CN111321373A - 多个等离激元共振特性的金/银纳米岛膜及其制备方法 - Google Patents

多个等离激元共振特性的金/银纳米岛膜及其制备方法 Download PDF

Info

Publication number
CN111321373A
CN111321373A CN202010117209.1A CN202010117209A CN111321373A CN 111321373 A CN111321373 A CN 111321373A CN 202010117209 A CN202010117209 A CN 202010117209A CN 111321373 A CN111321373 A CN 111321373A
Authority
CN
China
Prior art keywords
film
gold
silver
island
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010117209.1A
Other languages
English (en)
Inventor
张明娣
吕且妮
戴海涛
何剑涛
薛永祥
葛宝臻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010117209.1A priority Critical patent/CN111321373A/zh
Publication of CN111321373A publication Critical patent/CN111321373A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种多个等离激元共振特性的金/银纳米岛膜及其制备方法,其步骤如下:(1)在ITO玻璃上以一定速度蒸镀一定厚度的金/银薄膜;(2)将薄膜放置于高温退火炉中,在氮气保护下退火,即可得到金/银纳米岛膜。本发明制备得到的金纳米岛膜具有三个LSPR,中心波长分别位于316nm,407nm及可调的540nm~600nm。银纳米岛膜具有两个LSPR,中心波长分别位于354nm及可调的440nm~580nm,该制备方法具有步骤简洁,操作简单,并可制备面积大的纳米岛膜,且重复性高的特点,可结合表面增强光谱学研究,用于多光谱探测,识别等领域。

Description

多个等离激元共振特性的金/银纳米岛膜及其制备方法
技术领域
本发明属于纳米岛膜的制备领域,涉及一种具备多个LSPR特性的金/银纳米岛膜及其制备方法,具体涉及一种通过控制蒸镀速度和金/银膜的厚度,进而影响高温退火时的奥斯瓦尔德熟化过程,形成具有多个LSPR的金/银纳米岛膜的方法。
背景技术
纳米金/银材料,由于其优异的小尺寸效应、特有的光学效应以及生物相容性,在食品、生物医学以及环境监测分析方面得到广泛的应用。金/银纳米岛膜的均一性和可重复性,使其在作为表面增强荧光,表面增强拉曼散射的增强衬底的同时,有助于光谱信号的定量分析。目前已提出多种方法用于金/银纳米岛膜的制备,如化学自组装法,电子束刻蚀法,纳米压印法,机械法等。其中,电子束刻蚀技术、纳米压印法、机械法等均需要特殊仪器,成本高、耗时长。化学自组装方法在衬底面积和均一性上都无法很好的满足增强需求。利用奥斯瓦尔德熟化过程对金/银薄膜进行退火,可以得到大面积且均匀性好的纳米岛膜,这种方法操作简单,可重复性高。当增强波长分辨时,通常需要利用电子束刻蚀方法,在同一衬底上刻蚀不同大小的纳米结构,使其具有多个LSPR,这增加了制备成本,且延长了制备时间。因此,需要一种操作简单、成本低廉、重复性高,且可制备具有多个LSPR的金/银纳米岛膜的制备方法。
发明内容
本发明目的是克服现有技术的缺陷,提出一种操作简单,成本低,重复性高,且可制备具有多个等离激元共振特性的金/银纳米岛膜的制备方法,以满足波长分辨的表面增强光谱学需求。
该方法的原理是对蒸镀形成的纳米薄膜进行高温退火,通过奥斯瓦尔德熟化过程形成纳米颗粒。在合适的蒸镀速度,薄膜厚度和退火温度下,金纳米岛膜具有三个LSPR,其中心波长分别位于316nm,407nm,及可调的540nm~600nm,银纳米岛膜具有两个LSPR,其中心波长分别位于354nm和可调的440nm~580nm。
第一个技术方案是金/银纳米岛膜的制备方法,包括以下步骤:
步骤一、将ITO玻璃分别浸泡在酒精和去离子水中,并超声清洗15min,氮气吹干备用;
步骤二、将干净的ITO玻璃以及金/银靶材放入多源有机气相沉积系统的腔体中,抽真空至3×10-4Pa;
步骤三、以7A/4min速度给钨舟加电流,同时观察膜厚检测仪显示的蒸镀速度;
步骤四、达到所需蒸镀速度后,预蒸镀10nm厚度,待速度稳定后打开挡板开始蒸镀,得到所需膜厚,关闭挡板;
步骤五、将薄膜从蒸镀腔取出进行退火(或存放于水氧含量低于0.1ppm的手套箱中备用),退火过程分为三步:以5℃/min的速度升温到退火温度,在退火温度下保持30min,再从退火温度降温到室温;
步骤六、通过控制步骤四中的蒸镀速度和薄膜厚度,即可得到具有可调等离激元共振(LSPR)的金/银纳米岛膜。
所述步骤四中蒸镀速度为
Figure BDA0002391858730000021
金薄膜厚度为4nm~8nm;银薄膜厚度为6nm~10nm。
所述步骤五中金薄膜退火温度是350℃,银薄膜退火温度是300℃。
所述靶材纯度为99.999%。
第二个技术方案是由上述方法制备金/银纳米岛膜,金纳米岛膜具有三个LSPR,其中心波长分别位于316nm、407nm及可调的540nm~600nm;银纳米岛膜具有两个LSPR,中心波长分别位于354nm和可调的440nm~580nm。
该金岛膜具有三个LSPR,银岛膜具有两个LSPR,可以用于表面增强光谱学研究中的多光谱增强或波长分辨的光谱识别。该金/银纳米岛膜具有制备工艺简单,成本低,重复性高,并可大面积制备等特点,有广泛的推广使用价值。
附图说明
图1为本发明实施例1所获得四种金纳米岛膜的紫外可见吸收光谱图;
图2为本发明实施例1所获得四种金纳米岛膜的SEM图;
图3为本发明实施例2所获得四种银纳米岛膜的紫外可见吸收光谱图;
图4为本发明实施例2所获得四种银纳米岛膜的SEM图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。
下面以图1和图2所示的四种金纳米岛膜的紫外可见吸收光谱图和SEM图为例,阐述本发明的金纳米岛膜及其制备方法的具体过程:
实施例1:
步骤1、将ITO玻璃分别浸泡在酒精和去离子水中,并超声清洗15min,氮气吹干备用;
步骤2、将干净的ITO玻璃以及金靶材放入多源有机气相沉积系统的腔体中,抽真空至3×10-4Pa。以7A/4min速度给钨舟加电流,同时观察膜厚检测仪显示的蒸镀速度。当速度达到
Figure BDA0002391858730000031
后,预蒸镀10nm厚度,待速度稳定后打开挡板开始蒸镀,待膜厚分别达到①5nm,②6nm,③7nm,④8nm后关闭挡板;
步骤3、将薄膜从蒸镀腔取出,立即放入管式炉中,在氮气保护下进行退火。退火过程为:以5℃/min的速度升温到350℃,保持30min,再从该温度降到室温,该降温过程有内置风扇辅助。得到具有三个LSPR的四种金纳米岛膜,其LSPR的中心波长分别为316nm,407nm,以及①560nm,②576nm,③585nm,④592nm。
若在步骤2中,当速度达到
Figure BDA0002391858730000032
后,预蒸镀10nm厚度,待速度稳定后打开挡板开始蒸镀,待膜厚分别达到①4nm,②5nm,③6nm,④7nm后关闭挡板;按步骤3,即可得到具有三个LSPR的四种金纳米岛膜,其LSPR的中心波长分别为316nm,407nm,以及①552nm,②560nm,③576nm,④585nm。
若在步骤2中,当速度达到
Figure BDA0002391858730000033
后,预蒸镀10nm厚度,待速度稳定后打开挡板开始蒸镀,待膜厚分别达到①5nm,②6nm,③7nm和④8nm后关闭挡板;按步骤3,即可得到具有三个LSPR的四种金纳米岛膜,其LSPR的中心波长分别为316nm,407nm,以及①556nm,②569nm,③575nm,④583nm。
若在步骤2中,当速度达到
Figure BDA0002391858730000034
后,预蒸镀10nm厚度,待速度稳定后打开挡板开始蒸镀,待膜厚分别达到①4nm,②6nm,③7nm和④8nm后关闭挡板;按步骤3,即可得到具有三个LSPR的四种金纳米岛膜,其LSPR的中心波长分别为316nm,407nm,以及①557nm,②582nm,③593nm,④600nm。
下面以图3和图4所示的四种银纳米岛膜的紫外可见吸收光谱图和SEM图为例,阐述本发明的银纳米岛膜及其制备方法的具体过程:
实施例2:
步骤1、将ITO玻璃分别浸泡在酒精和去离子水中,并超声清洗15min,氮气吹干备用;
步骤2、将干净的ITO玻璃以及银靶材放入多源有机气相沉积系统的腔体中,抽真空至3×10-4Pa。以7A/4min速度给钨舟加电流,同时观察膜厚检测仪显示的蒸镀速度。当达到一定速度后,预蒸镀10nm厚度,待速度稳定后打开挡板开始蒸镀,待膜厚达到一定厚度后关闭挡板,本次实施例中,蒸镀速度和薄膜厚度为①
Figure BDA0002391858730000041
8nm;②
Figure BDA0002391858730000042
8nm;③
Figure BDA0002391858730000043
9nm;④
Figure BDA0002391858730000044
9nm;
步骤3、将薄膜从蒸镀腔取出,立即放入管式炉中,在氮气保护下进行退火。退火过程为,以5℃/min的速度升温到300℃,保持30min,再从300℃降到室温,该降温过程有内置风扇辅助。得到具有两个LSPR的四种银纳米岛膜,其LSPR的中心波长分别为354nm以及①507nm,②515nm,③525nm,④539nm。
本领域技术人员可以理解附图只是一个优选实施例,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.多个等离激元共振特性的金/银纳米岛膜的制备方法,其特征在于,该方法包括以下步骤:
步骤一、将ITO玻璃分别浸泡在酒精和去离子水中,并超声清洗,氮气吹干备用;
步骤二、将干净的ITO玻璃以及金/银靶材放入多源有机气相沉积系统的腔体中,抽真空至3×10-4Pa;
步骤三、以7A/4min速度给钨舟加电流,同时观察膜厚检测仪显示的蒸镀速度;
步骤四、达到所需蒸镀速度后,预蒸镀10nm厚度,待速度稳定后打开挡板开始蒸镀,得到所需膜厚,关闭挡板;
步骤五、将薄膜从蒸镀腔取出进行退火,退火过程分为三步:以5℃/min的速度升温到退火温度,在退火温度下保持30min,再从退火温度降温到室温;
步骤六、最终金/银纳米岛膜上可调的LSPR是通过控制步骤四中的蒸镀速度和薄膜厚度得到的。
2.根据权利要求1所述的制备方法,其特征在于,蒸镀速度为
Figure FDA0002391858720000011
金薄膜厚度为4nm~8nm,银薄膜厚度为6nm~10nm。
3.根据权利要求1所述的制备方法,其特征在于,金薄膜退火温度是350℃,银薄膜退火温度是300℃。
4.根据权利要求1所述的制备方法,其特征在于,金/银靶材的纯度为99.999%。
5.根据权利要求1至4中任一项所述的方法制备金/银纳米岛膜,其特征在于,金纳米岛膜具有三个LSPR,其中心波长分别位于316nm、407nm及可调的540nm~600nm;银纳米岛膜具有两个LSPR,其中心波长分别位于354nm及可调的440nm~580nm。
CN202010117209.1A 2020-02-25 2020-02-25 多个等离激元共振特性的金/银纳米岛膜及其制备方法 Pending CN111321373A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010117209.1A CN111321373A (zh) 2020-02-25 2020-02-25 多个等离激元共振特性的金/银纳米岛膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010117209.1A CN111321373A (zh) 2020-02-25 2020-02-25 多个等离激元共振特性的金/银纳米岛膜及其制备方法

Publications (1)

Publication Number Publication Date
CN111321373A true CN111321373A (zh) 2020-06-23

Family

ID=71163551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010117209.1A Pending CN111321373A (zh) 2020-02-25 2020-02-25 多个等离激元共振特性的金/银纳米岛膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111321373A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772716A (zh) * 2021-09-24 2021-12-10 陕西师范大学 一种快速原位制备稀土氟化物-稀土氧化物异质结微纳材料的方法
CN113866150A (zh) * 2021-11-02 2021-12-31 陕西师范大学 一种原位快速测量微/纳发光材料变温光谱的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033666A1 (en) * 2008-04-15 2011-02-10 Yeda Research And Development Company Ltd. Localized plasmon transducers and methods of fabrication thereof
CN108330454A (zh) * 2018-01-04 2018-07-27 江苏理工学院 一种网状金银复合纳米薄膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033666A1 (en) * 2008-04-15 2011-02-10 Yeda Research And Development Company Ltd. Localized plasmon transducers and methods of fabrication thereof
CN108330454A (zh) * 2018-01-04 2018-07-27 江苏理工学院 一种网状金银复合纳米薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
于威等: "热退火诱导纳米银膜形貌变化对表面等离激元共振特性的影响", 《光谱学与光谱分析》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772716A (zh) * 2021-09-24 2021-12-10 陕西师范大学 一种快速原位制备稀土氟化物-稀土氧化物异质结微纳材料的方法
CN113866150A (zh) * 2021-11-02 2021-12-31 陕西师范大学 一种原位快速测量微/纳发光材料变温光谱的方法
CN113866150B (zh) * 2021-11-02 2024-01-16 陕西师范大学 一种原位快速测量微/纳发光材料变温光谱的方法

Similar Documents

Publication Publication Date Title
Kuo et al. Investigation of annealing-treatment on the optical and electrical properties of sol–gel-derived zinc oxide thin films
CN111321373A (zh) 多个等离激元共振特性的金/银纳米岛膜及其制备方法
Stöckle et al. Controlled formation of isolated silver islands for surface-enhanced Raman scattering
Schaefers et al. Electroless silver plating on spin-coated silver nanoparticle seed layers
Li et al. Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering
Liu et al. Fabrication of Au network by low-degree solid state dewetting: Continuous plasmon resonance over visible to infrared region
Gupta et al. Au-spotted zinc oxide nano-hexagonrods structure for plasmon-photoluminescence sensor
CN105973867B (zh) 一种类金属与金属复合空心腔阵列结构及其制备方法
Kaliyannan et al. Investigation on sol-gel based coatings application in energy sector–A review
Chirumamilla et al. Spectrally selective emitters based on 3D Mo nanopillars for thermophotovoltaic energy harvesting
Sun et al. SERS-active Ag–Al alloy nanoparticles with tunable surface plasmon resonance induced by laser ablation
Axelevitch et al. In-situ investigation of optical transmittance in metal thin films
Purwidyantri et al. Tunable plasmonic SERS “hotspots” on Au-film over nanosphere by rapid thermal annealing
Sardana et al. Morphology and optical properties of sputter deposited silver nanoparticles on plain, textured and antireflection layer coated textured silicon
Chen et al. Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques
CN112525881A (zh) 聚乙烯醇包覆表面增强拉曼散射基底及其制备方法
Łapiński et al. New plasmonic platform for enhanced luminescence of Valrubicin
Faggio et al. Nanocrystalline graphene for ultrasensitive surface-enhanced Raman spectroscopy
Ghorashi et al. Effects of air annealing on the optical, electrical, and structural properties of nanostructured ZnS/Au/ZnS films
CN110568534A (zh) 一种角度鲁棒性好的结构色纳米薄膜及其制备方法
Lyu et al. Enhancement of photoluminescence by Ag localized surface plasmon resonance for ultraviolet detection
TWI611461B (zh) 可撓式拉曼基板及其製備方法
CN210864095U (zh) 一种角度鲁棒性好的结构色纳米薄膜
Konshina et al. Multi-fold plasmon-enhanced photoluminescence of aC: H thin films
Wang et al. Synthesis and SERS activity of niobium nitride thin films via reduction nitridation of sol-gel derived films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200623

RJ01 Rejection of invention patent application after publication