包含氨基酸营养素作为佐剂的疫苗
CN100431605C (zh) 一种抗癌药物组合物
CN100464783C (zh) 一种含抗肿瘤抗生素的抗癌药物组合物
CN101829062A (zh) 紫杉醇缓释微球及其制备方法
CN102698256B (zh) 治疗肿瘤的药物组合物及其制备方法
WO2022068925A1 (zh) 动物非致病性细胞相关组分的应用和包含该组分的药物组合物
CA3178926A1 (en) Synergistic anti-viral pharmaceutical composition containing targeting nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination