CN111327270A - Double Cooling Condenser Heat Pipe Type Photovoltaic Photothermal Module-Trumbert Wall System and Method - Google Patents
Double Cooling Condenser Heat Pipe Type Photovoltaic Photothermal Module-Trumbert Wall System and Method Download PDFInfo
- Publication number
- CN111327270A CN111327270A CN202010243091.7A CN202010243091A CN111327270A CN 111327270 A CN111327270 A CN 111327270A CN 202010243091 A CN202010243091 A CN 202010243091A CN 111327270 A CN111327270 A CN 111327270A
- Authority
- CN
- China
- Prior art keywords
- wall
- heat
- refrigerant
- solar
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 66
- 238000010438 heat treatment Methods 0.000 claims abstract description 27
- 238000005286 illumination Methods 0.000 claims abstract description 4
- 238000005338 heat storage Methods 0.000 claims abstract 8
- 239000003507 refrigerant Substances 0.000 claims description 82
- 239000007788 liquid Substances 0.000 claims description 13
- 238000010521 absorption reaction Methods 0.000 claims description 9
- 239000000498 cooling water Substances 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 7
- 230000005484 gravity Effects 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 4
- 239000004831 Hot glue Substances 0.000 claims description 3
- 230000009977 dual effect Effects 0.000 claims 6
- 230000031700 light absorption Effects 0.000 claims 2
- 238000010030 laminating Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract 2
- 238000010248 power generation Methods 0.000 abstract 1
- 230000001932 seasonal effect Effects 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 239000008236 heating water Substances 0.000 description 5
- 238000003855 Adhesive Lamination Methods 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/40—Thermal components
- H02S40/44—Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/40—Thermal components
- H02S40/42—Cooling means
- H02S40/425—Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/70—Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/60—Thermal-PV hybrids
Landscapes
- Photovoltaic Devices (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
技术领域technical field
本发明属于光伏光热技术与建筑结合领域,具体涉及热管式光伏光热系统与特朗伯墙结合在建筑中的应用。The invention belongs to the field of combining photovoltaic photothermal technology with buildings, and particularly relates to the application of a heat pipe type photovoltaic photothermal system combined with a Trumbert wall in buildings.
背景技术Background technique
太阳能光伏光热一体化技术(PV/T)结合了传统太阳能光伏板和太阳能集热器两种系统的功能,可同时提供电能和热能。为解决光伏光热模块内部冬季结冰问题,热管技术被引入光伏光热系统。目前,热管式光伏光热系统多为单一冷却模式,如单一风冷、单一水冷,此种结构限制了系统的输出功能。Solar Photovoltaic Photothermal Technology (PV/T) combines the functions of traditional solar photovoltaic panels and solar collectors to provide both electrical and thermal energy. In order to solve the problem of freezing inside the photovoltaic thermal module in winter, the heat pipe technology is introduced into the photovoltaic thermal system. At present, most of the heat pipe photovoltaic systems use a single cooling mode, such as single air cooling and single water cooling, which limits the output function of the system.
特朗伯墙作为一种成熟的采暖结构墙体,可通过自然对流或强迫对流换热加热室内空气。特朗伯墙与光伏光热技术的结合,增加了PV/T的应用形式。但因特朗伯墙仅利用单一冷却方式,在自然对流或强迫对流冷却状态下,其光电光热综合效率不高于45%。其大部分的能量以热损的形式散于室外,所以利用多种形式冷却光伏光热模块来提高其光电光热综合效率具有潜力和必要性。As a mature heating structure wall, Trumbert wall can heat indoor air through natural convection or forced convection heat exchange. The combination of Trumbert wall and photovoltaic photothermal technology increases the application form of PV/T. However, the Interlambertian wall only uses a single cooling method, and its photoelectric, photothermal comprehensive efficiency is not higher than 45% in the state of natural convection or forced convection cooling. Most of its energy is dissipated outdoors in the form of heat loss, so it is potential and necessary to use various forms of cooling photovoltaic modules to improve their overall photovoltaic efficiency.
中国专利《一种热管式光伏光热构件》(CN201310539314.4)、《热管式光伏光热一体化板》(CN201310475617.4)皆采用单一水冷模式达到制热水功能。《一种太阳能多功能墙》(CN201410558931.3)介绍了一种自然对流换热的特朗伯墙采暖、除甲醛系统,《一种面向被动房的太阳能集热通风系统》(CN201820406956.5)介绍了太阳能集热器、热管和特朗伯墙结合热水系统,这些系统皆采用的是单一冷却方式,太阳能利用效率有待提升。The Chinese patents "A Heat Pipe Photovoltaic Photothermal Component" (CN201310539314.4) and "Heat Pipe Photovoltaic Photothermal Integrated Board" (CN201310475617.4) all use a single water cooling mode to achieve the function of heating water. "A Solar Multi-Function Wall" (CN201410558931.3) introduces a natural convection heat transfer Trumbert wall heating and formaldehyde removal system, "A Solar Heat Collection Ventilation System for Passive Houses" (CN201820406956.5) The solar collector, heat pipe and Trumbert wall combined with hot water system are introduced. These systems all use a single cooling method, and the solar energy utilization efficiency needs to be improved.
发明内容SUMMARY OF THE INVENTION
针对现有热管式光伏光热模块换热模式单一、太阳能特朗伯墙冷却方式单一、换热效率低等问题,本发明提出了一种双冷冷凝器热管式光伏光热模块-特朗伯墙结合系统。该系统将双冷换热器、热管式光伏光热模块与特朗伯墙相结合,以单一换热器的两种换热模式增加了光伏光热模块输出功能,以强制对流换热方式利用热管与特朗伯墙联合对光伏光热模块进行叠加冷却,提高其光电光热综合效率。Aiming at the problems of the existing heat pipe type photovoltaic photovoltaic module with single heat exchange mode, single solar Trumbert wall cooling method and low heat exchange efficiency, the present invention proposes a double-cooled condenser heat pipe photovoltaic photovoltaic module-Trumpet Wall bonding system. The system combines dual-cooling heat exchangers, heat pipe photovoltaic modules and Trumbert walls, and increases the output function of photovoltaic modules with two heat exchange modes of a single heat exchanger, and utilizes forced convection heat exchange. The heat pipe is combined with the Trumbert wall to superimpose the cooling of the photovoltaic photothermal module to improve its photoelectric photothermal comprehensive efficiency.
为实现上述发明目的,本发明技术方案如下:In order to realize the above-mentioned purpose of the invention, the technical scheme of the present invention is as follows:
一种双冷冷凝器热管式光伏光热模块-特朗伯墙系统,包括太阳能光伏光热模块1、双冷冷凝器10、水泵14、储热水箱15、风扇16、特朗伯墙23、太阳能蓄电池24和太阳能逆控一体机25;A double-cooling condenser heat pipe photovoltaic photothermal module-Trumbert wall system, comprising a solar photovoltaic
太阳能光伏光热模块1用于吸收和转换太阳能、为系统提供电能和热能,所述太阳能光伏光热模块1包括靠近光照侧的玻璃板2、靠近用户侧的吸热板5、玻璃板2和吸热板5之间的隔热空气层3,太阳能电池片阵列4固定在吸热板5的吸光面,微通道蒸发器板芯6固定在吸热板5的背光面;微通道蒸发器板芯6的上端和冷媒蒸汽管8的下端连通,冷媒蒸汽管8的上端和冷媒换热管11的入口连通,冷媒换热管11的出口和冷媒回液管9连通,The solar photovoltaic
双冷冷凝器10置于太阳能光伏光热模块1上方,双冷冷凝器10内部设有冷媒换热管11、水冷换热管12,冷媒换热管11和水冷换热管12相邻设置,相邻的微通道冷媒换热管11之间的间隔构成风冷通道13,双冷冷凝器10位于特朗伯墙上风出口18处,水冷换热管12通过水泵14与储热水箱15相连,形成冷却水通道;特朗伯墙23由上到下分别设有特朗伯墙上风出口18、特朗伯墙中风入口17、特朗伯墙下风出口19,所述特朗伯墙上风出口18、特朗伯墙中风入口17、特朗伯墙下风出口19都位于室内,特朗伯墙中风入口17处设有风扇16。The double-cooled
太阳能蓄电池24与太阳能光伏光热模块1通过电线相连,用于储存电能,而太阳能逆控一体机25与太阳能蓄电池24相连并将其内的直流电转换成交流电供给用户端26使用。The
作为优选方式,特朗伯墙上风出口18设有特朗伯墙上风出口挡板21,特朗伯墙中风入口17设有特朗伯墙中风入口挡板20,特朗伯墙下风出口19设有特朗伯墙下风出口挡板22。As a preferred way, the
作为优选方式,特朗伯墙中风入口17中心与特朗伯墙上风出口18位置都高于太阳能光伏光热模块1。As a preferred way, both the center of the
作为优选方式,太阳能电池片阵列4和微通道蒸发器板芯6分别通过热熔胶层压方式固定在吸热板5的吸光面和背光面。As a preferred way, the
作为优选方式,储热水箱15设有出水口连接至用户端26。As a preferred way, the hot
为实现上述发明目的,本发明还提供所述的一种双冷冷凝器热管式光伏光热模块-特朗伯墙系统的使用方法,如下:In order to achieve the above purpose of the invention, the present invention also provides a method of using the double-cooled condenser heat-pipe photovoltaic photovoltaic module-Trump wall system, as follows:
在非采暖季,太阳能光伏光热模块1、微通道冷媒换热管11、水冷换热管12、储热水箱15和水泵14联合运行,微通道蒸发器板芯6内的液态冷媒吸收太阳能热量后相变为气态蒸汽经冷媒蒸汽管8进入双冷冷凝器10内的微通道冷媒换热管11,此时,水泵14开启,储热水箱15内的水在水泵14的带动下进入双冷冷凝器10内的水冷换热管12,气态冷媒与冷却水在微通道冷媒换热管11内管壁以冷媒两相流-水强迫对流换热形式进行热交换,被冷却的气态冷媒相变为液态,在重力作用下经过冷媒回液管9流入微通道蒸发器板芯6,完成一次热管热量传递循环过程,被加热的冷却水流入储热水箱15,完成一次热量的吸收过程,当水达到使用要求温度后,储热水箱15通过客户端26提供热水;In the non-heating season, the solar
在采暖季,太阳能光伏光热模块1、微通道冷媒换热管11、风扇16和特朗伯墙23联合运行;微通道蒸发器板芯6内的液态冷媒吸收太阳能热量后相变为气态蒸汽经冷媒蒸汽管8进入双冷冷凝器10内的微通道冷媒换热管11;此时风扇16开启,室内冷风在风扇16的带动下由特朗伯墙中风入口17进入墙体后分别向上和向下流动,向上流动的空气进入双冷冷凝器10内的风冷通道13,气态冷媒与冷空气在微通道冷媒换热管11外管壁以冷媒两相流-空气强迫对流换热形式进行热交换,被冷却的气态冷媒相变为液态,在重力作用下经过冷媒回液管9流入微通道蒸发器板芯6,完成一次热管热量传递循环过程,被加热的空气通过特朗伯墙上风出口18进入室内;向下流动的空气与吸热板5进行强迫对流换热,被加热的空气由特朗伯墙下风出口19进入室内。热管与特朗伯墙联合运行,以强迫对流换热形式对吸热板5进行双重冷却,提高太阳能利用率,并完成采暖功能。During the heating season, the solar
太阳能蓄电池24与太阳能光伏光热模块1通过电线相连,用于储存电能,而太阳能逆控一体机25与太阳能蓄电池24相连并将其内的直流电转换成交流电供给用户端26使用。The
作为优选方式,非采暖季,关闭特朗伯墙中风入口挡板20、特朗伯墙上风出口挡板21与特朗伯墙下风出口挡板22,在墙体内形成密闭空间,充当双冷冷凝器10的保温层,降低双冷冷凝器工作期间的热损耗。As a preferred method, in the non-heating season, close the
系统可通过双冷冷凝器10的两种不同换热模式(水冷或风冷)实现单独制热水或采暖功能。The system can realize the function of heating water or heating independently through two different heat exchange modes (water cooling or air cooling) of the
本发明系统的技术构思如下:The technical conception of the system of the present invention is as follows:
采用水冷风冷双冷换热器作为热管式光伏光热模块的冷凝器并与特朗伯墙技术相结合。此系统为建筑提供热水、电能,实现采暖等功能。在非采暖季,热管式光伏光热系统可单独运行为建筑供电和热水。在采暖季,热管式光伏光热系统与特朗伯墙相结合,利用热管和特朗伯墙联合冷却光伏光热模块,并对建筑进行采暖。A water-cooled air-cooled double-cooled heat exchanger is used as the condenser of the heat pipe photovoltaic module and combined with the Trumbert wall technology. This system provides hot water and electricity for the building, and realizes functions such as heating. In the non-heating season, the heat pipe photovoltaic system can operate alone to provide electricity and hot water for the building. In the heating season, the heat pipe photovoltaic system is combined with the Trumbert wall, using the heat pipe and the Trumbert wall to jointly cool the photovoltaic photovoltaic module and heat the building.
相比现有技术,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
1、本发明将水冷风冷双冷换热器作为热管式光伏光热模块的冷凝器,以单一换热器实现了制热水和采暖两种功能。1. In the present invention, the water-cooled air-cooled double-cooling heat exchanger is used as the condenser of the heat pipe photovoltaic photovoltaic module, and the two functions of heating water and heating are realized by a single heat exchanger.
2、双冷冷凝器和特朗伯墙皆采用强迫对流换热形式,提高了换热器换热系数。2. Both the double-cooling condenser and the Trumbert wall adopt the form of forced convection heat transfer, which improves the heat transfer coefficient of the heat exchanger.
3、热管与特朗伯联合对光伏光热模块进行叠加冷却,提高其光电光热综合效率,提升采暖能力。3. The heat pipe and Trumbert combine to superimpose the cooling of the photovoltaic photothermal module, improve its photoelectric photothermal comprehensive efficiency, and improve the heating capacity.
附图说明Description of drawings
图1为本发明实施例提供一种双冷冷凝器热管式光伏光热模块-特朗伯墙结合系统的结构示意图;1 is a schematic structural diagram of a double-cooled condenser heat pipe photovoltaic photovoltaic module-Trump wall combination system provided by an embodiment of the present invention;
图2为本发明实施例提供非采暖季双冷冷凝器热管光伏光热模块制热水模式平面图;FIG. 2 is a plan view of a mode of heating water provided by a double-cooling condenser heat pipe photovoltaic photovoltaic module in a non-heating season according to an embodiment of the present invention;
图3为本发明实施例提供采暖季双冷冷凝器热管光伏光热模块-特朗伯墙采暖模式平面图;3 is a plan view of a double-cooled condenser heat pipe photovoltaic photovoltaic module-Trumbert wall heating mode provided in a heating season according to an embodiment of the present invention;
图中,1为太阳能光伏光热模块,2为玻璃板,3为隔热空气层,4为太阳能电池片阵列,5为吸热板,6为微通道蒸发器板芯,7为光伏光热模块边框,8为冷媒蒸汽管,9冷媒回液管,10为双冷冷凝器,11为微通道冷媒换热管,12为水冷换热管,13为风冷通道,14为水泵,15为储热水箱,16为风扇,17为特朗伯墙中风入口,18为特朗伯墙上风出口,19为特朗伯墙下风出口,20为特朗伯墙中风入口挡板,21为特朗伯墙上风出口挡板,22为特朗伯墙下风出口挡板,23为特朗伯墙,24为太阳能蓄电池,25为太阳能逆控一体机,26为用户端。In the figure, 1 is a solar photovoltaic photothermal module, 2 is a glass plate, 3 is an insulating air layer, 4 is a solar cell array, 5 is a heat absorbing plate, 6 is a microchannel evaporator core, and 7 is a photovoltaic photothermal Module frame, 8 is the refrigerant steam pipe, 9 is the refrigerant return pipe, 10 is the double-cooled condenser, 11 is the micro-channel refrigerant heat exchange pipe, 12 is the water-cooled heat exchange pipe, 13 is the air-cooled channel, 14 is the water pump, and 15 is the Hot water storage tank, 16 is the fan, 17 is the air inlet of the Trumbert wall, 18 is the air outlet of the Trumbert wall, 19 is the downwind outlet of the Trumbert wall, 20 is the baffle of the air inlet of the Trumbert wall, 21 is the special Lambertian wall air outlet baffle, 22 is the downwind outlet baffle of the Trumbert wall, 23 is the Trumbert wall, 24 is the solar battery, 25 is the solar inverter integrated machine, and 26 is the user end.
具体实施方式Detailed ways
如图1所示,一种双冷冷凝器热管式光伏光热模块-特朗伯墙系统,包括太阳能光伏光热模块1、双冷冷凝器10、水泵14、储热水箱15、风扇16、特朗伯墙23、太阳能蓄电池24和太阳能逆控一体机25;As shown in FIG. 1 , a double-cooled condenser heat pipe photovoltaic photothermal module-Trumble wall system includes a solar photovoltaic
太阳能光伏光热模块1用于吸收和转换太阳能、为系统提供电能和热能,所述太阳能光伏光热模块1包括靠近光照侧的玻璃板2、靠近用户侧的吸热板5、玻璃板2和吸热板5之间的隔热空气层3,太阳能电池片阵列4通过热熔胶层压方式固定在吸热板5的吸光面,微通道蒸发器板芯6通过热熔胶层压方式固定在吸热板5的背光面;微通道蒸发器板芯6的上端和冷媒蒸汽管8的下端连通,冷媒蒸汽管8的上端和冷媒换热管11的入口连通,冷媒换热管11的出口和冷媒回液管9连通,太阳能光伏光热模块1嵌于墙内。The solar photovoltaic
双冷冷凝器10置于太阳能光伏光热模块1上方,双冷冷凝器10内部设有冷媒换热管11、水冷换热管12,冷媒换热管11和水冷换热管12相邻设置,相邻的微通道冷媒换热管11之间的间隔构成风冷通道13,双冷冷凝器10位于特朗伯墙上风出口18处,水冷换热管12通过水泵14与储热水箱15相连,形成冷却水通道;储热水箱15设有出水口连接至用户端26。特朗伯墙23由上到下分别设有特朗伯墙上风出口18、特朗伯墙中风入口17、特朗伯墙下风出口19,所述特朗伯墙上风出口18、特朗伯墙中风入口17、特朗伯墙下风出口19都位于室内,特朗伯墙中风入口17处设有风扇16,特朗伯墙中风入口17中心与特朗伯墙上风出口18位置都高于太阳能光伏光热模块1。特朗伯墙上风出口18设有特朗伯墙上风出口挡板21,特朗伯墙中风入口17设有特朗伯墙中风入口挡板20,特朗伯墙下风出口19设有特朗伯墙下风出口挡板22。The double-cooled
太阳能蓄电池24与太阳能光伏光热模块1通过电线相连,用于储存电能,而太阳能逆控一体机25与太阳能蓄电池24相连并将其内的直流电转换成交流电供给用户端26使用。The
本实施例还提供所述的一种双冷冷凝器热管式光伏光热模块-特朗伯墙系统的使用方法,如下:This embodiment also provides a method for using the double-cooled condenser heat pipe photovoltaic photovoltaic module-Trump wall system, as follows:
如图2所示,在非采暖季,太阳能光伏光热模块1、微通道冷媒换热管11、水冷换热管12、储热水箱15和水泵14联合运行,微通道蒸发器板芯6内的液态冷媒吸收太阳能热量后相变为气态蒸汽经冷媒蒸汽管8进入双冷冷凝器10内的微通道冷媒换热管11,此时,水泵14开启,储热水箱15内的水在水泵14的带动下进入双冷冷凝器10内的水冷换热管12,气态冷媒与冷却水在微通道冷媒换热管11内管壁以冷媒两相流-水强迫对流换热形式进行热交换,被冷却的气态冷媒相变为液态,在重力作用下经过冷媒回液管9流入微通道蒸发器板芯6,完成一次热管热量传递循环过程,被加热的冷却水流入储热水箱15,完成一次热量的吸收过程,当水达到使用要求温度后,储热水箱15通过客户端26提供热水;非采暖季,关闭特朗伯墙中风入口挡板20、特朗伯墙上风出口挡板21与特朗伯墙下风出口挡板22,在墙体内形成密闭空间,充当双冷冷凝器10的保温层,降低双冷冷凝器工作期间的热损耗。As shown in Figure 2, in the non-heating season, the solar
如图3所示,在采暖季,特朗伯墙中风入口挡板20、特朗伯墙上风出口挡板21与特朗伯墙下风出口挡板22打开,太阳能光伏光热模块1、微通道冷媒换热管11、风扇16和特朗伯墙23联合运行;微通道蒸发器板芯6内的液态冷媒吸收太阳能热量后相变为气态蒸汽经冷媒蒸汽管8进入双冷冷凝器10内的微通道冷媒换热管11;此时风扇16开启,室内冷风在风扇16的带动下由特朗伯墙中风入口17进入墙体后分别向上和向下流动,向上流动的空气进入双冷冷凝器10内的风冷通道13,气态冷媒与冷空气在微通道冷媒换热管11外管壁以冷媒两相流-空气强迫对流换热形式进行热交换,被冷却的气态冷媒相变为液态,在重力作用下经过冷媒回液管9流入微通道蒸发器板芯6,完成一次热管热量传递循环过程,被加热的空气通过特朗伯墙上风出口18进入室内;向下流动的空气与吸热板5进行强迫对流换热,被加热的空气由特朗伯墙下风出口19进入室内。热管与特朗伯墙联合运行,以强迫对流换热形式对吸热板5进行双重冷却,提高太阳能利用率,并完成采暖功能。As shown in FIG. 3 , in the heating season, the
太阳能蓄电池24与太阳能光伏光热模块1通过电线相连,用于储存电能,而太阳能逆控一体机25与太阳能蓄电池24相连并将其内的直流电转换成交流电供给用户端26使用。The
系统可通过双冷冷凝器10的两种不同换热模式(水冷或风冷)实现单独制热水或采暖功能。The system can realize the function of heating water or heating independently through two different heat exchange modes (water cooling or air cooling) of the
本发明提出的系统安装方便,非常适合与建筑相结合,可根据不同季节光照特点,实现多功能输出满足建筑内用户的不同需求。The system proposed by the invention is easy to install, very suitable for combining with buildings, and can realize multi-function output according to the lighting characteristics of different seasons to meet the different needs of users in the building.
以上结合附图对本发明的实施例进行了详细阐述,但是本发明并不局限于上述的具体实施方式,上述具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,不脱离本发明宗旨和权利要求所保护范围的情况下还可以做出很多变形,这些均属于本发明的保护。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are only illustrative rather than restrictive. Under the inspiration of the present invention, many modifications can be made without departing from the spirit of the present invention and the protection scope of the claims, which all belong to the protection of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010243091.7A CN111327270B (en) | 2020-03-31 | 2020-03-31 | Double-condenser heat pipe type photovoltaic photo-thermal module-Telambertian wall system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010243091.7A CN111327270B (en) | 2020-03-31 | 2020-03-31 | Double-condenser heat pipe type photovoltaic photo-thermal module-Telambertian wall system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111327270A true CN111327270A (en) | 2020-06-23 |
CN111327270B CN111327270B (en) | 2024-09-03 |
Family
ID=71171765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010243091.7A Active CN111327270B (en) | 2020-03-31 | 2020-03-31 | Double-condenser heat pipe type photovoltaic photo-thermal module-Telambertian wall system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111327270B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111750417A (en) * | 2020-07-30 | 2020-10-09 | 西南交通大学 | Heat pipe type photovoltaic photothermal module-heat pump-phase change floor coupling system and method |
CN111750550A (en) * | 2020-07-30 | 2020-10-09 | 西南交通大学 | Photovoltaic photovoltaic hot water tank module-Trump wall combination system and working method |
CN112013451A (en) * | 2020-07-30 | 2020-12-01 | 西南交通大学 | Solar photovoltaic photothermal coupling double cooling heat exchanger heat pump system and working method |
CN112283962A (en) * | 2020-07-30 | 2021-01-29 | 西南交通大学 | A photovoltaic photothermal-water tank module and working method |
CN112856831A (en) * | 2021-02-26 | 2021-05-28 | 西南交通大学 | Multifunctional heat pipe type photovoltaic photo-thermal high-low temperature phase change floor coupling system and method |
CN112910409A (en) * | 2021-03-30 | 2021-06-04 | 西南交通大学 | Multifunctional evaporative cooling heat pipe type photovoltaic photo-thermal system and working method |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050103327A1 (en) * | 2003-11-18 | 2005-05-19 | Atomic Energy Council - Institute Of Nuclear Energy Research | Passive energy saving system for a building |
JP2005147435A (en) * | 2003-11-12 | 2005-06-09 | Atomic Energy Council-Inst Of Nuclear Energy Research | Non-powered energy saving system for buildings |
CN101738005A (en) * | 2009-11-13 | 2010-06-16 | 中国科学技术大学 | Solar heat pump and heat pipe composite system |
KR100968751B1 (en) * | 2009-06-08 | 2010-07-09 | 가나안이엔씨(주) | Solar power generation system and air-conditioning system using it |
US20100186820A1 (en) * | 2008-11-10 | 2010-07-29 | Schon Steven G | Solar electricity generation with improved efficiency |
US20110088753A1 (en) * | 2009-10-16 | 2011-04-21 | Soleeva Corporation | Solar Energy Converter and Method for Converting Solar Energy |
CN106100575A (en) * | 2015-04-28 | 2016-11-09 | 李东潱 | Combined type solar heat system |
CN106288490A (en) * | 2015-06-11 | 2017-01-04 | 华北电力大学 | Light collecting photovoltaic/photothermal integrated heat-transformation/electricity/cold supply system |
CN107425809A (en) * | 2017-06-03 | 2017-12-01 | 北京工业大学 | A kind of control method of compound photovoltaic and photothermal integral system |
CN207438699U (en) * | 2017-11-15 | 2018-06-01 | 董梁 | A kind of solar heating and ventilation equipment for houses |
CN207455932U (en) * | 2017-05-27 | 2018-06-05 | 燕山大学 | With the photovoltaic loop circuit heat pipe hot-water heating system that solar energy housing is combined |
CN108800609A (en) * | 2018-06-19 | 2018-11-13 | 江苏燕山光伏设备有限公司 | A kind of thermal energy trans-utilization mechanism using photovoltaic generation |
CN110081618A (en) * | 2019-06-03 | 2019-08-02 | 西南交通大学 | A kind of heat pipe photo-thermal system based on double-condenser |
WO2019195891A1 (en) * | 2018-04-11 | 2019-10-17 | Hoole Enterprises Pty Ltd | Heat exchange system |
CN210154106U (en) * | 2019-06-03 | 2020-03-17 | 西南交通大学 | A heat pipe photovoltaic photothermal system based on dual condensers |
CN212034083U (en) * | 2020-03-31 | 2020-11-27 | 西南交通大学 | Special Lambert wall system adopting double-cold-condenser heat pipe type photovoltaic photo-thermal module |
-
2020
- 2020-03-31 CN CN202010243091.7A patent/CN111327270B/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005147435A (en) * | 2003-11-12 | 2005-06-09 | Atomic Energy Council-Inst Of Nuclear Energy Research | Non-powered energy saving system for buildings |
US20050103327A1 (en) * | 2003-11-18 | 2005-05-19 | Atomic Energy Council - Institute Of Nuclear Energy Research | Passive energy saving system for a building |
US20100186820A1 (en) * | 2008-11-10 | 2010-07-29 | Schon Steven G | Solar electricity generation with improved efficiency |
KR100968751B1 (en) * | 2009-06-08 | 2010-07-09 | 가나안이엔씨(주) | Solar power generation system and air-conditioning system using it |
US20110088753A1 (en) * | 2009-10-16 | 2011-04-21 | Soleeva Corporation | Solar Energy Converter and Method for Converting Solar Energy |
CN101738005A (en) * | 2009-11-13 | 2010-06-16 | 中国科学技术大学 | Solar heat pump and heat pipe composite system |
CN106100575A (en) * | 2015-04-28 | 2016-11-09 | 李东潱 | Combined type solar heat system |
CN106288490A (en) * | 2015-06-11 | 2017-01-04 | 华北电力大学 | Light collecting photovoltaic/photothermal integrated heat-transformation/electricity/cold supply system |
CN207455932U (en) * | 2017-05-27 | 2018-06-05 | 燕山大学 | With the photovoltaic loop circuit heat pipe hot-water heating system that solar energy housing is combined |
CN107425809A (en) * | 2017-06-03 | 2017-12-01 | 北京工业大学 | A kind of control method of compound photovoltaic and photothermal integral system |
CN207438699U (en) * | 2017-11-15 | 2018-06-01 | 董梁 | A kind of solar heating and ventilation equipment for houses |
WO2019195891A1 (en) * | 2018-04-11 | 2019-10-17 | Hoole Enterprises Pty Ltd | Heat exchange system |
CN108800609A (en) * | 2018-06-19 | 2018-11-13 | 江苏燕山光伏设备有限公司 | A kind of thermal energy trans-utilization mechanism using photovoltaic generation |
CN110081618A (en) * | 2019-06-03 | 2019-08-02 | 西南交通大学 | A kind of heat pipe photo-thermal system based on double-condenser |
CN210154106U (en) * | 2019-06-03 | 2020-03-17 | 西南交通大学 | A heat pipe photovoltaic photothermal system based on dual condensers |
CN212034083U (en) * | 2020-03-31 | 2020-11-27 | 西南交通大学 | Special Lambert wall system adopting double-cold-condenser heat pipe type photovoltaic photo-thermal module |
Non-Patent Citations (2)
Title |
---|
安文韬;刘彦丰;: "太阳能光伏光热建筑一体化系统的研究", 应用能源技术, no. 11, 25 November 2007 (2007-11-25) * |
黑赏罡;姜曙光;杨骏;张俊龙;宋莹;: "被动式太阳能建筑中特朗伯墙体的研究综述", 低温建筑技术, no. 04, 28 April 2018 (2018-04-28) * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111750417A (en) * | 2020-07-30 | 2020-10-09 | 西南交通大学 | Heat pipe type photovoltaic photothermal module-heat pump-phase change floor coupling system and method |
CN111750550A (en) * | 2020-07-30 | 2020-10-09 | 西南交通大学 | Photovoltaic photovoltaic hot water tank module-Trump wall combination system and working method |
CN112013451A (en) * | 2020-07-30 | 2020-12-01 | 西南交通大学 | Solar photovoltaic photothermal coupling double cooling heat exchanger heat pump system and working method |
CN112283962A (en) * | 2020-07-30 | 2021-01-29 | 西南交通大学 | A photovoltaic photothermal-water tank module and working method |
CN112013451B (en) * | 2020-07-30 | 2024-02-02 | 西南交通大学 | Solar photovoltaic photo-thermal coupling double-cold heat exchanger heat pump system and working method |
CN112856831A (en) * | 2021-02-26 | 2021-05-28 | 西南交通大学 | Multifunctional heat pipe type photovoltaic photo-thermal high-low temperature phase change floor coupling system and method |
CN112910409A (en) * | 2021-03-30 | 2021-06-04 | 西南交通大学 | Multifunctional evaporative cooling heat pipe type photovoltaic photo-thermal system and working method |
Also Published As
Publication number | Publication date |
---|---|
CN111327270B (en) | 2024-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111327270B (en) | Double-condenser heat pipe type photovoltaic photo-thermal module-Telambertian wall system and method | |
CN201246923Y (en) | Heat pump system evaporator and solar photovoltaic heat collectors composite heat source apparatus | |
CN210154106U (en) | A heat pipe photovoltaic photothermal system based on dual condensers | |
CN111076266B (en) | Multifunctional heat pipe type photovoltaic photo-thermal hot water heating system and heating method | |
CN111306814B (en) | Multifunctional double-cold condenser heat pipe photovoltaic photo-thermal system and method | |
CN101334220B (en) | Convective photoelectric conversion enhancement and light heat recovery full working condition composite heat source device | |
CN111207519B (en) | Heat pipe type photovoltaic and photo-thermal module-super-lambertian wall combination system and method | |
CN110081618A (en) | A kind of heat pipe photo-thermal system based on double-condenser | |
CN211782035U (en) | Multifunctional double-cold condenser heat pipe photovoltaic photo-thermal system | |
CN105222397B (en) | A kind of photovoltaic and photothermal joint drives the solar adsorption-type refrigerating system of enhanced heat exchange | |
CN108105918A (en) | Double source combined heat-pump and photovoltaic heat management integral system and its control method | |
CN111750550B (en) | Photovoltaic and photovoltaic hot water tank module-ultra-lambertian wall combined system and working method | |
CN106979546A (en) | A kind of heat pipe-type concentrating photovoltaic photo-thermal heating system | |
CN112856831B (en) | Multifunctional heat pipe type photovoltaic photo-thermal high-low temperature phase change floor coupling system and method | |
CN202660776U (en) | Minitype solar energy combined heat and power system based on loop-type heat pipe | |
CN105737437B (en) | Photovoltaic power supply formula solar energy jetting and directly evaporation composite refrigerating device | |
CN215378868U (en) | Multifunctional Evaporative Cooling Heat Pipe Photovoltaic Thermal System | |
CN211260985U (en) | Multifunctional heat pipe type photovoltaic photo-thermal hot water heating system | |
CN211601160U (en) | Heat pipe type photovoltaic photo-thermal module-special Lambert wall combination system | |
CN212034083U (en) | Special Lambert wall system adopting double-cold-condenser heat pipe type photovoltaic photo-thermal module | |
CN111750418A (en) | Heat pipe type photovoltaic photovoltaic module-heat pump-phase change material coupling system and method | |
CN214371009U (en) | Multifunctional heat pipe type photovoltaic photo-thermal high-low temperature phase change floor coupling system | |
CN106766357A (en) | The solar energy PVT cogeneration systems that a kind of refrigerated medium pump drives | |
CN112910409B (en) | Multifunctional evaporative cooling heat pipe type photovoltaic photo-thermal system and working method | |
CN213656920U (en) | Heat Pipe Photovoltaic Thermal Module-Heat Pump-Phase Change Floor Coupling System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |