CN111326614A - Method for improving luminous efficiency of outdoor lighting source - Google Patents
Method for improving luminous efficiency of outdoor lighting source Download PDFInfo
- Publication number
- CN111326614A CN111326614A CN202010154489.3A CN202010154489A CN111326614A CN 111326614 A CN111326614 A CN 111326614A CN 202010154489 A CN202010154489 A CN 202010154489A CN 111326614 A CN111326614 A CN 111326614A
- Authority
- CN
- China
- Prior art keywords
- layer
- source
- indium
- quantum well
- quantum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229910052738 indium Inorganic materials 0.000 claims abstract description 83
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical group [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 83
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 54
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 54
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 30
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 29
- 230000004888 barrier function Effects 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 23
- 239000010703 silicon Substances 0.000 claims description 21
- 229910052710 silicon Inorganic materials 0.000 claims description 19
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 18
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000001795 light effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 189
- 239000000463 material Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical group [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical group [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
Landscapes
- Led Devices (AREA)
Abstract
本发明提供了一种户外照明光源光效提高方法,包括依次在基板上形成半结晶性层、未掺杂层、N型掺杂层、有源层、P型掺杂层;所述有源层包括周期性重叠的量子阱层和量子垒层,量子阱层为铟镓氮层,量子垒层为氮化镓层,形成至少其中之一量子阱层后通入铟源,通入铟源后通入碳源,通入碳源后形成量子垒层。本发明通过在形成量子阱层后通入铟源,在铟镓氮表面形成铟处理层,铟处理层上通入碳源,高温下碳源分解并与铟处理层接触形成碳二维结构,铟处理层与碳二维结构结合一方面进一步增加量子阱层势阱深度,同时提高载流子浓度和迁移率,进而改善內量子效率,提高光源光效。
The invention provides a method for improving the light efficiency of an outdoor lighting source, which comprises forming a semi-crystalline layer, an undoped layer, an N-type doped layer, an active layer and a P-type doped layer on a substrate in sequence; The layers include a periodically overlapping quantum well layer and a quantum barrier layer, the quantum well layer is an indium gallium nitride layer, and the quantum barrier layer is a gallium nitride layer, and after forming at least one of the quantum well layers, the indium source is passed into the indium source. Then, the carbon source is introduced, and the quantum barrier layer is formed after the carbon source is introduced. In the present invention, the indium source is passed into the quantum well layer, the indium treatment layer is formed on the surface of the indium gallium nitride, the carbon source is passed on the indium treatment layer, and the carbon source is decomposed at high temperature and contacts the indium treatment layer to form a carbon two-dimensional structure, The combination of the indium treatment layer and the carbon two-dimensional structure further increases the potential well depth of the quantum well layer, and at the same time improves the carrier concentration and mobility, thereby improving the internal quantum efficiency and improving the light efficiency of the light source.
Description
技术领域technical field
本发明涉及汽车照明技术领域,具体涉及一种户外照明光源光效提高方法。The invention relates to the technical field of automotive lighting, in particular to a method for improving the light efficiency of an outdoor lighting light source.
背景技术Background technique
构建智慧城市,推动绿色照明,可实现城市可持续发展。近年来,在政府的推动下,LED户外照明行业获得更大的发展空间,尤其是在道路照明和景观照明领域。LED户外照明经过多年的探索发展,在应用过程中的技术不断革新突破,水平不断进步,已经完成了质的积累,价格有所下降,市场持续稳定增长。Building a smart city and promoting green lighting can achieve sustainable urban development. In recent years, driven by the government, the LED outdoor lighting industry has gained more room for development, especially in the field of road lighting and landscape lighting. After years of exploration and development of LED outdoor lighting, the technology in the application process has been continuously innovated and breakthroughs, the level has been continuously improved, the accumulation of quality has been completed, the price has dropped, and the market has continued to grow steadily.
由于LED户外照明市场潜力巨大,国内外大小厂商纷纷争相进入,同质化产品层出不穷,导致产品质量参差不齐,性能不稳定,成为目前LED产业格局的困惑点。考虑到户外产品特殊使用条件,户外LED专业灯具必须更注重光效提升与产品质量。Due to the huge potential of the LED outdoor lighting market, domestic and foreign manufacturers are rushing to enter, and homogeneous products emerge in an endless stream, resulting in uneven product quality and unstable performance, which has become a confusing point for the current LED industry pattern. Considering the special use conditions of outdoor products, outdoor LED professional lighting must pay more attention to the improvement of light efficiency and product quality.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于提供一种户外照明光源光效提高方法,能够有效提高户外照明光源光效及性能。The technical problem to be solved by the present invention is to provide a method for improving the luminous efficiency of an outdoor lighting source, which can effectively improve the luminous efficiency and performance of the outdoor lighting source.
本发明所要解决的技术问题采用以下技术方案来实现:The technical problem to be solved by this invention adopts the following technical solutions to realize:
一种户外照明光源光效提高方法,包括提供一基板,位于所述基板上形成半结晶性层,位于所述半结晶性层上形成未掺杂层,位于所述未掺杂层上形成N型掺杂层,位于所述N型掺杂层上形成有源层,位于所述有源层上形成P型掺杂层;所述有源层包括周期性重叠的量子阱层和量子垒层,量子阱层为铟镓氮层,量子垒层为氮化镓层,形成至少其中之一量子阱层后通入铟源,通入铟源后通入碳源,通入碳源后形成量子垒层。A method for improving light efficiency of an outdoor lighting source, comprising providing a substrate, forming a semi-crystalline layer on the substrate, forming an undoped layer on the semi-crystalline layer, and forming N on the undoped layer type doped layer, an active layer is formed on the N-type doped layer, and a P-type doped layer is formed on the active layer; the active layer includes a periodically overlapping quantum well layer and a quantum barrier layer , the quantum well layer is an indium gallium nitride layer, and the quantum barrier layer is a gallium nitride layer. After forming at least one of the quantum well layers, the indium source is passed, the indium source is passed into the carbon source, and the carbon source is passed through to form a quantum barrier layer.
可选的,形成量子阱层后在通入铟源前形成氮化铝层。Optionally, after the quantum well layer is formed, the aluminum nitride layer is formed before the indium source is passed through.
可选的,形成的氮化铝层位于N型掺杂层一侧。Optionally, the formed aluminum nitride layer is located on one side of the N-type doped layer.
可选的,形成的氮化铝层位于与N型掺杂层距离最近的量子阱层上。Optionally, the formed aluminum nitride layer is located on the quantum well layer closest to the N-type doped layer.
可选的,所述有源层中形成每一个量子阱层后均通入铟源,通入铟源后通入碳源,通入碳源后形成量子垒层。Optionally, after each quantum well layer is formed in the active layer, an indium source is passed, a carbon source is passed after the indium source is passed, and a quantum barrier layer is formed after passing the carbon source.
可选的,所述有源层中从N型掺杂层一侧至P型掺杂层一侧在形成每一个量子阱层后通入的铟源流量逐渐增加。Optionally, the flow of indium source in the active layer gradually increases from the N-type doped layer side to the P-type doped layer side after each quantum well layer is formed.
可选的,所述有源层中从N型掺杂层一侧至P型掺杂层一侧在形成每一个量子阱层后通入的碳源流量逐渐减小。Optionally, after each quantum well layer is formed in the active layer from the N-type doped layer side to the P-type doped layer side, the flow rate of the carbon source passed in gradually decreases.
可选的,通入碳源后还包括通入硅源。Optionally, after the carbon source is introduced, the silicon source is also introduced.
可选的,通入硅源的时间持续至量子磊层生长结束。Optionally, the time of passing the silicon source lasts until the end of the quantum epilayer growth.
可选的,所述硅源流量逐渐减小。Optionally, the flow rate of the silicon source is gradually reduced.
本发明的有益效果是:本发明通过在形成量子阱层后通入铟源,在铟镓氮表面形成铟处理层,铟处理层上通入碳源,高温下碳源分解并与铟处理层接触形成碳二维结构,铟处理层与碳二维结构结合一方面进一步增加量子阱层势阱深度,同时提高载流子浓度和迁移率,进而改善內量子效率,提高光源光效。The beneficial effects of the present invention are as follows: the present invention forms an indium treatment layer on the surface of the indium gallium nitride by introducing an indium source after the quantum well layer is formed, and a carbon source is introduced into the indium treatment layer. Contact forms a carbon two-dimensional structure, and the combination of the indium treatment layer and the carbon two-dimensional structure further increases the potential well depth of the quantum well layer, and at the same time improves the carrier concentration and mobility, thereby improving the internal quantum efficiency and improving the light efficiency of the light source.
附图说明Description of drawings
图1为根据本发明得到的产品结构示意图;Fig. 1 is the product structure schematic diagram that obtains according to the present invention;
图2至图4为根据本发明优选实施例得到的产品结构示意图。2 to 4 are schematic diagrams of product structures obtained according to a preferred embodiment of the present invention.
具体实施方式Detailed ways
下面将结合附图对本发明提供的户外照明光源光效提高方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。The method for improving the luminous efficiency of an outdoor lighting source provided by the present invention will be described in more detail below with reference to the accompanying drawings, in which the preferred embodiments of the present invention are shown. It should be understood that those skilled in the art can modify the present invention described herein and still achieve Advantageous effects of the present invention. Therefore, the following description should be construed as widely known to those skilled in the art and not as a limitation of the present invention.
在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The invention is described in more detail by way of example in the following paragraphs with reference to the accompanying drawings. The advantages and features of the present invention will become apparent from the following description and claims. It should be noted that, the accompanying drawings are all in a very simplified form and in inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.
本发明的核心在于提供一种户外照明光源光效提高方法,包括提供一基板1,位于基板1上形成半结晶性层2,位于半结晶性层2上形成未掺杂层3,位于未掺杂层3上形成N型掺杂层4,位于N型掺杂层4上形成有源层5,位于有源层5上形成P型掺杂层6;有源层5包括周期性重叠的量子阱层51和量子垒层52,量子阱层为铟镓氮层,量子垒层为氮化镓层,形成至少其中之一量子阱层51后通入铟源,通入铟源后通入碳源,通入碳源后形成量子垒层52,得到的产品结构如图1所示。The core of the present invention is to provide a method for improving the light efficiency of an outdoor lighting source, including providing a
量子垒层为氮化镓层,氮化镓是直接带隙半导体材料,其室温禁带宽度为3.39eV,量子阱层为铟镓氮层,铟镓氮层通过在形成氮化镓过程中通入铟源形成,随着铟含量增多其禁带宽度逐渐减小,形成的势阱深度逐步加深,电子和空穴在量子阱层中复合发光,周期性重叠的量子阱层和量子垒层中,发光量子阱层主要集中在靠近P型掺杂层一侧,这主要是由于电子迁移率大于空穴迁移率,同时形成P型掺杂要比形成N型掺杂困难,使得空穴浓度低于电子浓度,形成量子阱层后通入铟源,在铟镓氮表面形成铟处理层,铟处理层上通入碳源,高温下碳源分解并与铟处理层接触形成碳二维结构,铟处理层与碳二维结构结合一方面进一步增加量子阱层势阱深度,同时提高载流子浓度和迁移率,进而改善內量子效率,提高光源光效。The quantum barrier layer is a gallium nitride layer, and gallium nitride is a direct bandgap semiconductor material with a forbidden band width of 3.39eV at room temperature. The quantum well layer is an indium gallium nitride layer. The indium source is formed. As the indium content increases, the forbidden band width gradually decreases, and the depth of the potential well formed gradually deepens. The electrons and holes recombine in the quantum well layer, and the periodically overlapping quantum well layer and quantum barrier layer emit light. , the light-emitting quantum well layer is mainly concentrated on the side close to the P-type doping layer, which is mainly because the electron mobility is greater than the hole mobility, and it is more difficult to form P-type doping than N-type doping, resulting in a low hole concentration. According to the electron concentration, after forming the quantum well layer, the indium source is passed, and the indium treatment layer is formed on the surface of the indium gallium nitride, and the carbon source is passed on the indium treatment layer. On the one hand, the combination of the indium treatment layer and the carbon two-dimensional structure further increases the potential well depth of the quantum well layer, and at the same time improves the carrier concentration and mobility, thereby improving the internal quantum efficiency and improving the light efficiency of the light source.
本实施例中,基板1的材料为蓝宝石、碳化硅、硅或氮化镓等。In this embodiment, the material of the
基板材料是决定光源颜色、亮度、寿命等性能指标的重要因素,基板材料表面的粗糙度、热膨胀系数、热传导系数、极性的影响、表面的加工要求以及与外延材料间晶格是否匹配,这些因素与光源发光效率与稳定性密切相关。The substrate material is an important factor in determining the performance indicators such as the color, brightness, and life of the light source. The surface roughness, thermal expansion coefficient, thermal conductivity coefficient, polarity of the substrate material, processing requirements of the surface, and whether the lattice matches the epitaxial material. The factors are closely related to the luminous efficiency and stability of the light source.
本实施例中,基板1为平板或者图形化基板,使用图形化基板可以提高光的散射,图形化基板图案是按六边形密排的尺寸为微米量级的三角状、锥状、柱状或者其他形状阵列,可以将光源光提取效率提高至60%以上,同时利用图形化基板可以控制结晶过程中位错的延伸方向从而有效降低位错密度。In this embodiment, the
接着,在基板1上形成半结晶性层2。Next, the
本实施例中,半结晶性层2的材料为氮化镓、氮化铝或铝镓氮,形成半结晶性层2的温度为400℃~700℃,压力300Torr~700Torr,厚度为10nm~50nm。In this embodiment, the material of the
半结晶性层晶体状态介于单晶与多晶之间,异质外延(基板材料与氮化镓材料不同)中存在较为严重的晶格失配和热应力失配,通过生长一层半结晶性层可以有效的减少两种不同材料之间的晶格失配和热应力失配。在其他实施例中,当为同质外延时可以省却该半结晶性层。The crystal state of the semi-crystalline layer is between single crystal and polycrystalline, and there is a serious lattice mismatch and thermal stress mismatch in heteroepitaxy (substrate material is different from gallium nitride material). By growing a layer of semi-crystalline The interlayer can effectively reduce the lattice mismatch and thermal stress mismatch between two different materials. In other embodiments, the semi-crystalline layer may be omitted when homoepitaxial.
接着,在半结晶性层2上形成未掺杂层3。Next, the
本实施例中,形成未掺杂层3的温度为900℃~1200℃,压力100Torr~500Torr,厚度为0.5um~5um。In this embodiment, the temperature for forming the
本实施例中,未掺杂层3可以包括以三维模式生长的3D未掺杂层和以二维模式生长的2D未掺杂层,所述3D未掺杂层、2D未掺杂层依次形成在半结晶性层2上,所述3D未掺杂层形成岛状结构,所述2D未掺杂层将岛状结构填平形成平整的表面。In this embodiment, the
接着,在未掺杂层3上形成N型掺杂层4。Next, an N-type doped
本实施例中,N型掺杂层4可以是四价硅原子取代三价镓原子形成电子,形成N型掺杂层4的温度为900℃~1200℃,压力100Torr~500Torr,厚度为4.5um~9um,掺杂浓度为2e18cm-3~6e20cm-3。In this embodiment, the N-type doped
本实施例中,使用硅烷作为硅源。In this example, silane was used as the silicon source.
接着,在N型掺杂层4上形成有源层5。Next, the
本实施例中,形成有源层5的温度为700℃~900℃,压力100Torr~300Torr,厚度为25nm~320nm。In this embodiment, the temperature for forming the
本实施例中,形成有源层5包括在N型掺杂层4上依次周期层叠的量子阱层51和量子垒层52,有源层5由5~20组周期层叠的量子阱层51和量子垒层52组成,量子阱层51厚度为2.0nm~4.0nm,量子垒层52厚度为3.0nm~12.0nm。In this embodiment, the formation of the
本实施例中,量子阱层51通过在氮化镓层中掺铟形成铟镓氮,量子垒层52为氮化镓层,由于过高的温度使铟难以掺入进氮化镓,一般形成量子阱层51的温度低于形成量子垒层52的温度,温差大约在60~160℃。In this embodiment, the
在外界电流作用下,N型掺杂层4产生的电子与P掺杂层6产生的空穴在有源层5中复合发光,因而有源层结构对光源发光有着重要的影响。Under the action of external current, the electrons generated by the N-type doped
本实施例中,形成至少其中之一量子阱层51后通入铟源,通入铟源后通入碳源,通入碳源后形成量子垒层52。In this embodiment, after forming at least one of the quantum well layers 51 , the indium source is connected, the carbon source is connected after the indium source, and the
量子垒层为氮化镓层,氮化镓是直接带隙半导体材料,其室温禁带宽度为3.39eV,量子阱层为铟镓氮层,铟镓氮层通过在形成氮化镓过程中通入铟源形成,随着铟含量增多其禁带宽度逐渐减小,形成的势阱深度逐步加深,电子和空穴在量子阱层中复合发光,周期性重叠的量子阱层和量子垒层中,发光量子阱层主要集中在靠近P型掺杂层一侧,这主要是由于电子迁移率大于空穴迁移率,同时形成P型掺杂要比形成N型掺杂困难,使得空穴浓度低于电子浓度,形成量子阱层后通入铟源,在铟镓氮表面形成铟处理层,铟处理层上通入碳源,高温下碳源分解并与铟处理层接触形成碳二维结构,铟处理层与碳二维结构结合一方面进一步增加量子阱层势阱深度,同时提高载流子浓度和迁移率,进而改善內量子效率,提高光源光效。The quantum barrier layer is a gallium nitride layer, and gallium nitride is a direct bandgap semiconductor material with a forbidden band width of 3.39eV at room temperature. The quantum well layer is an indium gallium nitride layer. The indium source is formed. As the indium content increases, the forbidden band width gradually decreases, and the depth of the potential well formed gradually deepens. The electrons and holes recombine in the quantum well layer, and the periodically overlapping quantum well layer and quantum barrier layer emit light. , the light-emitting quantum well layer is mainly concentrated on the side close to the P-type doping layer, which is mainly because the electron mobility is greater than the hole mobility, and it is more difficult to form P-type doping than N-type doping, resulting in a low hole concentration. According to the electron concentration, after forming the quantum well layer, the indium source is passed, and the indium treatment layer is formed on the surface of the indium gallium nitride, and the carbon source is passed on the indium treatment layer. On the one hand, the combination of the indium treatment layer and the carbon two-dimensional structure further increases the potential well depth of the quantum well layer, and at the same time improves the carrier concentration and mobility, thereby improving the internal quantum efficiency and improving the light efficiency of the light source.
本实施例中,所述铟源可以为三甲基铟,通入铟源流量为50~500sccm,所述碳源可以为甲烷、乙烷、乙炔、丙烷中的这一种或者多种,通入碳源流量为10~100sccm。In this embodiment, the indium source can be trimethyl indium, the flow rate of the indium source is 50-500 sccm, and the carbon source can be one or more of methane, ethane, acetylene, and propane. The flow rate of the incoming carbon source is 10-100 sccm.
本实施例中,可以在通完铟源后直接通入碳源,也可以在通完铟源后间隔一段时间再通入碳源,间隔时间可以为10s~2min。In this embodiment, the carbon source may be directly passed in after the indium source is passed through, or the carbon source may be passed in after a period of time after the indium source is passed through, and the interval may be 10s˜2min.
在一具体实施例中,通入铟源流量为75sccm、125sccm、175sccm、225sccm、275sccm、325sccm、375sccm、425sccm或475sccm,或50~100sccm、100~150sccm、150~200sccm、200~250sccm、250~300sccm、300~350sccm、350~400sccm、400~450sccm、450~500sccm任一区间内的任一数值。In a specific embodiment, the indium source flow rate is 75sccm, 125sccm, 175sccm, 225sccm, 275sccm, 325sccm, 375sccm, 425sccm or 475sccm, or 50-100sccm, 100-150sccm, 150-200sccm, 200-250sccm, 250-sccm Any value within any interval of 300sccm, 300-350sccm, 350-400sccm, 400-450sccm, and 450-500sccm.
在一具体实施例中,通入碳源流量为15sccm、25sccm、35sccm、45sccm、55sccm、65sccm、75sccm、85sccm或95sccm,或10~20sccm、20~30sccm、30~40sccm、40~50sccm、50~60sccm、60~70sccm、70~80sccm、80~90sccm、90~100sccm任一区间内的任一数值。In a specific embodiment, the flow rate of the incoming carbon source is 15sccm, 25sccm, 35sccm, 45sccm, 55sccm, 65sccm, 75sccm, 85sccm or 95sccm, or 10-20sccm, 20-30sccm, 30-40sccm, 40-50sccm, 50- Any value within any interval of 60sccm, 60-70sccm, 70-80sccm, 80-90sccm, and 90-100sccm.
在一具体实施例中,通入铟源后间隔10s、20s、30s、40s、50s、1min、1min10s、1min20s、1min30s、1min40s、1min50或2min后再通入碳源In a specific embodiment, after the indium source is introduced, the carbon source is introduced after an interval of 10s, 20s, 30s, 40s, 50s, 1min, 1min10s, 1min20s, 1min30s, 1min40s, 1min50 or 2min.
本实施例中,通入铟源保持温度、压力与形成量子阱层51的温度、压力相等,通入碳源保持温度、压力与形成量子磊层52的温度、压力相等。In this embodiment, the indium source is supplied to maintain the temperature and pressure equal to the temperature and pressure for forming the
请参考图2,作为本实施例优选,形成量子阱层51后在通入铟源前形成氮化铝层50。Referring to FIG. 2 , preferably in this embodiment, after the
在量子阱层上通入铟源形成铟处理层,铟处理层中的铟会向铟镓氮层中渗透,使得铟处理层表面铟分布不均,平整度差,此时通入碳源难以得到高质量碳二维结构,为此在通入铟源前先在量子阱层上形成氮化铝层可以提供一平整表面并防止铟源向铟镓氮层中渗透,进而得到高质量碳二维结构;氮化铝禁带宽度为6.28eV,远高于氮化镓,对电子具有阻挡效应,形成量子阱层后通入铟源前形成氮化铝层,氮化铝层将阻挡N型掺杂层中产生的电子向有源层中跃迁,这有利于电流在N型掺杂层与有源层接触界面扩展,尤其适合大电流注入。An indium source is passed on the quantum well layer to form an indium treatment layer. The indium in the indium treatment layer will penetrate into the indium gallium nitride layer, so that the indium distribution on the surface of the indium treatment layer is uneven and the flatness is poor. At this time, it is difficult to pass the carbon source. A high-quality carbon two-dimensional structure is obtained. For this reason, forming an aluminum nitride layer on the quantum well layer before passing in the indium source can provide a flat surface and prevent the indium source from penetrating into the indium gallium nitride layer, thereby obtaining high-quality carbon dioxide. dimensional structure; the forbidden band width of aluminum nitride is 6.28eV, which is much higher than that of gallium nitride, and has a blocking effect on electrons. After the quantum well layer is formed, an aluminum nitride layer is formed before the indium source is passed through, and the aluminum nitride layer will block the N-type The electrons generated in the doped layer transition to the active layer, which is favorable for the current to expand at the contact interface between the N-type doped layer and the active layer, and is especially suitable for large current injection.
本实施例中,氮化铝层50通过三甲基铝与氨气反应得到,形成氮化铝层50的温度为700℃~1500℃,压力100Torr~300Torr,氮化铝层50厚度为2~12nm。In this embodiment, the
在一具体实施例中,氮化铝层50厚度为2.5nm、3.5nm、4.5nm、5.5nm、6.5nm、7.5nm、8.5nm、9.5nm、10.5nm或11.5nm,或2~3nm、3~4nm、4~5nm、5~6nm、6~7nm、7~8nm、8~9nm、9~10nm、10~11nm、11~12nm任一区间内的任一数值。In a specific embodiment, the thickness of the
请参考图3,作为本实施例优选,形成的氮化铝层50位于N型掺杂层4一侧。Referring to FIG. 3 , preferably, the formed
请参考图4,作为本实施例最佳优选,形成的氮化铝层50位于与N型掺杂层4距离最近的量子阱层51上。Referring to FIG. 4 , as the best preference in this embodiment, the formed
此时最少的电子跃迁进有源层,达到最佳的电流扩展效果,同时能够保证有源层在经过充分的铟处理与碳处理后具有足够的载流子浓度及迁移率,光源光效最高。At this time, the least electron transitions into the active layer to achieve the best current expansion effect. At the same time, it can ensure that the active layer has sufficient carrier concentration and mobility after sufficient indium treatment and carbon treatment, and the light efficiency of the light source is the highest. .
作为本实施例优选,有源层5中形成每一个量子阱层51后均通入铟源,通入铟源后通入碳源,通入碳源后形成量子垒层52。Preferably in this embodiment, after each
作为本实施例优选,有源层5中从N型掺杂层4一侧至P型掺杂层6一侧在形成每一个量子阱层51后通入的铟源流量逐渐增加。Preferably in this embodiment, the indium source flow in the
在一实施例中,后一量子阱层通入的铟源流量为在前一个量子阱层通入的铟源流量依次增加10sccm、20sccm、30sccm、40sccm、50sccm、100sccm、200sccm或10~200sccm区间内的任一数值。In one embodiment, the flow rate of the indium source passed into the latter quantum well layer is the flow rate of the indium source passed into the previous quantum well layer increased by 10 sccm, 20 sccm, 30 sccm, 40 sccm, 50 sccm, 100 sccm, 200 sccm, or 10-200 sccm. any value within.
作为本实施例进一步优选,在每一个量子阱层51后通入的铟源流量逐渐增加。As a further preference in this embodiment, the flow rate of the indium source passed after each
本实施例中,铟源流量在50~500sccm范围内设定一起始值,然后在1~20sccm/min范围内以某一固定流量逐渐增加。In this embodiment, the flow rate of the indium source is set to an initial value in the range of 50-500 sccm, and then gradually increases at a fixed flow rate in the range of 1-20 sccm/min.
在一具体实施例中,铟源流量起始值50sccm,然后以1sccm/min、2sccm/min、3sccm/min、4sccm/min、5sccm/min、6sccm/min、7sccm/min、8sccm/min、9sccm/min、10sccm/min、11sccm/min、12sccm/min、13sccm/min、14sccm/min、15sccm/min、16sccm/min、17sccm/min、18sccm/min、19sccm/min或20sccm/min任一固定流量逐渐增加。In a specific embodiment, the initial flow rate of the indium source is 50sccm, and then the flow rate is 1sccm/min, 2sccm/min, 3sccm/min, 4sccm/min, 5sccm/min, 6sccm/min, 7sccm/min, 8sccm/min, 9sccm /min, 10sccm/min, 11sccm/min, 12sccm/min, 13sccm/min, 14sccm/min, 15sccm/min, 16sccm/min, 17sccm/min, 18sccm/min, 19sccm/min or 20sccm/min any fixed flow rate gradually increase.
在另一具体实施例中,铟源流量起始值100sccm,然后以1sccm/min、2sccm/min、3sccm/min、4sccm/min、5sccm/min、6sccm/min、7sccm/min、8sccm/min、9sccm/min、10sccm/min、11sccm/min、12sccm/min、13sccm/min、14sccm/min、15sccm/min、16sccm/min、17sccm/min、18sccm/min、19sccm/min或20sccm/min任一固定流量逐渐增加。In another specific embodiment, the initial flow rate of the indium source is 100sccm, and then the flow rate of the indium source is 1sccm/min, 2sccm/min, 3sccm/min, 4sccm/min, 5sccm/min, 6sccm/min, 7sccm/min, 8sccm/min, 9sccm/min, 10sccm/min, 11sccm/min, 12sccm/min, 13sccm/min, 14sccm/min, 15sccm/min, 16sccm/min, 17sccm/min, 18sccm/min, 19sccm/min or 20sccm/min fixed The flow gradually increased.
在其他实施例中,铟源流量起始值为50~500sccm范围内任一数值,然后以1~20sccm/min范围内以某一固定流量逐渐增加。In other embodiments, the initial flow rate of the indium source is any value in the range of 50-500 sccm, and then gradually increases at a fixed flow rate in the range of 1-20 sccm/min.
作为本实施例优选,有源层5中从N型掺杂层4一侧至P型掺杂层6一侧在形成每一个量子阱层51后通入的碳源流量逐渐减小。Preferably in this embodiment, the flow rate of the carbon source in the
在一实施例中,后一量子阱层通入的碳源流量为在前一个量子阱层通入的碳源流量依次减小10sccm、20sccm、30sccm、40sccm、50sccm或10~50sccm区间内的任一数值。In one embodiment, the flow rate of the carbon source passed into the latter quantum well layer is the flow rate of the carbon source passed into the previous quantum well layer that is successively reduced by 10 sccm, 20 sccm, 30 sccm, 40 sccm, 50 sccm or any within the interval of 10-50 sccm. a value.
作为本实施例进一步优选,在每一个量子阱层51后通入的碳源流量逐渐减小。As a further preference in this embodiment, the flow rate of the carbon source passed after each
本实施例中,碳源流量在10~100sccm范围内设定一起始值,然后在1~10sccm/min范围内以某一固定流量逐渐减小。In this embodiment, the flow rate of the carbon source is set to an initial value within the range of 10-100 sccm, and then gradually decreases at a fixed flow rate within the range of 1-10 sccm/min.
在一具体实施例中,碳源流量起始值100sccm,然后以1sccm/min、2sccm/min、3sccm/min、4sccm/min、5sccm/min、6sccm/min、7sccm/min、8sccm/min、9sccm/min或10sccm/min任一固定流量逐渐减小。In a specific embodiment, the initial flow rate of the carbon source is 100sccm, and then the flow rate is 1sccm/min, 2sccm/min, 3sccm/min, 4sccm/min, 5sccm/min, 6sccm/min, 7sccm/min, 8sccm/min, 9sccm Either a fixed flow rate of /min or 10sccm/min is gradually reduced.
在另一具体实施例中,碳源流量起始值50sccm,然后以1sccm/min、2sccm/min、3sccm/min、4sccm/min、5sccm/min、6sccm/min、7sccm/min、8sccm/min、9sccm/min或10sccm/min任一固定流量逐渐减小。In another specific embodiment, the initial flow rate of the carbon source is 50sccm, and then the flow rate is 1sccm/min, 2sccm/min, 3sccm/min, 4sccm/min, 5sccm/min, 6sccm/min, 7sccm/min, 8sccm/min, Either a fixed flow rate of 9sccm/min or 10sccm/min is gradually reduced.
在其他实施例中,碳源流量起始值为10~100sccm范围内任一数值,然后以1~10sccm/min范围内以某一固定流量逐渐减小。In other embodiments, the initial flow rate of the carbon source is any value in the range of 10-100 sccm, and then gradually decreases at a fixed flow rate in the range of 1-10 sccm/min.
作为本实施例优选,通入碳源后还包括通入硅源。Preferably in this embodiment, after the carbon source is introduced, the silicon source is also introduced.
通入碳源形成碳二维结构后,部分多余碳原子位于二维结构上,通入硅源产生硅原子与多余的碳原子结合形成碳化硅,可以有效的防止多余的碳产生碳污染,碳化硅与氮化镓晶格失配小,两者具有很好的融合性,碳化硅具有很好的导电导热性能,有助于改善有源层电性能及发光时散热。After the carbon source is introduced to form a carbon two-dimensional structure, some of the excess carbon atoms are located on the two-dimensional structure. When the silicon source is introduced, the silicon atoms are combined with the excess carbon atoms to form silicon carbide, which can effectively prevent excess carbon from causing carbon pollution and carbonization. The lattice mismatch between silicon and gallium nitride is small, and the two have good fusion properties. Silicon carbide has good electrical and thermal conductivity, which helps to improve the electrical properties of the active layer and heat dissipation during light emission.
本实施例中,所述硅源可以为硅烷,通入硅源流量为2~20sccm。In this embodiment, the silicon source may be silane, and the flow rate of the silicon source is 2-20 sccm.
在一具体实施例中,通入硅源流量为3sccm、5sccm、7sccm、9sccm、11sccm、13sccm、15sccm、17sccm或19sccm,或2~4sccm、4~6sccm、6~8sccm、8~10sccm、10~12sccm、12~14sccm、14~16sccm、16~18sccm、18~20sccm任一区间内的任一数值。In a specific embodiment, the flow rate of the incoming silicon source is 3sccm, 5sccm, 7sccm, 9sccm, 11sccm, 13sccm, 15sccm, 17sccm or 19sccm, or 2-4sccm, 4-6sccm, 6-8sccm, 8-10sccm, 10- Any value within any interval of 12sccm, 12-14sccm, 14-16sccm, 16-18sccm, and 18-20sccm.
作为本实施例优选,通入硅源的时间持续至量子磊层52生长结束。Preferably, in this embodiment, the silicon source is supplied for a period of time until the growth of the
作为本实施例更进一步优选,所述硅源流量逐渐减小。As a further preference in this embodiment, the flow rate of the silicon source gradually decreases.
本实施例中,硅源流量在2~20sccm范围内设定一起始值,然后在0.1~1sccm/min范围内以某一固定流量逐渐减小。In this embodiment, the flow rate of the silicon source is set to an initial value within the range of 2-20 sccm, and then gradually decreases at a fixed flow rate within the range of 0.1-1 sccm/min.
在一具体实施例中,硅源流量起始值20sccm,然后以0.1sccm/min、0.2sccm/min、0.3sccm/min、0.4sccm/min、0.5sccm/min、0.6sccm/min、0.7sccm/min、0.8sccm/min、0.9sccm/min或1sccm/min任一固定流量逐渐减小。In a specific embodiment, the initial flow rate of the silicon source is 20sccm, and then the flow rate is 0.1sccm/min, 0.2sccm/min, 0.3sccm/min, 0.4sccm/min, 0.5sccm/min, 0.6sccm/min, 0.7sccm/min Any fixed flow rate of min, 0.8sccm/min, 0.9sccm/min or 1sccm/min is gradually reduced.
在另一具体实施例中,硅源流量起始值10sccm,然后以0.1sccm/min、0.2sccm/min、0.3sccm/min、0.4sccm/min、0.5sccm/min、0.6sccm/min、0.7sccm/min、0.8sccm/min、0.9sccm/min或1sccm/min任一固定流量逐渐减小。In another specific embodiment, the initial flow rate of the silicon source is 10sccm, and then the flow rate is 0.1sccm/min, 0.2sccm/min, 0.3sccm/min, 0.4sccm/min, 0.5sccm/min, 0.6sccm/min, 0.7sccm /min, 0.8sccm/min, 0.9sccm/min or 1sccm/min any fixed flow rate gradually decreased.
在其他实施例中,硅源流量起始值为2~20sccm范围内任一数值,然后以0.1~1sccm/min范围内以某一固定流量逐渐减小。In other embodiments, the initial flow rate of the silicon source is any value in the range of 2-20 sccm, and then gradually decreases at a fixed flow rate in the range of 0.1-1 sccm/min.
作为本实施例最佳优选,所述硅源流量逐渐减小至0。As the best preference in this embodiment, the flow rate of the silicon source is gradually reduced to 0.
最后,在有源层5上形成P型掺杂层6。Finally, a P-type doped
本实施例中,P型掺杂层6可以是二价镁原子取代三价镓原子形成空穴。In this embodiment, the P-type doped
本实施例中,形成P型掺杂层6的温度为800℃~1200℃,压力100Torr~500Torr,厚度为50nm~300nm,掺杂浓度为5e18cm-3~5e20cm-3。In this embodiment, the temperature for forming the P-type doped
本实施例中,使用二茂镁作为镁源。In this example, magnesium bisocene was used as the magnesium source.
本实施例中,在P型掺杂层6表面部分区域进行刻蚀至N型掺杂层4并暴露出N型掺杂层4,在N型掺杂层4设置负电极,在P型掺杂层6设置正电极,将正电极、负电极与电源接通发光。In this embodiment, etching is performed on a part of the surface area of the P-type doped
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010154489.3A CN111326614B (en) | 2020-03-07 | 2020-03-07 | Methods for improving the light efficiency of outdoor lighting sources |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010154489.3A CN111326614B (en) | 2020-03-07 | 2020-03-07 | Methods for improving the light efficiency of outdoor lighting sources |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111326614A true CN111326614A (en) | 2020-06-23 |
CN111326614B CN111326614B (en) | 2021-07-09 |
Family
ID=71171409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010154489.3A Active CN111326614B (en) | 2020-03-07 | 2020-03-07 | Methods for improving the light efficiency of outdoor lighting sources |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111326614B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1802757A (en) * | 2003-10-15 | 2006-07-12 | Lg伊诺特有限公司 | Nitride semiconductor light emitting device |
US20070181906A1 (en) * | 2005-12-28 | 2007-08-09 | George Chik | Carbon passivation in solid-state light emitters |
US20160141449A1 (en) * | 2014-11-19 | 2016-05-19 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Light emitting diode with doped quantum wells and associated manufacturing method |
CN108039397A (en) * | 2017-11-27 | 2018-05-15 | 厦门市三安光电科技有限公司 | A kind of nitride semiconductor LED |
CN109950372A (en) * | 2019-02-15 | 2019-06-28 | 华灿光电(苏州)有限公司 | LED epitaxial slice and its manufacturing method |
-
2020
- 2020-03-07 CN CN202010154489.3A patent/CN111326614B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1802757A (en) * | 2003-10-15 | 2006-07-12 | Lg伊诺特有限公司 | Nitride semiconductor light emitting device |
US20070181906A1 (en) * | 2005-12-28 | 2007-08-09 | George Chik | Carbon passivation in solid-state light emitters |
US20160141449A1 (en) * | 2014-11-19 | 2016-05-19 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Light emitting diode with doped quantum wells and associated manufacturing method |
CN108039397A (en) * | 2017-11-27 | 2018-05-15 | 厦门市三安光电科技有限公司 | A kind of nitride semiconductor LED |
CN109950372A (en) * | 2019-02-15 | 2019-06-28 | 华灿光电(苏州)有限公司 | LED epitaxial slice and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN111326614B (en) | 2021-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113451458B (en) | Superlattice layer, LED epitaxial structure, display device and manufacturing method thereof | |
CN110311022B (en) | GaN-based light-emitting diode epitaxial wafer and its manufacturing method | |
CN109659403B (en) | Manufacturing method of epitaxial wafer of light emitting diode and epitaxial wafer | |
CN108767079B (en) | LED epitaxial structure based on graphene substrate, growth method and LED | |
CN106784216A (en) | Epitaxial wafer of GaN-based light emitting diode and growth method thereof | |
WO2018040124A1 (en) | Preparation method for and application of non-polar led epitaxial wafer growing on r-plane sapphire substrate | |
CN106653971B (en) | Epitaxial wafer of GaN-based light emitting diode and growth method thereof | |
CN107799636A (en) | A kind of ultraviolet LED and preparation method thereof | |
CN116504896A (en) | A kind of light-emitting diode epitaxial wafer and its preparation method, light-emitting diode | |
CN107452841B (en) | Graphene-based LED epitaxial growth method | |
CN117476827B (en) | An epitaxial wafer of a light-emitting diode with low contact resistance and a method for preparing the same | |
CN113690351A (en) | Micro light-emitting diode epitaxial wafer and manufacturing method thereof | |
CN111326614A (en) | Method for improving luminous efficiency of outdoor lighting source | |
CN108807627A (en) | A kind of high-power vertical structure LED epitaxial structure and preparation method thereof | |
CN113284995A (en) | Epitaxial wafer of deep ultraviolet light-emitting diode and preparation method thereof | |
CN116682909B (en) | LED epitaxial wafer, preparation method and LED chip | |
CN118117020A (en) | A multi-quantum well layer and preparation method thereof, and light-emitting diode | |
CN116230824B (en) | High-efficiency light-emitting diode epitaxial wafer, preparation method thereof, and LED chip | |
CN117650211A (en) | Ultraviolet light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode | |
CN101717923B (en) | Nonpolar GaN membrane and preparation method thereof | |
CN110246943A (en) | LED epitaxial growth method based on graphene | |
CN110148663A (en) | A kind of LED epitaxial wafer and preparation method thereof | |
CN111341889B (en) | Method for forming semiconductor lighting epitaxial structure | |
CN106876538A (en) | A kind of LED epitaxial growing method and light emitting diode | |
CN113571607A (en) | High-luminous-efficiency light-emitting diode epitaxial wafer and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230720 Address after: 315000 No. 189 Longzhen Avenue, Nongkenchang, Longshan Town, Cixi City, Ningbo City, Zhejiang Province Patentee after: CIXI GRANDLIGHTING AUTO PARTS Co.,Ltd. Address before: 230093 central Yuefu, Hechang, Taohua Town, Feixi County, Hefei City, Anhui Province Patentee before: Sun Leilei |