CN111349104B - 一种含绕丹宁稠合类靛红的有机小分子半导体材料及其制备方法与应用 - Google Patents

一种含绕丹宁稠合类靛红的有机小分子半导体材料及其制备方法与应用 Download PDF

Info

Publication number
CN111349104B
CN111349104B CN202010177183.XA CN202010177183A CN111349104B CN 111349104 B CN111349104 B CN 111349104B CN 202010177183 A CN202010177183 A CN 202010177183A CN 111349104 B CN111349104 B CN 111349104B
Authority
CN
China
Prior art keywords
organic
isatin
rhodanine
semiconductor material
fused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010177183.XA
Other languages
English (en)
Other versions
CN111349104A (zh
Inventor
王明
黄峻
李正
王锴
高佳欣
郭雨晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN202010177183.XA priority Critical patent/CN111349104B/zh
Publication of CN111349104A publication Critical patent/CN111349104A/zh
Application granted granted Critical
Publication of CN111349104B publication Critical patent/CN111349104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/22Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种含绕丹宁稠合(类)靛红的有机小分子半导体材料及其制备方法与应用,所述材料的结构通式如式I所示。本发明具有优异的溶解性,可溶于常见的有机溶剂,可以使用溶液加工制备有机光电子器件;对太阳光谱有较好的响应及良好的前沿分子轨道能级,分子具有较好的平面性,具有较高的电子迁移率,可以用作有机太阳电池活性层材料中的小分子受体材料。

Description

一种含绕丹宁稠合类靛红的有机小分子半导体材料及其制备 方法与应用
技术领域
本发明属于有机半导体材料领域,特别涉及一种含绕丹宁稠合类靛红的有机小分子半导体材料及其制备方法与应用。
背景技术
太阳能电池是通过光电效应直接将光能转化为电能的装置。以光电效应工作的硅太阳能电池是当前技术主流,然而,生产硅太阳能电池需要消耗大量的能源,对环境造成较大的污染。有机太阳能电池以有机材料构成核心部分,同样以光电效应而产生电压形成电流,实现太阳能发电的效果。有机太阳能电池不仅质量轻,而且可以以卷对卷的方法进行制备,这大大降低了生产成本,有望成为一种商业化的电池技术。
第一个有机太阳能电池是由Kearns和Calvin在1958年制备,活性层材料为镁酞菁染料,染料层夹在两个功函数不同的电极之间,器件的开路电压为0.2eV,效率一般。1986年,柯达公司的邓青云博士以四羧基苝的衍生物和酞菁铜的双层膜作为活性层,这种异质结组成的有机太阳能电池的性能大大提升,光电转化效率达1%左右,这一思路为有机太阳能电池的研究开拓了一个新的方向。1992年,Sariciftci等发现了处于激发态的电子可以快速地从有机分子转移至C60分子,即激子可以在有机分子和C60之间形成较好的电荷分离。1993年,Sariciftci等制成了聚对苯乙烯撑和C60的本体异质结太阳能电池,混合后的给体材料和受体材料通过共蒸或者旋涂的方法制备的混合薄膜,这种本体异质结太阳能电池能够大幅度提高给受体界面,激子的分离效率得到了极大的提升。本体异质结太阳能电池仍然是当前有机太阳能电池研究的主流结构。
自从本体异质结太阳能电池发明以来,大部分的受体材料仍然集中于富勒烯体系,这是由于富勒烯具有较好的电子迁移率,可以形成较好的电子通路。然而,富勒烯的能级相对固定,较难进行化学修饰,而且成本较高,更为重要的是吸收主要集中在紫外区域,对可见光和近红外光的吸收较弱。2015年,占肖卫等发展了一种基于强分子内给受电荷转移的小分子稠环电子受体材料(简称ITIC),从那以后,各种各样的基于ITIC的小分子受体被设计合成出来。这一大类分子中的茚并二噻吩具有较大的平面性和刚性,有利于π电子的离域和芳香单元的相互作用,末端基团可以相互连接形成电子通道。但是,大多数ITIC系列的分子由于烯氢原子的存在,在倒置聚合物太阳电池中容易发生化学反应,严重影响器件的稳定性,制约了聚合物太阳电池的进一步发展。
发明内容
本发明所要解决的技术问题是提供一种含绕丹宁稠合类靛红的有机小分子半导体材料及其制备方法与应用,克服了现有材料稳定性差等问题。
本发明提供了一种含绕丹宁稠合(类)靛红的有机小分子半导体材料,所述材料的结构通式如式I所示:
Figure GDA0003053877410000021
其中,R为C1~C36的烷基链;π1为芳香结构单元;π2为(类)靛红结构单元(即靛红结构单元或者类靛红结构单元)。
优选的,所述烷基链为直链烷烃、支链烷烃中的一种。
优选的,所述R为
Figure GDA0003053877410000022
Figure GDA0003053877410000023
中的一种或几种。
优选的,所述π1
Figure GDA0003053877410000031
中的一种或几种。
优选的,所述π2
Figure GDA0003053877410000041
中的一种或几种。
本发明还提供了一种含绕丹宁稠合(类)靛红的有机小分子半导体材料的制备方法,包括如下步骤:
π1与π2先进行偶联反应,再与(烷基)绕丹宁进行脱水反应得到目标产物;或者π2先与(烷基)绕丹宁进行脱水反应,生成的产物再与π1进行偶联得到目标产物。
制备方法具体为:π1的有机锡试剂或者硼酸酯与π2在惰性保护气体条件和金属催化剂的条件下得偶联产物;此偶联产物在惰性气体保护下,与(烷基)绕丹宁在催化剂的条件下生成含绕丹宁稠合(类)靛红的有机小分子半导体材料。
所述π1与π2的摩尔比为1:2-3,优选1:2.15。
所述金属催化剂为金属钯催化剂,优选四三苯基膦钯。
所述偶联产物和绕丹宁的摩尔比为1:4-10,优选1:4。
所述催化剂为碱,优选三乙胺。
本发明还提供了一种含绕丹宁稠合(类)靛红的有机小分子半导体材料在有机太阳能电池或有机场效应晶体管中的应用。
本发明还提供了一种光活性层,包括含绕丹宁稠合(类)靛红的有机小分子半导体材料以及电子给体或电子受体。
所述含绕丹宁稠合(类)靛红的有机小分子半导体材料与电子给体或电子受体的质量比为1-3:1-3。
本发明针对ITIC系列分子中存在烯氢原子这一问题,提出使用靛红稠合绕丹宁作为末端基团制备非富勒烯受体,避免发生光发化学反应,从分子的化学设计上提高器件的稳定性。
有益效果
(1)本发明具有较好的分子平面性,能够提升载流子的迁移能力,分子结构新颖;
(2)本发明具有较好的溶解性,可溶于常见的有机溶剂,如二氯甲烷、三氯甲烷、四氢呋喃、甲苯等可以使用溶液加工制备有机光电子器件;
(3)本发明具有良好的热稳定性,分解温度超过300℃,制备方法简单;双键上不含氢原子,在器件中稳定性大幅增强;对太阳光光谱具有良好的响应,可以用作有机场太阳电池的活性层材料;
(4)本发明具有较高的载流子迁移率,可以作为有机场效应晶体管中的活性层材料。
附图说明
图1为实施例3中目标化合物WH7的核磁共振氢谱图;
图2为实施例3中目标化合物WH7的核磁共振碳谱图;
图3为实施例3中目标化合物WH17的核磁共振氢谱图;
图4为实施例3中目标化合物WH17的核磁共振碳谱图;
图5为实施例3中目标化合物WH11的核磁共振氢谱图;
图6为实施例3中目标化合物WH11的核磁共振碳谱图;
图7为实施例5中目标化合物WH7,WH11,WH17的热分析图;
图8为实施例6中目标化合物WH7,WH11,WH17的循环伏安特性曲线;
图9为实施例7中目标化合物WH7,WH11,WH17的溶液紫外-可见光吸收谱图;
图10为实施例8中有机太阳电池的电压-电流曲线和外量子效率图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
所有的基本化学试剂均可以通过商业化公司(国药试剂、凌峰试剂、韶远试剂)购买,如无特殊说明,使用前都未经进一步纯化处理。重要前驱体购买于深圳睿迅光电材料科技有限公司、北京辰华光电材料科技有限公司、苏州纳凯科技有限公司等。四丁基六氟膦酸铵使用前经重结晶处理,乙腈为色谱纯。
实施例1
在反应瓶中加入靛红(1equiv)和碳酸钾(2.5equiv),抽换气后加入无水DMF和四氢呋呋喃,慢慢滴加烷基溴进行烧瓶中,滴完后在50℃反应过夜。使用二氯甲烷和水萃取后,合并有机相并使用无水硫酸镁干燥。旋干二氯甲烷后使用柱色谱分离提纯得黄色固体产物。6-溴靛红的核磁氢谱和碳谱与文献一致(Li,J.-L.;Chai,Y.-F.;Wang,W.V.;Shi,Z.-F.;Xu,Z.-G.;Zhang,H.-L.,Chem.Commun.2017,53,5882.Luo,X.;Tran,D.T.;Kadlubowski,N.M.;Ho,C.H.Y.;Riley,P.;So,F.;Mei,J.,Macromolecules,2018,51,8486.)
6-溴-1-甲基吲哚啉-2,3-二酮的制备,反应式如下:
Figure GDA0003053877410000061
6-溴-1-丁基吲哚啉-2,3-二酮的制备,反应式如下:
Figure GDA0003053877410000071
6-溴-1-辛基吲哚啉-2,3-二酮的制备,反应式如下:
Figure GDA0003053877410000072
6-溴-1-(2-乙基己基)吲哚啉-2,3-二酮的制备,反应式如下:
Figure GDA0003053877410000073
6-溴-5-氟-1-辛基吲哚啉-2,3-二酮的制备,反应式如下:
Figure GDA0003053877410000074
6-溴-1-(乙基己基)-5-氟吲哚啉-2,3-二酮的制备,反应式如下:
Figure GDA0003053877410000075
Figure GDA0003053877410000081
实施例2
在反应瓶中加入四对己基苯-引达省并二噻吩双锡(1equiv)和6-溴靛红(2.5equiv),抽换气三次后加入超干甲苯和催化剂Pd(PPh3)4(5%equiv),加热至125℃反应过夜。冷却至室温后,用三氯甲烷和水萃取。合并有机相并用无水硫酸镁干燥,蒸干溶剂后使用柱色谱提纯即得黑色固体产物。所有制得的化合物经核磁氢谱和碳谱验证为目标产物。
当靛红为6-溴-1甲基吲哚啉-2,3-二酮时,反应式如下:
Figure GDA0003053877410000082
当靛红为6-溴-1-辛基吲哚啉-2,3-二酮时,反应式如下:
Figure GDA0003053877410000083
当靛红为6-溴-5-氟-1-辛基吲哚啉-2,3-二酮时,反应式如下:
Figure GDA0003053877410000084
当靛红为6-溴-5-氟-1-辛基吲哚啉-2,3-二酮时,反应式如下:
Figure GDA0003053877410000091
当靛红为6-溴-1-异辛基吲哚啉-2,3-二酮时,反应式如下:
Figure GDA0003053877410000092
当靛红为6-溴-5-氟-1-异辛基吲哚啉-2,3-二酮时,反应式如下:
Figure GDA0003053877410000093
实施例3
在反应瓶中加入实施例2中获得的三个化合物中间体(1equiv)和(烷基)绕丹宁(5equiv),抽换气后加入氯仿,搅拌5分钟后加入几滴三乙胺,室温反应过夜。使用氯仿和水萃取,合并有机相,使用无水硫酸镁干燥有机相。蒸干氯仿后使用柱色谱提纯即得绿色固体产物。
Figure GDA0003053877410000101
化合物WH7的核磁氢谱和碳谱表征如下:
1H NMR(400MHz,CDCl3,298K):8.83(s,1H),7.48(d,1H),7.41(s,1H),7.35(d,1H),7.23(d,4H),7.13(d,4H),7.03(s,1H),4.33(q,2H),3.81(t,2H),2.58(t,4H),1.72(m,2H),1.60(t,4H),1.45-1.19(m,25H),0.84(m,9H).13C NMR(100MHz,CDCl3,298K):182.18,159.05,157.80,154.20,151.91,145.52,144.59,144.04,142.17,141.24,135.61,128.70,127.96,122.23,120.08,118.07,116.23,106.06,63.37,40.37,35.72,31.90,31.86,31.52,29.32,29.30,29.27,27.56,27.03,22.77,22.74,14.24.(Note:some peaksoverlapped in 13C NMR).HRMS m/z calcd.for(C112H122O4N8S4):1770.84664,found:1770.85162.
Figure GDA0003053877410000102
化合物17的核磁氢谱和碳谱如下:
3A was obtained as a black solid with a yield of 80%.1H NMR(400MHz,CDCl3,298K):8.84(s,1H),7.48(d,1H),7.42(s,1H),7.35(d,1H),7.23(d,4H),7.13(d,4H),7.03(s,1H),4.33(q,2H),3.82(t,2H),2.58(t,4H),1.70(m,2H),1.63-1.17(m,21H),0.98(t,3H),0.87(t,6H).13C NMR(100MHz,CDCl3,298K):167.95,165.79,157.72,154.08,146.31,145.75,143.27,142.06,141.41,139.96,135.58,129.78,128.66,128.44,128.02,123.99,121.31,119.78,118.82,112.47,112.28,105.24,63.33,57.52,40.54,40.32,35.73,31.86,31.54,29.84,29.31,22.75,20.32,14.30,14.26,13.84.(Note:some peaksoverlapped in 13C NMR).HRMS m/z calcd.for(C104H106O4N8S4):1658.72144,found:1658.72302.
Figure GDA0003053877410000111
化合物WH11的核磁氢谱和碳谱如下:
1H NMR(400MHz,CDCl3,298K):8.83(s,1H),7.49(d,1H),7.40(s,1H),7.35(d,1H),7.22(d,4H),7.12(d,4H),7.03(s,1H),4.30(q,2H),3.70(m,2H),2,58(t,4H),1.83(m,1H),1.60(m,4H),1.46-1.22(m,26H),0.97(t,3H),0.87(m,6H).13C NMR(100MHz,CDCl3,298K):166.58,166.32,164.13,156.06,152.38,144.65,144.50,141.59,140.38,139.77,138.22,133.94,128.03,126.99,126.72,126.32,122.37,119.60,117.99,117.10,116.25,110.83,110.63,103.89,75.82,75.71,75.50,75.19,61.66,55.83,43.14,38.63,36.29,34.06,30.20,29.87,29.17,28.19,27.64,27.19,22.63,21.49,21.09,12.64,12.60,12.56,9.19.(Note:some peaks overlapped in13C NMR).HRMS:HRMS m/z calcd.for(C112H122O4N8S4):1770.84664,found:1770.84839.
实施例4
将实施例3中获得的分子进行高分辨质谱表征,测试仪器为Thermo Scientific QExactive。
对于实施例3中所得的目标小分子WH17,分子式为C104H106O4N8S4,理论计算值为1658.72144,,实测值为1658.72302。
对于实施例3中所得的目标小分子WH7,分子式为C112H122O4N8S4,理论计算值为1770.84664,,实测值为1770.85162。
对于实施例3中所得的目标小分子WH11,分子式为C112H122O4N8S4,理论计算值为1770.84664,实测值为1770.84839。
由高分辨质谱测得的化合物分子量的测量值与理论值均小于5ppm,结合分子的核磁共振氢谱和核磁共振碳谱,进一步验证了所制备的化合物分子结构的正确性。
实施例5
将实施例获得的有机小分子进行热重分析,如图7所示,测试仪器为美国TA公司的TGA550。通过图中可以发现,这三个化合物对应质量损失为5%的热分解温度均超过360℃,说明本发明所制备的含绕丹宁稠合(类)靛红的有机小分子半导体材料具有优异的热稳定性。通过图还可以发现,这三个含绕丹宁稠合(类)靛红的有机小分子半导体材料在50-325℃范围内没有明显的吸热或者放热峰,说明这三个材料为无定型材料。
实施例6
电化学循环伏安曲线由上海辰华CHI730E电化学工作站和三电极体系测量,将含绕丹宁稠合(类)靛红的有机小分子半导体材料的氯苯溶液(5mg/mL)滴至玻碳电极成膜后作为工作电极,铂丝作为对电极,饱和Ag/AgCl作为参比电极,六氟磷酸四丁基铵的乙氰溶液(0.1M)作为电解质溶液。扫描速度为50mV/s,氮气气氛条件测得,并使用二茂铁进行标定(二茂铁的半波电位E1/2=0.45V)。循环伏安曲线表明(如图8所示),化合物WH17的氧化起始电位为1.07V,经计算其最高占据轨道能级(HOMO)为-5.42eV,化合物WH17的氧化起始电位为-0.35V,经计算其最高占据轨道能级(HOMO)为-4.0eV;化合物WH7的氧化起始电位为1.09V,经计算其最高占据轨道能级(HOMO)为-5.44eV,化合物WH17的氧化起始电位为-0.36V,经计算其最高占据轨道能级(HOMO)为-3.99eV;化合物WH11的氧化起始电位为1.11V,经计算其最高占据轨道能级(HOMO)为-5.46eV,化合物WH11的氧化起始电位为-0.38V,经计算其最高占据轨道能级(HOMO)为-3.97eV。说明本发明提出的化学结构的前沿分子轨道能级可以和大多数给-受体型聚合物匹配,能够作为非富勒烯电子受体材料在聚合物太阳电池中起到传输电子的作用。
实施例7
醌式化合物Q1-Q4的溶液和薄膜吸收在美国PerkinElmer Lambda950紫外可见分光光度计上测得,测试范围为1200至300nm。当化合物WH17,WH7和WH11在氯苯中的浓度为10-5mol/L时,溶液的吸收如图9所示。从图中可以看出,化合物WH17,WH7和WH11的溶液最大吸收波长分别位于为650nm,655nm,653nm,吸收边位于752nm处。需要注意的是,这三个化合物在氯苯中的最大吸光系数为1.2×105,0.8×105和0.6×105M-1cm-1,这说明这三个化合物具有较强的吸光能力,可以用作有机太阳电池的活性层材料。
实施例8
分别利用实施例中所得的WH7,WH11作为活性层制备了有机场效应管:采用光刻技术在硼硅玻璃上制备源漏电极(3nm Cr and 30nm Au)。玻璃基底使用丙酮和异丙醇超声10分钟,然后用UV处理30分钟。将基底转移至手套箱中,趁热将聚氯苯溶液(5mg mL-1),然后将化合物薄膜置于手套箱中200摄氏度退火10分钟。随后,甩上一层约400nm的CYTOP介电层。最后,在相应的介电层上蒸镀一层厚度为50nm的铝作为栅极。在空气中,使用Keithley4200SCS半导体测试仪测试器件的场效应晶体管性能。
化合物WH7和WH11作为活性层在200摄氏度退火条件下制备的场效应晶体管的转移曲线,如图10所示。载流子的迁移率通过计算公式ID=(w/2L)Ciμ(VG-VT)2获得,其中,IDS为漏极电流,μ为载流子迁移率,VG为栅极电压,VT为阈值电压,W为沟道宽度5mm,L为沟道长度20μm,Ci为绝缘体电容7.5×10-2法每平方厘米。通过计算饱和区的载流子迁移率得WH7的电子迁移率约为0.02cm2/Vs。同时,WH11的电子迁移率约为0.008cm2/V。这说明含绕丹宁稠合(类)靛红的有机小分子半导体材料能够在有机太阳电池中作为电子传输材料使用。
实施例9
将WH7与WH11与聚合物PTzBI(Zhong,W.;Li,K.;Cui,J.;Gu,T.;Ying,L.;Huang,F.Macromolecules 2017,50,8149)共混制备有机太阳电池,研究含绕丹宁稠合(类)靛红的有机小分子半导体材料作为电子传输材料制备的有机太阳能电池的光伏性能。以ITO为阳极的有机太阳电池器件结构为:ITO/PEDOT:PSS/active layer/PFN-Br/Al。
器件制作过程为:以预先清洗的ITO玻璃为阳极,在ITO玻璃上旋涂水醇溶聚合物PEDOT:PSS的水溶液,控制其厚度约为30纳米,干燥后继续旋涂有机太阳电池的活性层,之后旋涂水醇溶聚合物PFN-Br的甲醇溶液,控制该水醇溶性界面约为5纳米,最后真空蒸镀100纳米的金属银作为阴极。在ITO和Ag金属电极间施加负偏压,在100毫瓦每平方厘米的AM1.5模拟太阳光的照射下测量其电池特性。其中,所制备的有机太阳电池采用氯苯作为溶剂,混合旋涂含绕丹宁稠合(类)靛红的有机小分子半导体材料作为电子传输材料与聚合物作为有机太阳电池的活性层,所得电池器件电流-电压曲线如图所朱,相关的性能总结下表所示。当电子传输材料为WH7时制备的有机太阳能电池的开路电压为0.79伏特,短路电流为16mA/cm2,填充因子为63.28%,相应的光电转换效率为8.21%。当电子传输材料为WH11时制备的有机太阳能电池的开路电压为0.80伏特,短路电流为15.39mA/cm2,填充因子为56.01%,相应的光电转换效率为7.16%。从器件的外量子效率图可知,使用WH7和WH11作为电子受体材料时,器件的最大外量子效率在590 nm处获得,数值接近70%。另外,使用WH7的量子效率略高于WH11,所以相应的器件短路电流也更大一些。
Blend V<sub>oc</sub>(V) J<sub>sc</sub>(mA/cm<sup>2</sup>) FF(%) PCE(%) PCE<sub>max</sub>(%)
PTzBI:WH7 0.79 16.00 63.28 8.02 8.21
PTzBI:WH11 0.80 15.39 56.01 6.85 7.16
为了理解载流子在活性层中的传输情况,利用空间电荷限制电流测定了空穴和电子的迁移率,其结果如下表所示。当受体材料为WH7时,活性层空穴的迁移率为3.9×10- 4cm2V-1s-1,活性层电子的迁移率为1.75×10-5 cm2V-1s-1.当受体材料为WH11时,活性层空穴的迁移率为1.28×10-4 cm2V-1s-1,活性层电子的迁移率为1.58×10-6 cm2V-1s-1.由于WH7作为受体材料时的电子迁移率明显高于WH11,所以利用WH7作为受体的有机太阳能电池的光伏性能要优于利用WH11作为受体的有机太阳能电池。
PTzBI:Acceptor μ<sub>h</sub>(cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>) μ<sub>e</sub>(cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>)
WH7 3.49E-04 1.75E-05
WH11 1.28E-04 1.58E-06

Claims (4)

1.一种含绕丹宁稠合类靛红的有机小分子半导体材料,其特征在于:所述材料的结构式如下:
Figure FDA0003053877400000011
Figure FDA0003053877400000021
2.一种如权利要求1所述的含绕丹宁稠合类靛红的有机小分子半导体材料在有机太阳能电池或有机场效应晶体管中的应用。
3.一种光活性层,其特征在于:包括如权利要求1所述的含绕丹宁稠合类靛红的有机小分子半导体材料以及电子给体或电子受体。
4.根据权利要求3所述的光活性层,其特征在于:所述含绕丹宁稠合类靛红的有机小分子半导体材料与电子给体或电子受体的质量比为1-3:1-3。
CN202010177183.XA 2020-03-13 2020-03-13 一种含绕丹宁稠合类靛红的有机小分子半导体材料及其制备方法与应用 Active CN111349104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010177183.XA CN111349104B (zh) 2020-03-13 2020-03-13 一种含绕丹宁稠合类靛红的有机小分子半导体材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010177183.XA CN111349104B (zh) 2020-03-13 2020-03-13 一种含绕丹宁稠合类靛红的有机小分子半导体材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111349104A CN111349104A (zh) 2020-06-30
CN111349104B true CN111349104B (zh) 2021-08-10

Family

ID=71196081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010177183.XA Active CN111349104B (zh) 2020-03-13 2020-03-13 一种含绕丹宁稠合类靛红的有机小分子半导体材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111349104B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012175536A1 (en) * 2011-06-20 2012-12-27 Solvay Sa Dyes, method of making them, and their use in dye-sensitized solar cells
CN107304217A (zh) * 2016-04-22 2017-10-31 中国科学院化学研究所 2-取代噻吩并[3,4-b]噻吩类小分子光伏给体材料、其制备方法及应用
CN109608475A (zh) * 2019-01-22 2019-04-12 湘潭大学 A′-π-A-π-A′型有机小分子及其制备方法与应用
CN110183463A (zh) * 2019-05-29 2019-08-30 中国科学院重庆绿色智能技术研究院 一种小分子电子给体材料及其制备与应用
CN110498793A (zh) * 2019-08-12 2019-11-26 常州大学 基于罗丹宁的小分子光伏体相材料及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012175536A1 (en) * 2011-06-20 2012-12-27 Solvay Sa Dyes, method of making them, and their use in dye-sensitized solar cells
CN107304217A (zh) * 2016-04-22 2017-10-31 中国科学院化学研究所 2-取代噻吩并[3,4-b]噻吩类小分子光伏给体材料、其制备方法及应用
CN109608475A (zh) * 2019-01-22 2019-04-12 湘潭大学 A′-π-A-π-A′型有机小分子及其制备方法与应用
CN110183463A (zh) * 2019-05-29 2019-08-30 中国科学院重庆绿色智能技术研究院 一种小分子电子给体材料及其制备与应用
CN110498793A (zh) * 2019-08-12 2019-11-26 常州大学 基于罗丹宁的小分子光伏体相材料及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
First-principles theoretical designing of planar non-fullerene small molecular acceptors for organic solar cells: manipulation of noncovalent interactions;Asif Mahmood et al.;《Phys. Chem. Chem. Phys.》;20181227;第21卷;第2128-2139页 *
High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes;Tamotsu Horiuchi et al.;《J.AM.CHEM.SOC.》;20041009;第126卷;第12218-12219页 *

Also Published As

Publication number Publication date
CN111349104A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
Malinauskas et al. Branched methoxydiphenylamine-substituted fluorene derivatives as hole transporting materials for high-performance perovskite solar cells
Li et al. A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset
Lu et al. Triindole-cored star-shaped molecules for organic solar cells
Yang et al. A solution-processable D–A–D small molecule based on isoindigo for organic solar cells
JP2014520394A (ja) 有機電子素子のための化合物
Wu et al. Phenanthrene-functionalized 3, 6-dithiophen-2-yl-2, 5-dihydropyrrolo [3, 4–c] pyrrole-1, 4-diones as donor molecules for solution-processed organic photovoltaic cells
JP5425338B2 (ja) アントラセンとピアセレノール類とを含有する共重合体、その製造方法及びその応用
Chi et al. Donor-acceptor small molecule with coplanar and rigid π-bridge for efficient organic solar cells
JP2007091714A (ja) 新規な窒素系半導体化合物並びにこれを用いた有機薄膜トランジスタ、有機太陽光電池および有機電界発光素子
Han et al. Solution processable low bandgap thienoisoindigo-based small molecules for organic electronic devices
CN112608309B (zh) 一种含芴环基团的非稠环有机小分子材料及其制备方法和应用
Zhang et al. Solution-processable star-shaped photovoltaic organic molecules based on triphenylamine and benzothiadiazole with longer pi-bridge
Sun et al. High-efficiency planar pin perovskite solar cells based on dopant-free dibenzo [b, d] furan-centred linear hole transporting material
CN111892696A (zh) 一种二噻吩并苯稠环喹喔啉共轭聚合物及其制备方法和应用
Li et al. Pyran-annulated perylene diimide derivatives as non-fullerene acceptors for high performance organic solar cells
Feng et al. Triphenylamine modified bis-diketopyrrolopyrrole molecular donor materials with extended conjugation for bulk heterojunction solar cells
CN112646130B (zh) 基于双自由基苯并双噻二唑的n型水/醇溶共轭聚电解质及其制备与应用
Wu et al. Triphenylamine-based hole transporting materials with thiophene-derived bridges for perovskite solar cells
CN112661940B (zh) 基于噻吩并噻二唑的n型水/醇溶共轭聚电解质及其制备与应用
Chae et al. Preparation of new semiconducting tetraphenylethynyl porphyrin derivatives and their high-performing organic field-effect transistors
CN116178364B (zh) 一种非稠环受体小分子材料及其合成方法及其应用
Wang et al. Design and synthesis of two conjugated semiconductors containing quinoidal cyclopentadithiophene core
CN110818729B (zh) 基于多元芳香环的酰亚胺类共轭小分子及其制备方法与在有机光电器件中的应用
CN114349771B (zh) 一种六苯并蔻基非富勒烯受体材料及其制备和应用
CN111349104B (zh) 一种含绕丹宁稠合类靛红的有机小分子半导体材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant