CN111346639A - FeOOH/碳纳米管复合滤膜的制备及其在光Fenton中的应用 - Google Patents

FeOOH/碳纳米管复合滤膜的制备及其在光Fenton中的应用 Download PDF

Info

Publication number
CN111346639A
CN111346639A CN201811580004.6A CN201811580004A CN111346639A CN 111346639 A CN111346639 A CN 111346639A CN 201811580004 A CN201811580004 A CN 201811580004A CN 111346639 A CN111346639 A CN 111346639A
Authority
CN
China
Prior art keywords
feooh
filter membrane
carbon nano
nano tube
composite filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811580004.6A
Other languages
English (en)
Inventor
赵津
姚劲宇
罗纯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201811580004.6A priority Critical patent/CN111346639A/zh
Publication of CN111346639A publication Critical patent/CN111346639A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开了一种FeOOH/碳纳米管复合滤膜及其在光Fenton中的的应用。滤膜的制备包括以下步骤:将多壁碳纳米管用硝酸浸泡加热使其酸化,将碳纳米管乙醇溶液与铁盐水溶液混合搅拌,通过酸化后碳纳米管上的羧基与羟基敖合吸附溶液中的Fe3+;向混合液中加入抗坏血酸钠,通过水热法使负载到碳纳米管上的Fe3+离子原位还原结晶形成FeOOH纳米颗粒。将FeOOH/碳纳米管混合液真空抽滤到PTFE支撑膜上,去离子水洗去杂质,制成FeOOH/碳纳米管复合滤膜。将滤膜放置在透光或有辅助光源的膜过滤组件内,在自然光或外加UV光源的照射下,基于光辅助Fenton作用,催化产生羟基自由基(·OH),实现在膜过滤过程水体中有机污染物的高效去除。滤膜物化性质稳定,水中有机污染物去除效果良好。

Description

FeOOH/碳纳米管复合滤膜的制备及其在光Fenton中的应用
技术领域
本发明属于水处理技术领域,具体涉及一种FeOOH/碳纳米管复合滤膜的制备及其通过光Fenton处理水体中有机污染物的应用。
背景技术
Fenton反应作为一种高级氧化技术,在Fe2+的催化作用下使H2O2生成具有高反应活性的羟基自由基(·OH),能有效氧化降解废水中大多数有机污染物。但传统的均相Fenton技术在实际应用中有诸多限制,例如需要酸性的反应环境,Fe3+难以转化为Fe2+,产生污泥甚至发生铁泄露造成二次污染。近年来可应用于中性PH环境的非均相Fenton技术受到了国内外研究人员的关注。非均相Fenton有效克服了铁泄露和自然环境下低反应活性等缺点,同时可以从水体中分离回收并且循环利用,在处理水体中有机污染物的实际应用中展现出了巨大的潜力。随着光催化高级氧化技术的发展,光辅助Fenton法成为研究热点,通过紫外光活化来增强非均相Fenton的氧化性能。基于Fe3+和紫外线对H2O2的催化分解产生羟基自由基(·OH)的协同作用,降低反应过程中Fe2+的用量,同时提高H2O2的利用率。
非均相Fenton催化剂通常将铁氧化物负载到黏土,沸石,活性碳,介孔二氧化硅等支撑材料上,但在材料合成过程中会出现铁氧化物集聚,稳定性差,且在使用过程中出现铁浸出等问题。为了克服上述缺点,寻找优良的载体以制备一种稳定,纳米铁颗粒分散性好且铁浸出量少的光辅助Fenton催化剂可拓展光辅助Fenton在实际废水处理中的应用前景。
同时,催化分离膜体系在水处理领域的研究备受关注,将催化过程和膜分离过程集成在同一个处理单元中,增强水处理过程中的传质效果,同时反应过程可控且催化材料可回收。一些催化分离膜甚至还具有选择性分离反应物和反应产物和提高反应动力学等功效。
碳纳米管是一种管状结构的一维纳米材料,通过相转化或物理抽滤等方法可以制成孔隙率高(>85%),孔径小(<100nm)且具有较大的比表面积(>88m2/g)的三维自支撑薄膜,可用作催化材料的优良载体。由于碳纳米管薄膜具有优良的物理机械性、化学稳定性、柔韧性、抗菌耐污性和超疏水性等理化性质,被认为是具有前景的分离材料。
发明内容
本发明公开了一种FeOOH/碳纳米管复合滤膜的制备及其通过光Fenton处理水体中有机污染物的应用方案。根据次技术方案,通过抗坏血酸钠和低温水热反应的协同作用将敖合在碳纳米管上的Fe3+离子原位还原结晶形成纳米FeOOH颗粒,在聚四氟乙烯(PTFE)膜上抽滤制成FeOOH/碳纳米管复合滤膜。在自然光或外加UV光源的照射下,基于光辅助Fenton作用,催化产生羟基自由基(·OH),实现在膜过滤过程水体中有机污染物的高效去除。
本发明的技术方案如下:
按照如下步骤制备改性碳纳米管薄膜:
1)取多壁碳纳米管用硝酸浸泡并且加热处理至少3小时使其酸化产生羧基和羟基,离心去除附着在碳纳米管上多余的酸液;
2)将酸化后的碳纳米管放入乙醇溶液中,使用超声波处理使其均匀分散;
3)将一定量铁盐水溶液加入碳纳米管的乙醇溶液中,搅拌使其混合均匀,在此过程中碳纳米管表面的羧基与羟基通过敖合作用吸附溶液中的Fe3+
4)向溶液中加入一定量的抗坏血酸钠,加入去离子水将混合液稀释,将稀释后的混合液水浴搅拌加热,通过低温水热反应将敖合在碳纳米管上的Fe3+离子原位还原结晶形成纳米FeOOH颗粒;
5)将冷却后的混合液真空抽滤到的PTFE支撑膜上,去离子水洗去杂质,制成FeOOH/碳纳米管复合滤膜。
作为优选,所述FeOOH/碳纳米管复合滤膜制备过程中制备过程中所使用铁与碳纳米管的比例范围为0.001-0.05mol∶1g。
作为优选,步骤3)所述铁盐为硝酸铁,氯化铁,硫酸铁。
作为优选,步骤4)中所述抗坏血酸钠的添加量控制在抗坏血酸钠与铁的摩尔比为10-30∶1。
作为优选,步骤4)中所述去离子水稀释倍数为5-15倍。
作为优选,步骤4)中所述混合液水浴搅拌加热在加热温度为65-80℃时,加热时间为4-12小时;当加热温度为80-95℃时,加热时间为1.5-4小时。
作为优选,步骤5)所使用的PTFE膜的孔径范围为1μm-5μm。
按照如下步骤使用FeOOH/碳纳米管复合滤膜处理水体中的有机污染物:
将滤膜放置在透光或有辅助光源的膜过滤组件内,在自然光或外加UV光源的照射下,将含有机污染物废水通过蠕动泵以流速0.5-2mL/min通过滤膜,同时加入一定量的H2O2。基于光辅助Fenton作用,催化产生羟基自由基(·OH),实现在膜过滤过程水体中有机污染物的高效去除。
本发明与现有技术相比具有如下优点;
1)将光Fenton技术与膜分离技术相结合,以连续流膜过滤方式代替传统的颗粒状催化剂,增强反应过程中的传质作用,从反应动力学角度提高了催化效率。
2)采用Fe3+离子敖合,在抗坏血酸钠和低温水热反应条件下原位还原结晶的方法将纳米级FeOOH颗粒负载到碳纳米管上,纳米FeOOH分布均匀且粒径小(<10nm),能为Fenton反应提供更多活性位点。
3)滤膜物理化学性质稳定,有效改善了反应过程中的铁泄露状况。
4)将碳纳米管网络结构作为FeOOH纳米颗粒的载体,相比于颗粒状催化剂增大了比表面积和孔隙率,提高了单位载体的铁氧化物负载量。
附图说明
图1.FeOOH/碳纳米管复合滤膜场发射扫描电镜(FESEM)照片。
图2.真空抽滤后的FeOOH/碳纳米管复合滤膜照片。
图3.FeOOH/碳纳米管复合滤膜在外加UV光源下工作照片。
图4.FeOOH/碳纳米管复合滤膜处理四氯苯酚与无催化剂处理效果对比图。
具体实施方式
以下通过具体实施例对本发明做进一步详细阐述,但不应该将此理解为本发明的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
取15mg多壁碳纳米管用硝酸(>98%)在70℃下浸泡12小时,离心洗去多余酸液。将酸化后的碳纳米管溶于30mL去乙醇中,超声使其分散。向碳纳米管溶液中加入10mL18g/LFe(NO3)3溶液搅拌均匀,加入抗坏血酸钠4.5g,将混合液用去离子水稀释到500mL,倒入两个500mL圆底烧瓶中,在65℃下水浴搅拌加热12小时。将所配置的混合液通过真空抽滤到一张直径47mm的PTFE支撑膜上,制得FeOOH/碳纳米管复合滤膜。图1为通过场发射扫描电镜(FESEM)所观察到的实施例1所制备FeOOH/碳纳米管复合滤膜的微观形貌,图2为实施例1所制备的FeOOH/碳纳米管复合滤膜照片。
实施例2
取20mg多壁碳纳米管用硝酸(>98%)在70℃下浸泡10小时,离心洗去多余酸液。将酸化后的碳纳米管溶于20mL去乙醇中,超声使其分散。向碳纳米管溶液中加入5mL24g/LFe(NO3)3溶液搅拌均匀,加入抗坏血酸钠2.5g,将混合液用去离子水稀释到375mL,倒入圆底烧瓶中,在95℃下水浴搅拌加热1.5小时。将所配置的混合液通过真空抽滤到一张直径47mm的PTFE支撑膜上,制得FeOOH/碳纳米管复合滤膜。
将所制滤膜放置在一个装有LED灯的膜过滤装置中,在辅助UV光源下,采用循环过滤的方式,通过蠕动泵将100mL 10mg/L含2,4,6-三氯酚废水以1.5mL/min的流速通过FeOOH/碳纳米管复合滤膜后收集于100mL烧杯中,然后重新进入过滤装置循环过滤,同时反应条件设置为H2O2浓度20mM,PH=3。110min后2,4,6-三氯酚的去除率达到90%。图3为FeOOH/碳纳米管复合滤膜在外加UV光源下工作照片。
实施例3
取20mg多壁碳纳米管用硝酸(>98%)在80℃下浸泡12小时,离心洗去多余酸液。将酸化后的碳纳米管溶于40mL去乙醇中,超声使其分散。向碳纳米管溶液中加入10mL16g/LFeCl3溶液搅拌均匀,加入抗坏血酸钠2g,将混合液用去离子水稀释到500mL,倒入两个500mL圆底烧瓶中,在75℃下水浴搅拌加热8小时。将所配置的混合液通过真空抽滤到一张直径50mm的PTFE支撑膜上,制得FeOOH/碳纳米管复合滤膜。
将所制滤膜放置在一个透光的膜过滤装置中,采用如实施例2同样的循环过滤的方式处理100mL 10mg/L含四氯苯酚废水,H2O2浓度为20mM,废水PH=5.4,采用一个400W氙气灯做为光源。同时做一个无催化剂的H2O2光降解对比实验,处理效果如附图4所示,在滤膜光Fenton作用下,四氯苯酚降解率达到95%,而无催化剂的H2O2光降解对比实验降解率约为10%。
实施例4
取25mg多壁碳纳米管用硝酸(>98%)在70℃下浸泡12小时,离心洗去多余酸液。将酸化后的碳纳米管溶于30mL去乙醇中,超声使其分散。向碳纳米管溶液中加入10mL16g/LFeCl3溶液搅拌均匀,加入抗坏血酸钠2g,将混合液用去离子水稀释到500mL,倒入圆底烧瓶中,在75℃下水浴搅拌加热8小时。将所配置的混合液通过真空抽滤到一张直径50mm的PTFE支撑膜上,制得FeOOH/碳纳米管复合滤膜。采用循环过滤的方法处理50mL 15mg/L苯酚,在可见光条件下对苯酚的降解率为83.5%。
实施例5
取30mg多壁碳纳米管用硝酸(>98%)在70℃下浸泡12小时,离心洗去多余酸液。将酸化后的碳纳米管溶于30mL去乙醇中,超声使其分散。向碳纳米管溶液中加入10mL1.2g/L Fe2(SO4)3溶液搅拌均匀,加入抗坏血酸钠0.1g,将混合液用去离子水稀释到200mL,倒入圆底烧瓶中,在80℃下水浴搅拌加热4小时。将所配置的混合液通过真空抽滤到一张直径40mm的PTFE支撑膜上,制得FeOOH/碳纳米管复合滤膜。采用一个400W氙气灯做为光源,将5mg/L含四环素废水以0.5mL/min的流速通过滤膜,通过滤膜的废水四环素降解率为78.6%。

Claims (6)

1.一种FeOOH/碳纳米管复合滤膜的制备方法,其特征在于:①取多壁碳纳米管用硝酸浸泡并且加热处理至少3小时使其酸化,离心去除附着在碳纳米管上多余的酸液;②将酸化后的碳纳米管放入乙醇溶液中,使用超声波处理使其均匀分散;③将一定量铁盐水溶液加入碳纳米管的乙醇溶液中,搅拌使其混合均匀;④向溶液中加入一定量的抗坏血酸钠,加入去离子水将混合液稀释,水浴搅拌加热;⑤将冷却后的混合液真空抽滤到PTFE支撑膜上,去离子水洗去杂质,制成FeOOH/碳纳米管复合滤膜。
2.根据权利要求1所述的FeOOH/碳纳米管复合滤膜的制备方法,其特征在于,所述FeOOH/碳纳米管复合滤膜制备过程中制备过程中所使用铁与碳纳米管的比例范围为0.001-0.05mol∶1g。
3.根据权利要求1所述的FeOOH/碳纳米管复合滤膜的制备方法,其特征在于,步骤③中所述铁盐为硝酸铁,氯化铁,硫酸铁。
4.根据权利要求1所述的FeOOH/碳纳米管复合滤膜的制备方法,其特征在于,步骤④中所述抗坏血酸钠的添加量控制到抗坏血酸钠与铁的摩尔比为10-30∶1。
5.根据权利要求1所述的FeOOH/碳纳米管复合滤膜的制备方法,其特征在于,步骤④中所述去离子水稀释倍数为5-15倍。
6.根据权利要求1所述的FeOOH/碳纳米管复合滤膜的制备方法,其特征在于,步骤④中所述混合液水浴搅拌加热在加热温度为65-80℃时,加热时间为4-12小时;当加热温度为80-95℃时,加热时间为1.5-4小时。
CN201811580004.6A 2018-12-24 2018-12-24 FeOOH/碳纳米管复合滤膜的制备及其在光Fenton中的应用 Pending CN111346639A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811580004.6A CN111346639A (zh) 2018-12-24 2018-12-24 FeOOH/碳纳米管复合滤膜的制备及其在光Fenton中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811580004.6A CN111346639A (zh) 2018-12-24 2018-12-24 FeOOH/碳纳米管复合滤膜的制备及其在光Fenton中的应用

Publications (1)

Publication Number Publication Date
CN111346639A true CN111346639A (zh) 2020-06-30

Family

ID=71188520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811580004.6A Pending CN111346639A (zh) 2018-12-24 2018-12-24 FeOOH/碳纳米管复合滤膜的制备及其在光Fenton中的应用

Country Status (1)

Country Link
CN (1) CN111346639A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657493A (zh) * 2020-12-01 2021-04-16 诺桠(苏州)环境科技有限公司 碳纳米管膜的制作方法及基于限域催化剂的连续流电芬顿系统
CN114558464A (zh) * 2022-01-25 2022-05-31 浙江工业大学 一种复合纳滤膜及其制备方法与应用
CN115966715A (zh) * 2023-01-09 2023-04-14 中国地质大学(武汉) 一种共轴结构单原子负载型铂碳复合催化剂及其制备方法
CN116371446A (zh) * 2023-04-19 2023-07-04 中国科学院生态环境研究中心 铁氮化合物-碳纳米管复合材料、制备方法及应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657493A (zh) * 2020-12-01 2021-04-16 诺桠(苏州)环境科技有限公司 碳纳米管膜的制作方法及基于限域催化剂的连续流电芬顿系统
CN112657493B (zh) * 2020-12-01 2023-06-13 诺桠(苏州)环境科技有限公司 碳纳米管膜的制作方法及基于限域催化剂的连续流电芬顿系统
CN114558464A (zh) * 2022-01-25 2022-05-31 浙江工业大学 一种复合纳滤膜及其制备方法与应用
CN114558464B (zh) * 2022-01-25 2022-12-09 浙江工业大学 一种复合纳滤膜及其制备方法与应用
CN115966715A (zh) * 2023-01-09 2023-04-14 中国地质大学(武汉) 一种共轴结构单原子负载型铂碳复合催化剂及其制备方法
CN116371446A (zh) * 2023-04-19 2023-07-04 中国科学院生态环境研究中心 铁氮化合物-碳纳米管复合材料、制备方法及应用

Similar Documents

Publication Publication Date Title
Balakrishnan et al. Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants
Nasir et al. A review on floating nanocomposite photocatalyst: fabrication and applications for wastewater treatment
Gautam et al. Metal oxides and metal organic frameworks for the photocatalytic degradation: A review
MiarAlipour et al. TiO2/porous adsorbents: Recent advances and novel applications
Babaei et al. A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@ carbon
Ruan et al. Review on the synthesis and activity of iron-based catalyst in catalytic oxidation of refractory organic pollutants in wastewater
JP7011350B2 (ja) 過硫酸塩を効率よく活性化可能なグラフェン系中空硫化コバルトのナノ結晶の製造方法
CN111346639A (zh) FeOOH/碳纳米管复合滤膜的制备及其在光Fenton中的应用
Hamad et al. Photocatalytic parameters and kinetic study for degradation of dichlorophenol-indophenol (DCPIP) dye using highly active mesoporous TiO2 nanoparticles
Wang et al. Heterogeneous Photo‐Fenton Reaction Catalyzed by Nanosized Iron Oxides for Water Treatment
US11713256B2 (en) Composite material for water treatment
Tang et al. Fabrication of magnetic Fe3O4/silica nanofiber composites with enhanced Fenton-like catalytic performance for Rhodamine B degradation
Ammar et al. Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ ZnO/PMOs)
Chen et al. A novel strategy for preparation of an effective and stable heterogeneous photo-Fenton catalyst for the degradation of dye
CN110776049B (zh) 功能化锆基金属有机骨架/质子化氮化碳复合材料活化过一硫酸盐处理有机废水的方法
Dubey et al. Ultrasound assisted synthesis of magnetic Fe3O4/ɑ-MnO2 nanocomposite for photodegradation of organic dye
Yu et al. AgI-modified TiO2 supported by PAN nanofibers: A heterostructured composite with enhanced visible-light catalytic activity in degrading MO
Shangguan et al. Zeolite-based Fenton-like catalysis for pollutant removal and reclamation from wastewater
CN109174161B (zh) 可磁分离TNTs/g-C3N4纳米复合材料的制备方法和应用
CN103464122B (zh) 一种石墨烯/壳聚糖吸附树脂的制备方法
Zhu et al. Efficient degradation of orange II by core shell CoFe2O4–CeO2 nanocomposite with the synergistic effect from sodium persulfate
CN110756163A (zh) 一种纳米CoFe2O4/碳纤维毡复合材料及其制备方法和应用
Xiang et al. Synergistic photocatalysis-fenton reaction of flower-shaped CeO2/Fe3O4 magnetic catalyst for decolorization of high concentration congo red dye
Najafidoust et al. MIL-(53) Fe metal-organic framework (MOF)-based Ag2CrO4 hetrostructure with enhanced solar-light degradation of organic dyes
CN105728051A (zh) 一种可见光响应的磁性复合光催化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200630

WD01 Invention patent application deemed withdrawn after publication