CN111370301A - 超大功率光阻玻璃芯片生产工艺 - Google Patents

超大功率光阻玻璃芯片生产工艺 Download PDF

Info

Publication number
CN111370301A
CN111370301A CN202010196198.0A CN202010196198A CN111370301A CN 111370301 A CN111370301 A CN 111370301A CN 202010196198 A CN202010196198 A CN 202010196198A CN 111370301 A CN111370301 A CN 111370301A
Authority
CN
China
Prior art keywords
photoresist
groove
glass
silicon wafer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010196198.0A
Other languages
English (en)
Other versions
CN111370301B (zh
Inventor
黄小锋
屠星宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Starsea Electronics Co ltd
Original Assignee
Changzhou Starsea Electronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Starsea Electronics Co ltd filed Critical Changzhou Starsea Electronics Co ltd
Priority to CN202010196198.0A priority Critical patent/CN111370301B/zh
Publication of CN111370301A publication Critical patent/CN111370301A/zh
Application granted granted Critical
Publication of CN111370301B publication Critical patent/CN111370301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0014Cleaning by methods not provided for in a single other subclass or a single group in this subclass by incorporation in a layer which is removed with the contaminants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及一种超大功率光阻玻璃芯片生产工艺,包括匀胶、一次光刻、沟槽腐蚀、HCl清洁、SIPOS、二次匀胶、二次光刻、玻璃钝化、LTO、三次匀胶、三次光刻、去氧化层和金属化、锯片裂片制得。采用该方法生产的尺寸为100—135mil的玻璃芯片工作功率大,工作稳定性好,反向漏电小,使用寿命长;采用HCl清洁,酸性气体可以有效去除沟槽腐蚀残留的金属离子,且避免后续SIPOS操作时需要升温,节能降耗,有利于环保。

Description

超大功率光阻玻璃芯片生产工艺
技术领域
本发明属于芯片加工技术领域,具体涉及一种超大功率光阻玻璃芯片生产工艺。
背景技术
GPP(玻璃钝化)芯片作为电力电子设备中必不可少的器件,随着现代设备设计性能的提升,对大功率的GPP芯片性能要求也越来越高。芯片的功率越大,反向电流越大,且发热越大,对其高温工作的稳定性越高。
而现有技术中的发功率芯片对应的芯粒尺寸大,传统刀刮工艺GPP芯片在封装过程中玻璃钝化层容易受损,工作在大电流条件时,受损的区域容易击穿导致二极管失效,因此一般尺寸不超过84mil,正向电流不超过3A;且刀刮工艺芯片只能稳定工作在125℃环境,随着工作时间的加长,高温漏电会逐步增大,存在安全隐患。
发明内容
本发明要解决的技术问题是:针对上述缺陷,本发明提供一种超大功率光阻玻璃芯片生产工艺,生产出的光阻玻璃芯片工作功率大,大功率工作条件下,工作稳定性好;增加掺氧多晶硅膜的保护,提高高温性能和可靠性;多层保护,可以对凹槽上边沿形成的鸟嘴及P-N结保护更加充分,沟槽中不存在玻璃,有利于切割裂片;在焊接面以外沉积二氧化硅,焊接时焊锡不会进入玻璃缝隙中,提高产品的可靠性。
本发明解决其技术问题采用的技术方案如下:该超大功率光阻玻璃芯片生产工艺包括以下步骤:
S1,匀胶:采用光刻胶将硅片P、N面进行涂覆保护;
S2,一次光刻:通过对硅片P面表面设置尺寸为100—135mil的光刻板对光刻胶进行曝光显影,完成一次光刻,外表面形成光刻图形,硅片上形成无光刻胶保护的沟槽腐蚀区;
S3,沟槽腐蚀:将硅片在低温混合酸中进行腐蚀,在光刻胶的保护下,硅片的P面进行选择性化学腐蚀,无光刻胶保护的沟槽腐蚀区会将P-N结刻蚀穿,P-N结表面腐蚀成镜面;
S4,HCl清洁:对腐蚀后的硅片通入HCl气体清洁,HCl气体冲刷沟槽腐蚀时引入的杂质离子,反应时气体压强为150—500mtorr,温度为500—650℃,时间为30—60min;
S5,SIPOS:在500—800℃,气压为100—750mtorr条件下,先向体系中通入SiH4,通入1—5min后向体系中同时通入SiH4与N2O,通入时间为60min—120min,硅片P+面沉积生成氧化层;
S6,二次匀胶:将光刻胶和玻璃粉混合的光阻玻璃均匀覆盖在完成SIPOS沉积后的硅片P+面和沟槽中;
S7,二次光刻:通过高精密定位的自动曝光机和喷淋式显定影,清除芯粒表面窗口面与沟槽中央残留的光阻玻璃;
S8,玻璃钝化:在400—600℃时烧去光刻胶;在750—900℃时,玻璃粉烧成玻璃,形成二极管芯片P-N结与鸟嘴的钝化保护层;
S9,LTO:在气压为100—750mtorr条件下,向体系中通入SiH4与O2,两者在硅片表面生成SiO2保护膜,所述SiO2保护膜覆盖在硅片P面和沟槽中;
S10,三次匀胶、三次光刻:烧结后形成的玻璃层和沟槽再次用光刻胶涂覆,再通过曝光显影实现光刻胶保护;
S11,去氧化层和金属化:去除芯粒窗口表面氧化层,然后在其表面金属化,即在硅片P+面和N+面镀上镍层,然后经过合金手段,使镍与硅反应形成欧姆接触,形成P+面和N+面的欧姆接触电电极。
S12,锯片裂片:在沟槽的中心线进行切割,切割后分裂成单个的玻璃钝化芯片。
该超大功率光阻玻璃芯片生产过程中,首次提出制备100—135mil的玻璃芯片,由于芯片尺寸越大,其高温性能越差,常规的光阻工艺稳定性能差,上述工艺采用HCl清洁,避免了采用水清洗后再用氮气烘干、排片造成的在常温水洗后续持续升温烘干造成的能源浪费,而且排片增加了人工成本,又不能洗去金属杂质;采用HCl清洁,酸性气体可以有效去除沟槽腐蚀残留的金属离子,且避免后续SIPOS操作时需要升温,节能降耗,有利于环保;增加掺氧多晶硅膜的保护,提高高温性能和可靠性;多层保护,可以对凹槽上边沿形成的鸟嘴及P-N结保护更加充分,沟槽中不存在玻璃,有利于切割裂片;采用连续通气的方式控制保护膜的成分和厚度,调整灵活,可以实现连续化生产;在焊接面以外沉积二氧化硅,焊接时焊锡不会进入玻璃缝隙中,提高产品的可靠性。
进一步的,所述S7二次光刻时喷淋式显定影所用的喷淋头与基片垂直,喷淋时的压强为15~20psi;流量为30~40mL/min,控制喷淋头喷淋角度、压强和流量,可以保证显定影时角度,提高产品的质量,保证在大功率工作条件下的高稳定性和可靠性。
进一步的,所述S11去氧化层和金属化中合金手段为在氮气保护下,反应温度为550—750℃,镀在硅上的镍层与硅反应生成镍硅合金。采用该条件的合金手段形成的镍硅合金,焊接结合紧密,欧姆接触电极的稳定性好,生产的超大功率光阻玻璃芯片可靠性好。
进一步的,所述S11去氧化层和金属化后,还包括S10-1,芯片测试,对金属化的硅片进行电性能测试,不合格的硅片打上墨点标记。
进一步的,所述S1匀胶、S6二次匀胶及S10三次匀胶采用的光刻胶颗粒为0.5μm—200μm。采用该目数的光刻胶,颗粒小,流动性能好,混合后的光阻玻璃能够均匀覆盖在整个硅片上,并将沟槽全部填充,同时曝光清晰度好
进一步的,所述S3沟槽腐蚀中的混合酸为氢氟酸和硝酸与冰乙酸、硫酸中的一种或两种混合。
本发明的有益效果是:
(1)增加芯片工作功率,增加芯片尺寸增大,正向工作电流达15A,可以保证大功率工作条件下的稳定性,采用的新型光阻工艺生产出的产品稳定性好;采用HCl清洁,避免了采用水清洗后再用氮气烘干、排片造成的在常温水洗后续持续升温烘干造成的能源浪费,而且排片增加了人工成本,又不能洗去金属杂质;采用HCl清洁,酸性气体可以有效去除沟槽腐蚀残留的金属离子,且避免后续SIPOS操作时需要升温,节能降耗,有利于环保;增加掺氧多晶硅膜的保护,使其常规电性良好的情况下,提高高温性能与其他可靠性,并采用光阻玻璃进行保护,可以对凹槽上边沿形成的鸟嘴及P-N结保护更加充分,沟槽中不存在玻璃,有利于切割裂片;在焊接面以外沉积二氧化硅层,使得其在焊接时焊锡不会流进玻璃缝隙中,具有更高的可靠性。
2、控制喷淋头喷淋角度、压强和流量,可以保证显定影时角度,提高产品的质量,保证在大功率工作条件下的高稳定性和可靠性;采用该条件的合金手段形成的镍硅合金,焊接结合紧密,欧姆接触电极的稳定性好,生产的超大功率光阻玻璃芯片可靠性好。
3、采用该目数的光刻胶,颗粒小,流动性能好,混合后的光阻玻璃能够均匀覆盖在整个硅片上,并将沟槽全部填充,同时曝光清晰度好,便于生产,操作简便。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
超大功率光阻玻璃芯片生产工艺包括以下步骤:
S1,匀胶:采用光刻胶将硅片P、N面进行涂覆保护;
S2,一次光刻:通过对硅片P面表面设置尺寸为100mil的光刻板对光刻胶进行曝光显影,完成一次光刻,外表面形成光刻图形,硅片上形成无光刻胶保护的沟槽腐蚀区;
S3,沟槽腐蚀:将硅片在低温条件下,氢氟酸、硝酸、冰乙酸与硫酸制成的混合酸中进行腐蚀,在光刻胶的保护下,硅片的P面进行选择性化学腐蚀,无光刻胶保护的沟槽腐蚀区会将P-N结刻蚀穿,P-N结表面腐蚀成镜面;
S4,HCl清洁:对腐蚀后的硅片通入HCl气体清洁,HCl气体冲刷沟槽腐蚀时引入的杂质离子,反应时气体压强为200mtorr,温度为550℃,时间为30min;
S5,SIPOS:在550℃,气压为200mtorr条件下,先向体系中通入SiH4,通入2min后向体系中同时通入SiH4与N2O,通入时间为60min,硅片P+面沉积生成氧化层;
S6,二次匀胶:将光刻胶和玻璃粉混合的光阻玻璃均匀覆盖在完成SIPOS沉积后的硅片P+面和沟槽中;
S7,二次光刻:通过高精密定位的自动曝光机和喷淋式显定影,清除芯粒表面窗口面与沟槽中央残留的光阻玻璃;喷淋式显定影所用的喷淋头与基片垂直,喷淋时的压强为15psi;流量为30mL/min;
S8,玻璃钝化:在500℃时烧去光刻胶;在750℃时,玻璃粉烧成玻璃,形成二极管芯片P-N结与鸟嘴的钝化保护层;
S9,LTO:在气压为200mtorr条件下,向体系中通入SiH4与O2,两者在硅片表面生成SiO2保护膜,所述SiO2保护膜覆盖在硅片P面和沟槽中;
S10,三次匀胶、三次光刻:烧结后形成的玻璃层和沟槽再次用光刻胶涂覆,再通过曝光显影实现光刻胶保护;
S11,去氧化层和金属化:去除芯粒窗口表面氧化层,然后在其表面金属化,即在硅片P+面和N+面镀上镍层,然后经过合金手段,具体反应条件为,氮气氛围下,反应温度550℃,镀在硅上的镍层与硅反应生成镍硅合金使镍与硅反应形成欧姆接触,形成P+面和N+面的欧姆接触电电极;
S11-1,芯片测试,对金属化的硅片进行电性能测试,不合格的硅片打上墨点标记;
S12,锯片裂片:在沟槽的中心线进行切割,切割后分裂成单个的玻璃钝化芯片。
其中,所述S1匀胶、S5二次匀胶及S9三次匀胶采用的光刻胶颗粒为10μm。
实施例2
超大功率光阻玻璃芯片生产工艺包括以下步骤:
S1,匀胶:采用光刻胶将硅片P、N面进行涂覆保护;
S2,一次光刻:通过对硅片P面表面设置尺寸为120mil的光刻板对光刻胶进行曝光显影,完成一次光刻,外表面形成光刻图形,硅片上形成无光刻胶保护的沟槽腐蚀区;
S3,沟槽腐蚀:将硅片在低温条件下,氢氟酸、硝酸、冰乙酸与硫酸制成的混合酸中进行腐蚀,在光刻胶的保护下,硅片的P面进行选择性化学腐蚀,无光刻胶保护的沟槽腐蚀区会将P-N结刻蚀穿,P-N结表面腐蚀成镜面;
S4,HCl清洁:对腐蚀后的硅片通入HCl气体清洁,HCl气体冲刷沟槽腐蚀时引入的杂质离子,反应时气体压强为300mtorr,温度为600℃,时间为45min;
S5,SIPOS:在550℃,气压为300mtorr条件下,先向体系中通入SiH4,通入3min后向体系中同时通入SiH4与N2O,通入时间为80min,硅片P+面沉积生成氧化层;
S6,二次匀胶:将光刻胶和玻璃粉混合的光阻玻璃均匀覆盖在完成SIPOS沉积后的硅片P+面和沟槽中;
S7,二次光刻:通过高精密定位的自动曝光机和喷淋式显定影,清除芯粒表面窗口面与沟槽中央残留的光阻玻璃;喷淋式显定影所用的喷淋头与基片垂直,喷淋时的压强为18psi;流量为35mL/min;
S8,玻璃钝化:在500℃时烧去光刻胶;在800℃时,玻璃粉烧成玻璃,形成二极管芯片P-N结与鸟嘴的钝化保护层;
S9,LTO:在气压为300mtorr条件下,向体系中通入SiH4与O2,两者在硅片表面生成SiO2保护膜,所述SiO2保护膜覆盖在硅片P面和沟槽中;
S10,三次匀胶、三次光刻:烧结后形成的玻璃层和沟槽再次用光刻胶涂覆,再通过曝光显影实现光刻胶保护;
S11,去氧化层和金属化:去除芯粒窗口表面氧化层,然后在其表面金属化,即在硅片P+面和N+面镀上镍层,然后经过合金手段,具体反应条件为,氮气氛围下,反应温度600℃,镀在硅上的镍层与硅反应生成镍硅合金使镍与硅反应形成欧姆接触,形成P+面和N+面的欧姆接触电电极;
S11-1,芯片测试,对金属化的硅片进行电性能测试,不合格的硅片打上墨点标记;
S12,锯片裂片:在沟槽的中心线进行切割,切割后分裂成单个的玻璃钝化芯片。
其中,所述S1匀胶、S6二次匀胶及S10三次匀胶采用的光刻胶颗粒为100μm。
实施例3
超大功率光阻玻璃芯片生产工艺,包括以下步骤:
S1,匀胶:采用光刻胶将硅片P、N面进行涂覆保护;
S2,一次光刻:通过对硅片P面表面设置尺寸为135mil的光刻板对光刻胶进行曝光显影,完成一次光刻,外表面形成光刻图形,硅片上形成无光刻胶保护的沟槽腐蚀区;
S3,沟槽腐蚀:将硅片在低温条件下,氢氟酸、硝酸、冰乙酸与硫酸制成的混合酸中进行腐蚀,在光刻胶的保护下,硅片的P面进行选择性化学腐蚀,无光刻胶保护的沟槽腐蚀区会将P-N结刻蚀穿,P-N结表面腐蚀成镜面;
S4,HCl清洁:对腐蚀后的硅片通入HCl气体清洁,HCl气体冲刷沟槽腐蚀时引入的杂质离子,反应时气体压强为400mtorr,温度为650℃,时间为60min;
S5,SIPOS:在600℃,气压为400mtorr条件下,先向体系中通入SiH4,通入3min后向体系中同时通入SiH4与N2O,通入时间为90min,硅片P+面沉积生成氧化层;
S6,二次匀胶:将光刻胶和玻璃粉混合的光阻玻璃均匀覆盖在完成SIPOS沉积后的硅片P+面和沟槽中;
S7,二次光刻:通过高精密定位的自动曝光机和喷淋式显定影,清除芯粒表面窗口面与沟槽中央残留的光阻玻璃;喷淋式显定影所用的喷淋头与基片垂直,喷淋时的压强为20psi;流量为40mL/min;
S8,玻璃钝化:在500℃时烧去光刻胶;在800℃时,玻璃粉烧成玻璃,形成二极管芯片P-N结与鸟嘴的钝化保护层;
S9,LTO:在气压为400mtorr条件下,向体系中通入SiH4与O2,两者在硅片表面生成SiO2保护膜,所述SiO2保护膜覆盖在硅片P面和沟槽中;
S10,三次匀胶、三次光刻:烧结后形成的玻璃层和沟槽再次用光刻胶涂覆,再通过曝光显影实现光刻胶保护;
S11,去氧化层和金属化:去除芯粒窗口表面氧化层,然后在其表面金属化,即在硅片P+面和N+面镀上镍层,然后经过合金手段,具体反应条件为,氮气氛围下,反应温度750℃,镀在硅上的镍层与硅反应生成镍硅合金使镍与硅反应形成欧姆接触,形成P+面和N+面的欧姆接触电电极;
S11-1,芯片测试,对金属化的硅片进行电性能测试,不合格的硅片打上墨点标记;
S12,锯片裂片:在沟槽的中心线进行切割,切割后分裂成单个的玻璃钝化芯片。
其中,所述S1匀胶、S6二次匀胶及S10三次匀胶采用的光刻胶颗粒为50μm。
上述实施例1—实施例3生产的玻璃芯片尺寸大,尺寸可以达到110mil—135mil,正向电流可达到10A—18A,工作功率大,同时具有良好的工作稳定性,反向漏电小,使用寿命长,产品合格率高。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (6)

1.超大功率光阻玻璃芯片生产工艺,其特征在于,包括以下步骤:
S1,匀胶:采用光刻胶将硅片P、N面进行涂覆保护;
S2,一次光刻:通过对硅片P面表面设置尺寸为100—135mil的光刻板对光刻胶进行曝光显影,完成一次光刻,外表面形成光刻图形,硅片上形成无光刻胶保护的沟槽腐蚀区;
S3,沟槽腐蚀:将硅片在低温混合酸中进行腐蚀,在光刻胶的保护下,硅片的P面进行选择性化学腐蚀,无光刻胶保护的沟槽腐蚀区会将P-N结刻蚀穿,P-N结表面腐蚀成镜面;
S4,HCl清洁:对腐蚀后的硅片通入HCl气体清洁,HCl气体冲刷沟槽腐蚀时引入的杂质离子,反应时气体压强为150—500mtorr,温度为500—650℃;时间为30—60min。
S5,SIPOS:在500—800℃,气压为100—750mtorr条件下,先向体系中通入SiH4,通入1—5min后向体系中同时通入SiH4与N2O,通入时间为60min—120min,硅片P+面沉积生成氧化层;
S6,二次匀胶:将光刻胶和玻璃粉混合的光阻玻璃均匀覆盖在完成SIPOS沉积后的硅片P+面和沟槽中;
S7,二次光刻:通过高精密定位的自动曝光机和喷淋式显定影,清除芯粒表面窗口面与沟槽中央残留的光阻玻璃;
S8,玻璃钝化:在400—600℃时烧去光刻胶;在750—900℃时,玻璃粉烧成玻璃,形成二极管芯片P-N结与鸟嘴的钝化保护层;
S9,LTO:在气压为100—750mtorr条件下,向体系中通入SiH4与O2,两者在硅片表面生成SiO2保护膜,所述SiO2保护膜覆盖在硅片P面和沟槽中;
S10,三次匀胶、三次光刻:烧结后形成的玻璃层和沟槽再次用光刻胶涂覆,再通过曝光显影实现光刻胶保护;
S11,去氧化层和金属化:去除芯粒窗口表面氧化层,然后在其表面金属化,即在硅片P+面和N+面镀上镍层,然后经过合金手段,使镍与硅反应形成欧姆接触,形成P+面和N+面的欧姆接触电电极;
S12,锯片裂片:在沟槽的中心线进行切割,切割后分裂成单个的玻璃钝化芯片。
2.如权利要求1所述的超大功率光阻玻璃芯片生产工艺,其特征在于:所述S7二次光刻时喷淋式显定影所用的喷淋头与基片垂直,喷淋时的压强为15~20psi;流量为30~40mL/min。
3.如权利要求1所述的超大功率光阻玻璃芯片生产工艺,其特征在于:所述S11去氧化层和金属化中合金手段为在氮气保护下,反应温度为550—750℃,镀在硅上的镍层与硅反应生成镍硅合金。
4.如权利要求1所述的超大功率光阻玻璃芯片生产工艺,其特征在于:所述S11去氧化层和金属化后,还包括S11-1,芯片测试,对金属化的硅片进行电性能测试,不合格的硅片打上墨点标记。
5.如权利要求1所述的超大功率光阻玻璃芯片生产工艺,其特征在于:所述S1匀胶、S6二次匀胶及S10三次匀胶采用的光刻胶颗粒为0.5μm—200μm。
6.如权利要求1所述的超大功率光阻玻璃芯片生产工艺,其特征在于:所述S3沟槽腐蚀中的混合酸为氢氟酸和硝酸与冰乙酸、硫酸中的一种或两种混合。
CN202010196198.0A 2020-03-19 2020-03-19 超大功率光阻玻璃芯片生产工艺 Active CN111370301B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010196198.0A CN111370301B (zh) 2020-03-19 2020-03-19 超大功率光阻玻璃芯片生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010196198.0A CN111370301B (zh) 2020-03-19 2020-03-19 超大功率光阻玻璃芯片生产工艺

Publications (2)

Publication Number Publication Date
CN111370301A true CN111370301A (zh) 2020-07-03
CN111370301B CN111370301B (zh) 2023-11-21

Family

ID=71211985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010196198.0A Active CN111370301B (zh) 2020-03-19 2020-03-19 超大功率光阻玻璃芯片生产工艺

Country Status (1)

Country Link
CN (1) CN111370301B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361011A (zh) * 2021-12-15 2022-04-15 安徽芯旭半导体有限公司 Pg芯片光刻生产工艺
CN116959979A (zh) * 2023-07-14 2023-10-27 常州银河电器有限公司 耐高温的gpp芯片的生产工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040124483A1 (en) * 2002-12-31 2004-07-01 Aaron Partridge Gap tuning for surface micromachined structures in an epitaxial reactor
US20060154438A1 (en) * 2005-01-11 2006-07-13 Daisuke Kishimoto Method for manufacturing semiconductor device with trenches in substrate surface
US20100029070A1 (en) * 2008-08-01 2010-02-04 Fuji Electric Device Technology Co., Ltd. Method for producing semiconductor device
CN103943508A (zh) * 2014-03-27 2014-07-23 上海华力微电子有限公司 Pmos器件的制造方法
CN105826172A (zh) * 2016-05-13 2016-08-03 上海微世半导体有限公司 一种提升半导体芯片可靠性与良率的钝化保护方法
CN108365015A (zh) * 2017-12-29 2018-08-03 济南兰星电子有限公司 半导体二极管芯片及其制作方法
CN109308997A (zh) * 2017-07-26 2019-02-05 天津环鑫科技发展有限公司 一种硅片沟槽开槽方法
CN109755209A (zh) * 2019-01-11 2019-05-14 常州星海电子股份有限公司 一种高可靠光阻玻璃钝化芯片及其加工方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040124483A1 (en) * 2002-12-31 2004-07-01 Aaron Partridge Gap tuning for surface micromachined structures in an epitaxial reactor
US20060154438A1 (en) * 2005-01-11 2006-07-13 Daisuke Kishimoto Method for manufacturing semiconductor device with trenches in substrate surface
US20100029070A1 (en) * 2008-08-01 2010-02-04 Fuji Electric Device Technology Co., Ltd. Method for producing semiconductor device
CN103943508A (zh) * 2014-03-27 2014-07-23 上海华力微电子有限公司 Pmos器件的制造方法
CN105826172A (zh) * 2016-05-13 2016-08-03 上海微世半导体有限公司 一种提升半导体芯片可靠性与良率的钝化保护方法
CN109308997A (zh) * 2017-07-26 2019-02-05 天津环鑫科技发展有限公司 一种硅片沟槽开槽方法
CN108365015A (zh) * 2017-12-29 2018-08-03 济南兰星电子有限公司 半导体二极管芯片及其制作方法
CN109755209A (zh) * 2019-01-11 2019-05-14 常州星海电子股份有限公司 一种高可靠光阻玻璃钝化芯片及其加工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361011A (zh) * 2021-12-15 2022-04-15 安徽芯旭半导体有限公司 Pg芯片光刻生产工艺
CN116959979A (zh) * 2023-07-14 2023-10-27 常州银河电器有限公司 耐高温的gpp芯片的生产工艺
CN116959979B (zh) * 2023-07-14 2024-02-23 常州银河电器有限公司 耐高温的gpp芯片的生产工艺

Also Published As

Publication number Publication date
CN111370301B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
EP2171762B1 (en) Method for producing a silicon solar cell with a back-etched emitter as well as a corresponding solar cell
US8728922B2 (en) Method for producing monocrystalline N-silicon solar cells, as well as a solar cell produced according to such a method
TWI416751B (zh) 矽之表面處理
CN111370301A (zh) 超大功率光阻玻璃芯片生产工艺
CN102074486B (zh) 集成电路结构的形成方法
KR20010007482A (ko) 반도체의 구리 상호 연결 배선 패시베이팅 방법
CN109755209A (zh) 一种高可靠光阻玻璃钝化芯片及其加工方法
JP6343613B2 (ja) シリコン太陽電池の製造方法
JP2011238903A (ja) 太陽電池格子構造およびその製造方法
CN103747636A (zh) 镀金线路板引线回蚀的方法
JP2014522545A (ja) 印刷可能な媒体で金属粒子を含みかつエッチングをもたらし、より具体的には太陽電池の生産中にシリコンと接点を作り出す、印刷可能な媒体
CN111276393A (zh) 一种晶圆级封装瞬态电压抑制二极管的制造方法
JP3926822B2 (ja) 半導体装置及び半導体装置の製造方法
US4878099A (en) Metallizing system for semiconductor wafers
CN112259455B (zh) 一种改善带钝化层结构的Ag面产品金属残留的方法
CN115274884A (zh) 一种硅基太阳能电池金属电极的制备工艺
CN111489957A (zh) 二极管制备方法及二极管
CN113809188A (zh) 一种采用化学蚀刻裸露第一导电区的背接触异质结太阳能电池制造方法
CN113223959B (zh) 一种压接式二极管管芯制作方法
CN109768104B (zh) 自保式集成二极管电池的结构及其制备方法
CN113871467B (zh) 一种肖特基二极管及其制造方法
JP3116534B2 (ja) 集積回路装置のフリップチップ製造方法
EP3971993A1 (en) Manufacturing method for back structure of double-sided p-type sollar cell
CN113223960A (zh) 一种压接式晶闸管管芯及制作方法
KR19980060598A (ko) 반도체소자의 본딩 패드 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant