CN111364018A - 一种石墨烯铜基复合材料及其制备方法 - Google Patents
一种石墨烯铜基复合材料及其制备方法 Download PDFInfo
- Publication number
- CN111364018A CN111364018A CN202010134265.6A CN202010134265A CN111364018A CN 111364018 A CN111364018 A CN 111364018A CN 202010134265 A CN202010134265 A CN 202010134265A CN 111364018 A CN111364018 A CN 111364018A
- Authority
- CN
- China
- Prior art keywords
- composite material
- copper
- graphene
- based composite
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4418—Methods for making free-standing articles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4417—Methods specially adapted for coating powder
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种石墨烯铜基复合材料及其制备方法,采用表面浸蚀‑气相沉积‑超声清洗的方法制备出具有铜基体层‑过渡层‑石墨烯层复合结构的石墨烯铜复合材料,制备方法包括以下步骤:铜粉表面浸蚀;过滤、烘干并在石英舟内铺设;化学气相沉积炉的装配;化学气相沉积;超声清洗并过滤干燥。本发明的复合材料中铜基体与石墨烯之间具有优良的结合力,且石墨烯层具有完整、缺陷少、质量优的特点,所制备的复合材料抗拉强度、变形率、导电性能优异。
Description
技术领域
本发明属于铜基复合材料技术领域,具体涉及一种石墨烯铜基复合材料及其制备方法。
背景技术
随着科学技术和社会经济的飞速发展,传统铜及其合金材料的强度、硬度、耐磨性及热稳定性等越来越难以满足许多领域对铜材料的性能需求,从而促进了铜基复合材料的发展。
石墨烯是碳原子以sp2杂化连接的单原子层构成的新型二维原子晶体,其比表面积高达2600m2/g,强度可达130GPa,是钢的100多倍;同时石墨烯是目前为止导热系数最高的碳材料,导热系数可以达到5300W/mK,是多壁碳纳米管的一倍还多;另外石墨烯还是目前己知的电子迁移率最高的物质,它在室温下其电子迁移率可以达到15000 cm2/V•s,是硅材料的10倍,锑化铟的2倍以上。石墨烯因其高的导电导热性能和优异的力学性能被认为是理想的铜基复合材料增强体。
目前石墨烯与铜基体的界面结合能力是影响石墨烯铜基复合材料综合性能的主要因素,现有的石墨烯铜基复合材料主要制备方法有机械球磨法、分子级混合法、电化学沉积法和原位生长法等,机械球磨法和分子级混合法主要以氧化还原的石墨烯或电化学剥离的石墨烯为主,其复合材料的性能依赖增强体的性能,而通过氧化和电化学制备的石墨烯大都存在缺陷和氧化官能团,其本征性能不高;电化学沉积法过程复杂、产率低,且铜基体表面形成的石墨烯具有大量缺陷造成复合材料的性能降低;原位生长法存在石墨烯与铜基体相界面结合性差,导致石墨烯铜基复合材料的导电性能弱。
中国专利CN105714139A公开了一种铜-石墨烯复合材料及其制备方法,该发明中在氩气中将铜粉和石墨烯进行球磨,使两者混合均匀,后进行热压烧结,最后进行热等静压得到铜-石墨烯复合材料,难以实现石墨烯的均匀分散,其铜基体表面形成的石墨烯具有大量缺陷造成复合材料的性能降低。
发明内容
本发明的目的是提供一种石墨烯铜基复合材料及其制备方法,采用表面浸蚀-气相沉积-超声清洗的方法制备出铜基体层-过渡层-石墨烯层复合结构的石墨烯铜基复合材料,铜基体与石墨烯之间具有优良的结合力,且石墨烯层具有完整、缺陷少、质量优的特点,所制备的复合材料抗拉强度、变形率、导电性能优异。
本发明解决上述问题所采用的技术方案为:一种石墨烯铜基复合材料制备方法,包括以下步骤:
S1:选取铜粉,加入到浓度为4~30g/L的水合肼溶液中进行浸蚀,得到表面洁净、粗糙且活化的铜粉末。
S2:将S1浸蚀后的铜粉过滤、烘干,烘干温度为45~65℃,后平铺于方形石英舟内,铺设厚度为0.1~1mm,形成上下通透的堆积。
S3:将S2中准备好的石英舟放入化学气相沉积炉管中并放入隔热塞密封化学气相沉积炉,随后合上加热炉。
S4:调节S3中化学气相沉积炉的程序,先通乙烷并将流量调至10~35sccm,再通氩气将流量调至50~100sccm,随后通入氢气将流量调至5~15sccm,最后系统抽真空保持至25~50Pa;以15~45℃/min的升温速率从室温升温至1000~1150℃并保温40min,随后通入乙烷调整气压至250~350Pa保持8~15min,随后关闭乙烷通入氩气并抽真空至气压至30~50Pa并关闭加热随炉冷却至350~450℃时打开加热炉,取出炉管和石英舟,得到石墨烯铜基复合材料粉末。
S5:将S4中所获得的石墨烯铜基复合材料粉末放入无水乙醇中进行超声清洗,后过滤、干燥,即得到石墨烯铜基复合材料。
优选的,S1中所述铜粉的粒径为0.1~80μm。
优选的,S1中所述水合肼溶液为水合肼水溶液。
优选的,S1中所述浸蚀时间为20~600s。
优选的,S5中所述石墨烯铜基复合材料与无水乙醇的质量比为1:3。
优选的,S5中所述超声清洗时间为1~3h。
优选的,S5中所述干燥温度为40~60℃。
本发明的另一目的是提供一种石墨烯铜基复合材料,所述石墨烯铜基复合材料具有铜基体层-过渡层-石墨烯层的复合结构。
与现有技术相比,本发明的优点在于:
1、本发明对铜粉表面选用特定浓度的水合肼进行浸蚀,一方面在铜粉表面形成凸凹不平的粗糙界面,为石墨烯的化学气相沉积提供形核着陆点,另一方面通过水合肼活化铜粉表面,使铜粉表面分布大量离子键,在后期气相沉积时形成具有离子键存在的过渡层,该过渡层降低界面缺陷而具有良好的导电性能;同时该过渡层既可以缓解石墨烯与铜基体的热膨胀系数不同所引起的内应力,也提高了铜基体与石墨烯的结合力,能够大幅提高复合材料的强度;另外该过渡层在复合材料加工变形过程中能够起到缓冲协调变形作用,大幅提高材料的塑性。
2、相对于其他工艺制备的石墨烯层,本发明采用特定的碳源(乙烷)结合特定的化学气相沉积程序可以获得较为完整且质量优良的石墨烯层,缺陷大幅减少且质量稳定,可大幅度提升复合材料的导电性能。
3、本发明中采用气体碳比高的碳源(乙烷),同时在石英舟中铜粉铺设0.1~1mm厚且通透的堆积,可以在化学沉积时让气体碳源顺利扩散进粉末内部,在铜表面沉积形成较为完整的石墨烯;同时采用碳比高的碳源能够保障堆积内部少量气体碳源的情况下也具备足够的碳沉积下来形成石墨烯层。
附图说明
图1为本发明实施例1中石墨烯铜基复合材料的TEM图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1
一种石墨烯铜基复合材料制备方法,包括以下步骤:
S1:选取粒径为1μm铜粉,加入到4g/L的水合肼水溶液中浸蚀600 s。
S2:将S1浸蚀后的铜粉过滤、烘干,烘干温度为45℃,随后平铺于方形石英舟内,铺设厚度为0.1mm。
S3:将S2中准备好的石英舟放入化学气相沉积炉管中并放入隔热塞密封化学气相沉积炉,随后合上加热炉。
S4:调节S3中化学气相沉积炉的程序,先通乙烷并将流量调至10sccm,再通氩气将流量调至50sccm,随后通入氢气将流量调至5sccm,最后系统抽真空保持至25Pa;以15℃/min的升温速率从室温升至1000℃并保温40min,随后通入乙烷调整气压至250 Pa保持15min,随后关闭乙烷通入氩气并抽真空至气压至30Pa并关闭加热随炉冷却至350℃时打开加热炉,取出炉管和石英舟,得到石墨烯铜基复合材料粉末。
S5:将S4中所获得的石墨烯铜基复合材料粉末放入无水乙醇中进行超声清洗,随后过滤并在40℃下干燥,即得到石墨烯铜基复合材料。
图1是实施例1中石墨烯铜基复合材料的TEM图,可以看出铜表面覆盖完整的石墨烯层,所形成的石墨烯铜基之间颗粒均匀。
实施例2
一种石墨烯铜基复合材料制备方法,包括以下步骤:
S1:选取粒径为50μm铜粉,加入到20g/L的水合肼水溶液中浸蚀300s。
S2:将S1浸蚀后的铜粉过滤、烘干,烘干温度为50℃,随后平铺于方形石英舟内,铺设厚度为0.5mm。
S3:将S2中准备好的石英舟放入化学气相沉积炉管中并放入隔热塞密封化学气相沉积炉,随后合上加热炉。
S4:调节S3中化学气相沉积炉的程序,先通乙烷并将流量调至25sccm,再通氩气将流量调至80sccm,随后通入氢气将流量调至10sccm,最后系统抽真空保持至35Pa;以30℃/min的升温速率从室温升至1100℃并保温40min,随后通入乙烷调整气压至300Pa保持10min,随后关闭乙烷通入氩气并抽真空至气压至40Pa并关闭加热随炉冷却至400℃时打开加热炉,取出炉管和石英舟,得到石墨烯铜基复合材料粉末。
S5:将S4中所获得的石墨烯铜基复合材料粉末放入无水乙醇中进行超声清洗,随后过滤并在50℃下干燥,得到石墨烯铜基复合材料。
实施例3
一种石墨烯铜基复合材料制备方法,包括以下步骤:
S1:选取粒径为80μm铜粉,加入到30 g/L的水合肼水溶液中浸蚀20s。
S2:将S1浸蚀后的铜粉过滤、烘干,烘干温度为65℃,随后平铺于方形石英舟内,铺设厚度为1mm。
S3:将S2中准备好的石英舟放入化学气相沉积炉管中并放入隔热塞密封化学气相沉积炉,随后合上加热炉。
S4:调节S3中化学气相沉积炉的程序,先通乙烷并将流量调至35sccm,再通氩气将流量调至100sccm,随后通入氢气将流量调至15sccm,最后系统抽真空保持至50Pa;以45℃/min的升温速率从室温升至1150℃并保温40min,随后通入乙烷调整气压至350 Pa保持8min,随后关闭乙烷通入氩气并抽真空至气压至50Pa并关闭加热随炉冷却至450℃时打开加热炉,取出炉管和石英舟,得到石墨烯铜基复合材料粉末。
S5:将S4中所获得的石墨烯铜基复合材料粉末放入无水乙醇中进行超声清洗,随后过滤并在60℃下干燥,得到石墨烯铜基复合材料。
对比例1:
与实施例1的区别仅在于:缺少S1步骤的浸蚀。
对比例2:
与实施例2的区别仅在于:S2烘干温度为100℃,石英舟铺设厚度为2mm。
对比例3:
与实施例3的区别仅在于:S4步骤化学气相沉积炉程序为通乙烷并将流量调至50sccm,再通氩气将流量调至120sccm,随后通入氢气将流量调至30sccm,最后系统抽真空保持至100Pa;以50℃/min的升温速率从室温升至1200℃并保温40min,随后通入乙烷调整气压至500Pa保持20min,随后关闭乙烷通入氩气并抽真空至气压至100Pa并关闭加热随炉冷却至600℃时,打开加热炉。
对比例4:
与实施例3的区别仅在于:水合肼溶液的浓度为40g/L。
性能测试:
将实施例1~3和对比例1~4制备得到的石墨烯铜基复合材料进行拉曼光谱、X射线电子能谱、抗拉强度、变形率、导电率检测,性能测试结果如表1所示,具体检测方法如下:
拉曼光谱:利用光的散射,当激光入射到样品表面时会引起分子或晶格的振动而使能量发生变化,通过分析散射光波长的变化,从而得出物质的结构、含量等信息。仪器型号为:in Via-Reflex;激光波长为532nm。
X射线电子能谱:当X光打在样品上时,会产生光电子,通过能力分析器分析出光电子的动能,键能一般是固定的,通过分峰拟合找到对应的价态。X射线源主要为A1靶和Mg靶。仪器型号为:日本岛津AXIS ULTRA DLD。
抗拉强度、变形率测试:按照GB/T228.1-2010《金属材料拉伸试验第一部分:室温试验方法》在电子万能力学性能试验机上进行。
导电率测试:先测定电阻率,再将电阻率转换成导电率(%IACS),而电阻率测试方法按照GB/T3048.2-2007《电线电缆电性能试验方法第2部分:金属材料电阻率试验》在电阻测试仪上进行。
表1 性能测试结果表
由表1可知,本发明得到的石墨烯铜基复合材料中的石墨烯仅有微量缺陷,石墨烯质量优良,石墨烯和铜之间结合力较好。其中,从实施例1和对比例1可看出,铜粉表面需要浸蚀才能获得与石墨烯结合较强的过渡层,同时石墨烯缺陷少、质量高,抗拉强度、变形率及导电率都有明显提高;从实施例2和对比例2可看出,最佳烘干温度为45~65℃,铺设厚度为0.1~1mm,当烘干温度和铺设厚度不在此范围内,铜与石墨烯之间无法形成过渡层,所形成的石墨烯缺陷较多,质量低,抗拉强度、变形率及导电率都明显降低;从实施例3和对比例3可看出,当化学气相沉积炉程序范围不在本发明的范围内,则铜与石墨烯之间无法形成过渡层,所形成的石墨烯缺陷较多,质量低,抗拉强度、变形率及导电率都明显降低;从实施例3和对比例4可看出,当水合肼溶液的浓度不在本发明的范围内,则铜与石墨烯之间无法形成过渡层,所形成的石墨烯缺陷较多,质量低,抗拉强度、变形率及导电率都明显降低。
除上述实施例外,本发明还包括有其他实施方式,凡采用等同变换或者等效替换方式形成的技术方案,均应落入本发明权利要求的保护范围之内。
Claims (8)
1.一种石墨烯铜基复合材料制备方法,其特征在于:包括以下步骤:
S1:选取粒径为0.1~80μm铜粉,加入到浓度为4~30g/L的水合肼溶液中进行浸蚀;
S2:将S1浸蚀后的铜粉过滤、烘干,烘干温度为45~65℃,后平铺于方形石英舟内,铺设厚度为0.1~1 mm;
S3:将S2中准备好的石英舟放入化学气相沉积炉管中并放入隔热塞密封化学气相沉积炉,随后合上加热炉;
S4:调节S3中化学气相沉积炉的程序,先通乙烷并将流量调至10~35sccm,再通氩气将流量调至50~100sccm,随后通入氢气将流量调至5~15sccm,最后系统抽真空保持至25~50Pa;以15~45℃/min的升温速率从室温升至1000~1150℃并保温40min,后通入乙烷调整气压至250~350Pa保持8~15min,后关闭乙烷通入氩气并抽真空至气压至30~50Pa并关闭加热随炉冷却至350~450℃时打开加热炉,取出炉管和石英舟,获得石墨烯铜基复合材料粉末;
S5:将S4中所获得的石墨烯铜基复合材料粉末放入无水乙醇中进行超声清洗,后过滤、干燥,即获得石墨烯铜基复合材料。
2.根据权利要求1所述的石墨烯铜基复合材料制备方法,其特征在于:S1中所述铜粉的粒径为0.1~80μm。
3.根据权利要求1所述的石墨烯铜基复合材料制备方法,其特征在于:S1中所述水合肼溶液为水合肼水溶液。
4.根据权利要求1所述的石墨烯铜基复合材料制备方法,其特征在于:S1中所述浸蚀时间为20~600s。
5.根据权利要求1所述的石墨烯铜基复合材料制备方法,其特征在于:S5中所述石墨烯铜基复合材料与无水乙醇的质量比为1:3。
6.根据权利要求1所述的石墨烯铜基复合材料制备方法,其特征在于:S5中所述超声清洗时间为1~3h。
7.根据权利要求1所述的石墨烯铜基复合材料制备方法,其特征在于:S5中所述干燥温度为40~60℃。
8.一种根据权利要求1-7任一项所述的制备方法制备的石墨烯铜基复合材料,其特征在于:所述石墨烯铜基复合材料具有铜基体层-过渡层-石墨烯层的复合结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010134265.6A CN111364018B (zh) | 2020-03-02 | 2020-03-02 | 一种石墨烯铜基复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010134265.6A CN111364018B (zh) | 2020-03-02 | 2020-03-02 | 一种石墨烯铜基复合材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111364018A true CN111364018A (zh) | 2020-07-03 |
CN111364018B CN111364018B (zh) | 2021-10-08 |
Family
ID=71204248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010134265.6A Active CN111364018B (zh) | 2020-03-02 | 2020-03-02 | 一种石墨烯铜基复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111364018B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115505780A (zh) * | 2021-06-21 | 2022-12-23 | 上海新池能源科技有限公司 | 一种金属基石墨烯复合材料的制备方法及金属基石墨烯电触点 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013176680A1 (en) * | 2012-05-25 | 2013-11-28 | Empire Technology Development, Llc | Copper substrate for deposition of graphene |
CN103773985A (zh) * | 2014-02-26 | 2014-05-07 | 哈尔滨工业大学 | 一种高效原位制备石墨烯增强铜基复合材料的方法 |
CN103952588A (zh) * | 2014-05-08 | 2014-07-30 | 江西理工大学 | 高强高导石墨烯铜基复合材料及其制备方法 |
CN110846529A (zh) * | 2019-11-26 | 2020-02-28 | 江苏新奥碳纳米材料应用技术研究院有限公司 | 石墨烯增强铜复合材料的制备方法 |
-
2020
- 2020-03-02 CN CN202010134265.6A patent/CN111364018B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013176680A1 (en) * | 2012-05-25 | 2013-11-28 | Empire Technology Development, Llc | Copper substrate for deposition of graphene |
CN103773985A (zh) * | 2014-02-26 | 2014-05-07 | 哈尔滨工业大学 | 一种高效原位制备石墨烯增强铜基复合材料的方法 |
CN103952588A (zh) * | 2014-05-08 | 2014-07-30 | 江西理工大学 | 高强高导石墨烯铜基复合材料及其制备方法 |
CN110846529A (zh) * | 2019-11-26 | 2020-02-28 | 江苏新奥碳纳米材料应用技术研究院有限公司 | 石墨烯增强铜复合材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
巨佳等: "超声波辅助液相还原铜氨废液制备纳米铜粉", 《中国材料进展》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115505780A (zh) * | 2021-06-21 | 2022-12-23 | 上海新池能源科技有限公司 | 一种金属基石墨烯复合材料的制备方法及金属基石墨烯电触点 |
Also Published As
Publication number | Publication date |
---|---|
CN111364018B (zh) | 2021-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200231507A1 (en) | “MXene” PARTICULATE MATERIAL, SLURRY, SECONDARY BATTERY, TRANSPARENT ELECTRODE AND PRODUCTION PROCESS FOR “MXene” PARTICULATE MATERIAL | |
Li et al. | Flexible graphene/MnO 2 composite papers for supercapacitor electrodes | |
CN108573763B (zh) | 电线电缆导体、石墨烯包覆金属粉体和导体的制备方法 | |
JP4886884B2 (ja) | チタン製燃料電池セパレータおよびその製造方法 | |
WO2011118143A1 (ja) | カーボンナノチューブ複合体およびその製造方法 | |
TWI604021B (zh) | Conductive filler, its manufacturing method, conductive paste, and its manufacturing method | |
CN110904356B (zh) | 网络互穿型石墨烯-铜复合材料的制备方法 | |
Koh et al. | Effective large-area free-standing graphene field emitters by electrophoretic deposition | |
US20110318504A1 (en) | Method for fabricating composite material comprising nano carbon and metal or ceramic | |
CN111364018B (zh) | 一种石墨烯铜基复合材料及其制备方法 | |
Michalska et al. | New synthesis route to decorate Li4Ti5O12 grains with GO flakes | |
Brunet et al. | Surfactant-free synthesis of copper nanoparticles and gas phase integration in CNT-composite materials | |
Chen et al. | Field emission properties of RuO2 thin film coated on carbon nanotubes | |
Zhao et al. | Electronic properties of graphene-single crystal diamond heterostructures | |
Pal et al. | Facile synthesis and electrical conductivity of carbon nanotube reinforced nanosilver composite | |
Wong et al. | Hybrid manufacturing of oxidation resistant cellulose nanocrystals-copper-graphene nanoplatelets based electrodes | |
Ye et al. | Enhanced electrically and thermally conductive free-standing graphene films with two-dimensional copper sheets as the catalyst and bridge | |
Ruammaitree et al. | Improvement in corrosion resistance of stainless steel foil by graphene coating using thermal chemical vapor deposition | |
TW201435127A (zh) | 類鑽石薄膜及其製備方法 | |
CN114751408B (zh) | 一种低压下基于石墨制备金刚石的方法 | |
Zhang et al. | Designed growth and characterization of radially aligned Ti5Si3 nanowire architectures | |
Wang et al. | Electrical properties of acrylic resin composite thin films with graphene/silver nanowires | |
Shin et al. | Microstructural and physicochemical origins of electroless copper deposition on graphite enhanced by acid pretreatment | |
WO2020255898A1 (ja) | 熱電材料 | |
KR101540030B1 (ko) | Ag가 코팅된 그래핀나노플레이트 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |