CN111363399A - 一种红外吸收复合涂层的制备方法 - Google Patents

一种红外吸收复合涂层的制备方法 Download PDF

Info

Publication number
CN111363399A
CN111363399A CN202010164681.0A CN202010164681A CN111363399A CN 111363399 A CN111363399 A CN 111363399A CN 202010164681 A CN202010164681 A CN 202010164681A CN 111363399 A CN111363399 A CN 111363399A
Authority
CN
China
Prior art keywords
coating
infrared absorption
base material
composite coating
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010164681.0A
Other languages
English (en)
Inventor
裴和中
高婷婷
张国亮
杨秀华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202010164681.0A priority Critical patent/CN111363399A/zh
Publication of CN111363399A publication Critical patent/CN111363399A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/40Metallic substrate based on other transition elements
    • B05D2202/45Metallic substrate based on other transition elements based on Cu
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明公开了一种红外吸收复合涂层的制备方法,属于表面工程技术领域,本发明所述方法以纳米氧化铜(CuO)和纳米碳化硼(CB4)的混合物为基料,水性聚氨酯和聚乙烯醇为粘结剂;纳米氧化铜与纳米碳化硼的质量比为3:1~5:1,粘结剂为水性聚氨酯+聚乙烯醇,使基料均匀分散在粘结剂中,涂覆在经过预处理的Cu基体上。本发明所述方法制备的红外吸收涂层在1000‑4000cm‑1范围内红外吸收率达95%以上,抗热震性次数达30次未出现裂纹,表明所制备的涂层具有良好的韧性;此外,该方法还具有环保无毒,工艺简单,生产周期短等特点。

Description

一种红外吸收复合涂层的制备方法
技术领域
本发明公开一种红外吸收复合涂层的制备方法,属于表面工程技术领域。
背景技术
红外吸收材料是指在红外辐射的波谱范围内红外吸收率较高的一种材料。红外吸收涂层的应用是从60年代末的日本开始的,红外吸收涂层因其独特的优良特性在全世界都已经备受关注,越来越多的科研工作者致力于红外吸收涂层的研究与开发。与此同时,我国也将它归为国家的重点研究和发展的项目之一。随着时间的推移,红外吸收技术已经被用于越来越多的领域。而且现在红外技术慢慢的可以代表一个国家的军事装备现代化的水平。红外吸收涂层常常应用在复杂恶劣的环境中。超细超薄化、成分复合化是红外吸收涂层发展的一个重要方向。
红外吸收涂层常用的基料非常多,如氧化铜、氧化锆、碳化硅、三氧化二铁、碳化硼等,但单独使用其中的某种材料都会有一定的缺陷,而成分复合化后的材料能够在温度与波长均不同的情况下,其辐射特性能够相互互补并增强,但是制备复合涂层也存在涂层容易剥落,容易出现裂纹,韧性不好等问题。
发明内容
本发明的目的在于提供一种高韧性红外吸收复合涂层的制备方法,通过合理选择基料与粘结剂,在进行基体的预处理,将混合均匀的涂料进行涂覆与烧结;经过工艺优化后,所制备的红外吸收涂层在1000-4000cm-1范围内红外吸收率达95%以上,抗热震性次数达30次未出现裂纹,满足要求,说明所制备的涂层具有良好的韧性,具体步骤如下:
(1)基体预处理:用砂纸对铜片进行表面的粗化处理,洗净、吹干后备用。
(2)将纳米氧化铜与纳米碳化硼按质量比为3:1~5:1的比例研磨混合均匀得到基料。
(3)将水性聚氨酯稀释到质量百分比浓度为原溶液的10%~15%,聚乙烯醇加水配制为质量百分比浓度为0.5%~0.8%的聚乙烯醇水溶液,然后将两者混合,将步骤(2)制备的基料均匀分散在粘结剂溶液中得到涂料。
(4)涂覆与烧结:将步骤(3)制备的涂料均匀涂覆到步骤(1)粗化后的铜基体上进行烧结。
优选的,本发明所述基体预处理过程中砂纸的型号为500目。
优选的,本发明步骤(2)所述纳米氧化铜为球形,粒径为37~42nm、纯度≥99.5%;纳米碳化硼粒径为48~52nm,纯度≥99%。
优选的,本发明步骤(3)所述涂料中稀释后水性聚氨酯的质量分数为80%~90%、聚乙烯醇水溶液的质量分数为3%~8%、基料的质量分数为4%~6%。
优选的,本发明步骤(4)中烧结温度为125-150℃,烧结时间为10~30min。
本发明的有益效果:
(1)本发明充分利用纳米技术,使得涂层吸收率高,材料利用率高。其原因在于涂层的颗粒超细化后,粒子间的平均间距增大,单位体积内的粒子数减少,因此其密度降低,从而提高了物体的红外辐射的透射深度以及降低了其折射指数和吸收指数,达到了提高其吸收率的效果。
(2)本发明所述方法使用环保无毒的有机粘结剂制备高韧性的红外吸收涂层,在保证红外吸收率的情况下还提升了其韧性,使其满足其在复杂环境下的使用寿命。
(3)本发明所述方法以水性聚氨酯为主要粘结剂,为增强涂层的柔韧性加入少量的聚乙烯醇溶液;经实验工艺参数优化后,在满足较高的红外吸收率的前提下,该方法制备的涂层在具有良好的韧性;此外,该方法绿色环保、工艺简单、制备周期短。
附图说明
图1为本发明的工艺流程图。
图2为实施例1基料配比优化透射率曲线。
图3为实施例2聚氨酯浓度优化反射率曲线。
图4为实施例2烧结温度优化透反射率曲线。
图5为实施例3涂层附着力测试。
图6为实施例4涂层的显微组织形貌。
图7为实施例4涂层的显微组织形貌。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
(1)基体预处理:用型号为500目的砂纸对铜片进行表面的粗化处理,将砂纸在铜片上用同等的力度均匀处理,将粗化后的铜片先进行油渍的清洗,然后用等离子水冲洗铜基表面,然后吹干。
(2)红外吸收基料制备:将纳米氧化铜与纳米碳化硼通过研磨混合均匀制成的基料;其中,纳米氧化铜与纳米碳化硼的配比如表1所示。
表1红外吸收涂层基料配比
实验号 纳米碳化硼质量(%) 纳米氧化铜质量(%)
1 25 75
2 (1/6)*100 (5/6)*100
3 (1/9)*100 (8/9)*100
4 0 100
5 100 0
(3)将水性聚氨酯稀释到质量百分比浓度为原溶液的10%,聚乙烯醇加水配制为质量百分比浓度为0.5%的聚乙烯醇水溶液,然后将两者混合,再将步骤(2)制备的基料均匀分散在粘结剂溶液中得到涂料;所述涂料中稀释后水性聚氨酯的质量分数为90%、聚乙烯醇水溶液的质量分数为5%、基料的质量分数为5%。
(4)涂覆与烧结:将步骤(3)制备的涂料均匀涂覆到步骤(1)粗化后的铜基体上进行烧结,烧结温度为130℃,烧结时间为20min。
对本实施例制备得到的5个样品进行透射率测试,测试结果如图2所示;从图中可以看出透射率最低的是2号样品,物体的反射率、透射率与吸收率之和等于1,并且粉末的反射率可以忽略不计,因此透射率越低的粉末代表其吸收率越高,由此可以看出在表1所设计的五个比例的样品中,实验号为2的样品吸收率最高,其次为1号样品,由此可见纳米氧化铜与纳米碳化硼按一定比例混合可提高涂层的吸收率。
实施例2
(1)基体预处理:用型号为500目的砂纸对铜片进行表面的粗化处理,将砂纸在铜片上用同等的力度均匀处理,将粗化后的铜片先进行油渍的清洗,然后用等离子水冲洗铜基表面,然后吹干。
(2)红外吸收基料制备:将纳米氧化铜与纳米碳化硼通过研磨混合均匀制成的基料;其中,纳米氧化铜与纳米碳化硼的配比5∶1。
(3)将水性聚氨酯稀释,浓度如表2所示,聚乙烯醇加水配制为质量百分比浓度为0.5%的聚乙烯醇水溶液,然后将两者混合,再将步骤(2)制备的基料均匀分散在粘结剂溶液中得到涂料,将涂料在磁力搅拌机上搅拌30分钟,使基料均匀分散在粘结剂中;所述涂料中稀释后水性聚氨酯的质量分数为90%、聚乙烯醇水溶液的质量分数为5%、基料的质量分数为5%。
(4)涂覆与烧结:将步骤(3)制备的涂料均匀涂覆到步骤(1)粗化后的铜基体上进行烧结,涂层的涂覆厚度控制在25-30μm之间,烧结温度如表1所示,烧结时间为20min。
表2本实施中聚氨酯浓度与烧结温度
试样号 聚氨酯浓度(%) 烧结温度(℃)
1# 10 125
2# 10 150
3# 10 175
4# 15 125
5# 15 150
6# 15 175
7# 20 125
8# 20 150
9# 20 175
选取1#、4#、7#试样来分析聚氨酯浓度对红外吸收性能的影响,涂层在400-4000cm-1范围内的红外吸收光谱;如图3所示,物体的反射率、透射率与吸收率之和等于1,并且涂层的透射率可以忽略不计,因此反射率越低的涂层代表其吸收率越高,从图3可知在波数在400-4000cm-1范围内,不同粘结剂浓度的红外吸收涂层均呈现良好的红外吸收性能,吸收率均在95%以上,但其含量的多少对红外吸收性能有一定的影响,随着水性聚氨酯浓度的增加吸收率呈下降趋势,聚氨酯浓度在波数为500-800cm-1范围内的影响较为明显。聚氨酯浓度为10%、15%时,红外吸收性能较为接近,当聚氨酯浓度为20%时,红外吸收性能明显不如前两者。
选取1#、2#、3#试样来分析烧结温度对红外吸收性能的影响,涂层在400-4000cm-1范围内的红外吸收光谱如图4所示;从图4可知波数在1000-4000cm-1范围内,不同烧结温度的红外吸收涂层均呈现良好的红外吸收性能,吸收率均在90%以上。随着烧结温度的增加吸收率呈下降趋势,同样烧结温度的影响在波数为500-1100cm-1范围内的影响较为明显。烧结温度为125℃、150℃时,吸收率较为接近,当烧结温度为175℃时,吸收率下降较为明显,故烧结温度为125℃-150℃时红外吸收性能较好。
实施例3
(1)涂层的抗热震性能分析
抗热震性是指材料承受温度急剧变化而不被破坏的能力。涂层材料与基材的热膨胀系数及弹性模量等性能差异,通过影响温度变化时的涂层热应力,从而影响涂层与基材的结合强度。对样品1#、4#、7#进行了抗热震性的检测,检测方法是将样品在液氮下保持1min左右,然后取出加热至85℃并保温1-2min,上述过程重复30次后,三组试样显检未见裂纹、鼓泡等异常现象。综上所述,同一粘结剂配比、不同烘干温度下得到的样品均有较好的抗热震性。
(2)涂层的附着力分析
影响涂层附着力的因素主要有粘结剂的配比、涂层表面的清洁度和平整度,涂层的厚度,基体的预处理工艺等。本发明对涂层附着力的分析采用的是划格法,划格法是国标GB/T9286-1998,《色漆和清漆漆膜的划格实验》规定的测试方法,具体操作方法是用尖轨的硬质工具刀划边长为1毫米的方格,观察方格内的涂层是否脱落。对样品1#、4#、7#进行附着力分析,实验结果如图5所示,由图可以看出,随着粘结剂中水性聚氨酯浓度的增加,红外吸收涂层与铜基体结合变得更好,表面也会比较光亮,但是会比较难干燥,而且涂层的均匀性没有低浓度的水性聚氨酯的好。
实施例4
微观形貌对材料的红外吸收性能有较大影响,首先分析烧结温度对材料吸收率的影响。选择1#、2#、3#样品进行分析,由图6(a)可以看出在聚合物界面嵌有小的纳米颗粒,烧结致密,形状不规则,聚合物尺寸不超过5μm,随着烧结温度的升高,轮廓变得模糊,聚合物间尺寸增大,当烧结温度达175℃时图6(c),聚合物尺寸明显较小,无清晰的轮廓,涂层的反射率增加,故红外吸收率有所降低。
选取1#、4#、7#样品分析聚氨酯浓度对涂层表面形态的影响,由图7(a)(b)可以看出,1#、4#涂层的表面差异不大,聚氨酯的浓度进一步加大时图7(c),团聚物无清晰轮廓,暗区面积加大,纳米颗粒在高浓度聚氨酯下分散性很差,故红外吸收性能不如1#、4#试样。

Claims (5)

1.一种红外吸收复合涂层的制备方法,其特征在于,具体包括以下步骤:
(1)基体预处理:用砂纸对铜片进行表面的粗化处理,洗净、吹干后备用;
(2)将纳米氧化铜与纳米碳化硼按质量比为3:1~5:1的比例研磨混合均匀得到基料;
(3)将水性聚氨酯稀释到质量百分比浓度为原溶液的10%~15%,聚乙烯醇加水配制为质量百分比浓度为0.5%~0.8%的聚乙烯醇水溶液,然后将两者混合,将步骤(2)制备的基料均匀分散在粘结剂溶液中得到涂料;
(4)涂覆与烧结:将步骤(3)制备的涂料均匀涂覆到步骤(1)粗化后的铜基体上进行烧结。
2.根据权利要求1所述的红外吸收复合涂层的制备方法,其特征在于:基体预处理过程中砂纸的型号为500目。
3.根据权利要求1所述的红外吸收复合涂层的制备方法,其特征在于:步骤(2)所述纳米氧化铜为球形,粒径为37~42nm、纯度≥99.5%;纳米碳化硼粒径为48~52nm,纯度≥99%。
4.根据权利要求1所述的红外吸收复合涂层的制备方法,其特征在于:步骤(3)所述涂料中稀释后水性聚氨酯的质量分数为80%~90%、聚乙烯醇水溶液的质量分数为3%~8%、基料的质量分数为4%~6%。
5.根据利要求1所述的红外吸收复合涂层的制备方法,其特征在于:步骤(4)中烧结温度为125-150℃,烧结时间为10~30min。
CN202010164681.0A 2020-03-11 2020-03-11 一种红外吸收复合涂层的制备方法 Pending CN111363399A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010164681.0A CN111363399A (zh) 2020-03-11 2020-03-11 一种红外吸收复合涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010164681.0A CN111363399A (zh) 2020-03-11 2020-03-11 一种红外吸收复合涂层的制备方法

Publications (1)

Publication Number Publication Date
CN111363399A true CN111363399A (zh) 2020-07-03

Family

ID=71202415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010164681.0A Pending CN111363399A (zh) 2020-03-11 2020-03-11 一种红外吸收复合涂层的制备方法

Country Status (1)

Country Link
CN (1) CN111363399A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292616A (zh) * 2021-12-30 2022-04-08 江苏卧尔康家居用品有限公司 聚氨酯类树脂粘合剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033357A (zh) * 2007-04-12 2007-09-12 武汉大学 可见光红外吸收透明涂料及其制备方法和用途
CN103642361A (zh) * 2013-12-10 2014-03-19 北京新立机械有限责任公司 一种水溶性纳米隐身涂料及其制备方法
CN105860809A (zh) * 2016-06-21 2016-08-17 广西吉宽太阳能设备有限公司 一种吸热率高的太阳能吸热涂料
CN105907241A (zh) * 2016-05-16 2016-08-31 江苏大学 一种宽光谱红外吸收涂层及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033357A (zh) * 2007-04-12 2007-09-12 武汉大学 可见光红外吸收透明涂料及其制备方法和用途
CN103642361A (zh) * 2013-12-10 2014-03-19 北京新立机械有限责任公司 一种水溶性纳米隐身涂料及其制备方法
CN105907241A (zh) * 2016-05-16 2016-08-31 江苏大学 一种宽光谱红外吸收涂层及其制备方法
CN105860809A (zh) * 2016-06-21 2016-08-17 广西吉宽太阳能设备有限公司 一种吸热率高的太阳能吸热涂料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张学敏等: "《涂料与涂装技术》", 31 January 2016, 化学工业出版社 *
张美辨等: "《工作场所纳米颗粒暴露监测评估及控制技术》", 28 February 2018, 中国环境出版集团 *
董丽红: "《两亲分子在纳米技术领域中的应用》", 31 October 2013, 吉林大学出版 *
韦军: "《高分子合成工艺学》", 28 February 2011, 华东理工大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292616A (zh) * 2021-12-30 2022-04-08 江苏卧尔康家居用品有限公司 聚氨酯类树脂粘合剂

Similar Documents

Publication Publication Date Title
Kim et al. Enhancement of mechanical properties of aluminium/epoxy composites with silane functionalization of aluminium powder
CN108300274B (zh) 一种水性紫外光固化抗指纹涂料及其制备方法
CN103556461B (zh) 电子级玻璃纤维布表面处理剂以及方法
KR101261931B1 (ko) 나노 다이아몬드 입자를 이용한 수지 코팅 방법
CN104045325B (zh) 添加包覆型氟化钙粉末的自润滑刀具材料的制备方法
CN111363399A (zh) 一种红外吸收复合涂层的制备方法
WO2014015751A1 (zh) 高切削力金刚石微粉及其制备方法
Mejbel et al. Effects of WC, SiC, iron and glass fillers and their high percentage content on adhesive bond strength of an aluminium alloy butt joint: An experimental study
CN113980545B (zh) 一种聚醚醚酮/黑磷自润滑复合涂层、复合材料及其制备方法
CN111454629A (zh) 一种超疏水水漆及其生产工艺
CN110423542B (zh) 一种防腐涂料及其制备方法与应用
Dinesh et al. Role of nano-silica in tensile fatigue, fracture toughness and low-velocity impact behaviour of acid-treated pineapple fibre/stainless steel wire mesh-reinforced epoxy hybrid composite
CN101870841A (zh) 用于铁器保护的纳米SiO2/聚丙烯酸酯封护材料
CN110724414A (zh) 一种耐污耐高温水性涂料及其制备方法
CN112538177B (zh) 一种碳材料取向型导热界面材料的急速冷冻制备方法
CN109233572A (zh) 一种建筑材料表面用抗刮涂料
CN109161258A (zh) 一种金属基材水性石墨烯改性长效防腐漆及其制备方法
CN114276751A (zh) 一种不限基底的超疏水涂层的制备方法及应用
CN108425059A (zh) 一种Fe-A12O3金属陶瓷密封环及其制备方法
CN115821134B (zh) 一种耐腐蚀铝镁合金制造工艺
CN114735994A (zh) 一种稻壳灰制备超疏水聚合物防水涂料的方法
CN109159311B (zh) 一种高性能金刚石线
CN107779848A (zh) 一种在钢基体表面上通过置换反应制备超疏水和疏油表面的方法
CN111467877A (zh) 具有强抱合力的玻纤复合滤袋的滤料制备方法
CN109371290A (zh) 碳化硅颗粒增强铝基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200703