CN111304634B - 一种利用原子层沉积包覆纳米淀粉微球的方法 - Google Patents

一种利用原子层沉积包覆纳米淀粉微球的方法 Download PDF

Info

Publication number
CN111304634B
CN111304634B CN202010231957.2A CN202010231957A CN111304634B CN 111304634 B CN111304634 B CN 111304634B CN 202010231957 A CN202010231957 A CN 202010231957A CN 111304634 B CN111304634 B CN 111304634B
Authority
CN
China
Prior art keywords
nano
atomic layer
starch microspheres
coating
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010231957.2A
Other languages
English (en)
Other versions
CN111304634A (zh
Inventor
陈蓉
闫占奎
刘潇
单斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUST Wuxi Research Institute
Original Assignee
HUST Wuxi Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUST Wuxi Research Institute filed Critical HUST Wuxi Research Institute
Priority to CN202010231957.2A priority Critical patent/CN111304634B/zh
Publication of CN111304634A publication Critical patent/CN111304634A/zh
Application granted granted Critical
Publication of CN111304634B publication Critical patent/CN111304634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5094Microcapsules containing magnetic carrier material, e.g. ferrite for drug targeting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Preparation (AREA)
  • Glanulating (AREA)

Abstract

本发明属于纳米淀粉微球改性技术领域,具体涉及一种利用原子层沉积包覆纳米淀粉微球的方法。本发明通过将纳米淀粉微球置于超声垂直流化原子层沉积设备中,开启超声振动,在适当的反应温度和压力下,选择合适活性与蒸汽压的前驱体交替通入,在纳米淀粉微球表面通过活性官能团的交换形成单层化学吸附并完成自限制化学半反应,生成致密的薄膜,对表面的各个部位进行厚度均匀一致的薄膜包覆。本发明采用原子层沉积技术生成的纳米薄膜包覆均匀性较高,尤其对于颗粒较小的纳米淀粉微球可实现其均匀包覆,形成的纳米薄膜结构致密,具有均匀的厚度、优异的一致性,由于其反应机理的特点,可实现对不同粒径纳米淀粉微球的包覆。

Description

一种利用原子层沉积包覆纳米淀粉微球的方法
技术领域
本发明属于纳米淀粉微球改性技术领域,涉及一种纳米淀粉微球表面改性的方法,具体涉及一种利用原子层沉积包覆纳米淀粉微球的方法。
背景技术
磁性淀粉微球作为药物载体,可利用外加磁场引导其在体内定向移动、集中,使药物有选择性地分布于特定器官、组织或细胞中,达到定向作用于靶向组织的目的,这不仅可增大病变组织内的药物浓度,提高药物利用率,还可以减少或消除药物对正常组织的毒副作用。但是纳米淀粉微球作为药物载体仍存在药物与淀粉表面吸附力不够,在室温,阳光照射或湿度过高情况下,易被生物污染。目前磁性淀粉微球一般为核壳式结构,淀粉组成壳层,磁性金属氧化物组成核心。但仍存在磁性金属氧化物粒子粒径不一,形状不规则,粒径不易控制,磁核包覆不够密实、易泄露、磁含量较低等问题,同时还存在磁性淀粉微球见光、见水容易被生物感染、磁含量较低、磁性颗粒粒径不易控制、机械强度较差、球形结构欠佳、功能结构单一、等问题等不足,限制了纳米淀粉微球在生物医药方面的应用,且纳米淀粉微球的表面会随着颗粒尺寸的减小急剧的增加,使颗粒之间极易形成软团聚体。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供了一种利用原子层沉积包覆纳米淀粉微球的方法。本发明利用原子层沉积设备在适当的反应温度和压力下,选择合适活性与蒸汽压的前驱体交替通入,在纳米淀粉微球表面通过活性官能团的交换形成单层化学吸附并完成自限制化学半反应,可以在纳米级尺度上将被沉积物质以单原子膜的形式一层一层的镀在纳米淀粉微球表面,对表面的各个部位进行厚度均匀一致的薄膜包覆,能够解决目前纳米淀粉微球见光、见水容易被生物感染、磁含量较低、磁性颗粒粒径不易控制等问题,形成的纳米级薄膜不影响纳米淀粉微球的表面吸附性能、生物降解性能。
为解决上述技术问题,本发明采用以下技术方案:一种利用原子层沉积包覆纳米淀粉微球的方法,在纳米淀粉微球表面包覆纳米级薄膜,对纳米淀粉微球进行改性,具体方法如下:
(S1)过筛:首先将纳米淀粉微球通过800-2000目的筛网,除掉团聚的纳米淀粉微球;
(S2)加热等待:将步骤(S1)中经过筛网的纳米淀粉微球置于超声垂直流化原子层沉积设备中,对反应腔进行加热并通入载气对其表面进行清洗,同时打开真空泵对整个超声垂直流化原子层沉积设备进行抽真空直至腔体内压力不大于10Pa;
(S3)超声振动:设定超声振动杆的超声波频率为20-40KHz,超声振动工作时长1s-99h,间歇时长1ms-99s;
(S4)原子层沉积:当温度和压力达到设定值:温度为80-450℃,压力为0.1-10Pa,其后利用低压载气携带前驱体组合进入超声垂直流化原子层沉积设备腔体内,进行氧化物A和氧化物B的原子层沉积,得到改性后的纳米淀粉微球。
步骤(S4)所述原子层沉积过程具体如下:
S4.1 低压载气携带第一前驱体组合进入反应腔并在纳米淀粉微球表面完成化学吸附,得到沉积氧化物A层;
S4.2 通入载气把未被表面吸附、多余的第一前驱体组合和反应副产物带出反应腔;
S4.3低压载气携带第二前驱体组合进入反应腔和第一前驱体组合吸附的表面继续进行原子层沉积,重复多次后得到氧化物B层;
S4.4 利用载气把多余的第二前驱体组合和反应生成的副产物带出反应腔。
所述第一前驱体组合为C10H10Fe/O3 或SiCl4/H2O;第二前驱体组合为能够用于ALD反应的烷基、氨基金属,包括三(二甲胺基)硅烷/O2 等离子气体、四(二甲基氨基)钛/H2O、Ti[OCH(CH3)]4/H2O、二甲基锌/H2O、四(乙基甲基氨基)锆/H2O、三甲基锆/H2O、四(二甲基氨基)铪/H2O、四(乙基甲基氨基)铪/H2O、三甲基铝/H2O或三甲基铝/O3,第一前驱体组合和第二前驱体组合在不构成冲突的情况下可任意组合。
步骤S4.1和S4.3中所述低压载气携带第一前驱体组合或第二前驱体组合以气相形式进入反应腔,其中前驱体通气时长与纳米淀粉微球表面的表面积成正比,反应温度和压力由前驱体组合和纳米淀粉微球对温度的耐受性所决定。
步骤S4.1-S4.4中反应温度为80-120℃,通入载气之前的压力低于1Pa;
所述第一前驱体组合和第二前驱体组合均包括两种前驱体,反应时,通过载气脉冲通入对应前驱体组合中包含的两种前驱体,脉冲时长为60-90s,携带前驱体的载气流量为0.1-100sccm,使两种前驱体分别依次吸附在纳米淀粉微球表面;
每通入下一种前驱体之前通过载气对纳米淀粉微球表面进行清洗,载气流量为100-200sccm,清洗时长为120-150s;
其中,当第一前驱体组合沉积完毕后,通入载气对纳米淀粉微球表面进行清洗,载气流量为100-200sccm,清洗时长为10-30min,而后重复上述步骤进行第二前驱体组合的沉积。
步骤S4.1和S4.3的循环次数为1~800,所述氧化物A或/和氧化物B包覆层的厚度为0.1~50nm,所述被包覆的纳米淀粉微球质量为0.1~100g。
所述载气为惰性气体,惰性气体为高纯氮气或氩气。
所述氧化物A形成的纳米级可控薄膜为Fe2O3涂层或SiO2涂层,氧化物B形成的纳米级可控薄膜为TiO2 涂层、ZnO涂层、ZrO2涂层、HfO2涂层或Al2O3涂层中的一种。
所述纳米淀粉微球替换为聚乳酸纳米颗粒、磷灰石晶体颗粒、金纳米颗粒或生物医药用磁性颗粒。
与现有技术相比,本发明具有以下优点:
1、本发明选取前驱体和沉积反应副产物对于被包覆的纳米淀粉微球饱和度和强度无明显影响的原子层沉积反应,在其表面生成一层或多层厚度可控的、致密均匀的、结合牢固的纳米级薄膜,可实现对不同粒径的纳米淀粉微球的包覆,纳米淀粉磁性物质包覆密实、不容易泄露。
2、原子层沉积工艺中加入过筛步骤,可以提前排除团聚的微纳米粉末,有效提高纳米薄膜的包覆均匀性。在纳米淀粉微球表面包覆铁的纳米级别氧化物薄膜,可利用铁的纳米级别氧化物薄膜具有超顺磁的特性,提高磁性纳米淀粉颗粒的磁含量。在纳米淀粉微球表面包覆铝的氧化物薄膜,有阻水隔氧、防止生物污染的效果。沉积过程中超声振动可实现纳米淀粉微球的解团聚,使纳米淀粉微球的粒径分布范围缩小,更利于药物释放的稳定性。
3、本发明可实现壳核式的磁性纳米淀粉颗粒,即纳米淀粉微球为核,磁性物质为壳;有别于传统的磁性物质为核,纳米淀粉微球为壳。
附图说明
图1是本发明利用原子层沉积包覆纳米淀粉微球的流程图。
图2是本发明实施例1和对比例1中样品的饱和磁化强度。
图3是本发明实施例1和对比例1中样品的水氧渗透率。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
以下通过本发明的具体实施例,进一步说明本发明。
实施例1
一种利用原子层沉积包覆纳米淀粉微球的方法,对粒径为20nm的纳米淀粉微球进行表面改性,包覆5nm的Fe2O3薄膜和1nm的Al2O3薄膜,其中选取C10H10Fe/O3、Al(CH3)3/H2O为前驱体,具体包括如下步骤:
(1)氧化铁包覆:
1.1将纳米淀粉微球通过800目筛网之后,称量5mg将其放置于原子层沉积设备的粉末容器中,将粉末容器放进腔体中,抽真空至10Pa;
1.2 打开超声振动,设置超声频率为20KHz,超声振动工作时长60s,间歇时长5s;
1.3 对腔体进行加热,同时通入载气对纳米淀粉微球进行表面清洗30min并使其分散,选择载气流量为100sccm;
1.4 待反应内腔的温度达到80℃进行第一次沉积反应,具体包括:
1.4.1抽真空,待腔体内的压力抽至<1Pa之后,通入前驱体C10H10Fe脉冲60s;
1.4.2以280L/min的抽气速率以及100sccm的载气除去未吸附在表面的前驱体C10H10Fe;
1.4.3通入前驱体O3脉冲60s,之后通入速率为280L/min、流量为150sccm的载气除去未吸附在表面的前驱体O3
1.4.4依次交替循环上述步骤 50次,得到厚度为5nm的Fe2O3薄膜。
(2)氧化铝包覆:
2.1以280L/min的抽气速率以及100sccm的载气对反应腔及纳米淀粉微球表面进行清洗30min;
2.2待反应内腔温度达到80℃进行第二次沉积反应,具体包括:
2.2.1以同样的抽真空速率将腔体内的压力抽至<1Pa之后,通入前驱体Al(CH3)3脉冲60s;
2.2.2以150sccm 的载气除去未吸附在表面的前驱体Al(CH3)3
2.2.3通入前驱体H2O脉冲60s,以100sccm的载气除去未吸附在表面的前驱体 H2O120s;
2.2.4依次交替循环上述步骤10次,得到厚度为10nm的Al2O3薄膜。
两次原子层沉积后,使得纳米淀粉微球表面包覆了一层致密均匀的超薄Fe2O3薄膜和Al2O3薄膜,实现了对纳米淀粉微球的表面改性。其中,Al2O3薄膜具有阻水隔氧抗菌的效果,能够解决纳米淀粉微球见光见水容易被生物感染的问题;Fe2O3薄膜具有超顺磁性,可提高纳米淀粉微球的磁含量;同时原子层沉积形成的Fe2O3薄膜是可控纳米级的,解决纳米淀粉微球磁性颗粒粒径不易控制的问题。
实施例2
一种利用原子层沉积包覆纳米淀粉微球的方法,对粒径为20nm的纳米淀粉微球进行表面改性,包覆5nm的Fe2O3薄膜和1nm的Al2O3薄膜,其中选取C10H10Fe/O3、Al(CH3)3/H2O为前驱体,具体包括如下步骤:
(1)氧化铁包覆:
1.1将纳米淀粉微球通过800目筛网之后,称量100g将其放置于原子层沉积设备的粉末容器中,将粉末容器放进腔体中,抽真空至10Pa;
1.2 打开超声振动,设置超声频率为40KHz,超声振动工作时长5min,间歇时长5s;
1.3 对腔体进行加热,同时通入载气对纳米淀粉微球进行表面进行清洗50min并使其分散,选择载气流量为100sccm;
1.4 待反应内腔的温度达到80℃进行第一次沉积反应,具体包括:
1.4.1抽真空,待腔体内的压力抽至<1Pa之后,通入前驱体C10H10Fe脉冲60s;
1.4.2 以280L/min的抽气速率以及150sccm的载气除去未吸附在表面的前驱体C10H10Fe;
1.4.3 通入前驱体O3脉冲60s,之后以280L/min的抽气速率以及150sccm的载气除去未吸附在表面的前驱体 O3
1.4.4依次交替循环上述步骤50次,得到厚度为5nm的Fe2O3薄膜。
(2)氧化铝包覆:
2.1以280L/min的抽气速率以及100sccm的载气对反应腔及纳米淀粉微球表面进行清洗30min;
2.2待反应内腔温度达到80℃进行第二次沉积反应,具体包括:
2.2.1以同样的抽真空速率将腔体内的压力抽至<1Pa之后,通入前驱体Al(CH3)3脉冲60s;
2.2.2以150sccm的载气除去未吸附在表面的前驱体Al(CH3)3
2.2.3通入前驱体H2O脉冲60s,以100sccm的载气除去未吸附在表面的前驱体 H2O120s;
2.2.4依次交替循环上述步骤10次,得到厚度为10nm的Al2O3薄膜。
两次原子层沉积后,使得纳米淀粉微球表面包覆了一层致密均匀的超薄Fe2O3薄膜和Al2O3薄膜,实现了对纳米淀粉微球的表面改性。
实施例3
一种利用原子层沉积包覆纳米淀粉微球的方法,对粒径为10μm的纳米淀粉微球进行表面改性,包覆5nm的Fe2O3薄膜和1nm的SiO2薄膜,其中选取C10H10Fe/ O3、SiCl4/H2O为前驱体,具体包括如下步骤:
(1)氧化铁包覆:
1.1将纳米淀粉微球通过800目筛网之后,称量200g将其放置于原子层沉积设备的粉末容器中,将粉末容器放进腔体中,抽真空至10Pa;
1.2 打开超声振动,设置超声频率为40KHz,超声振动工作时长10min,间歇时长5s;
1.3 对腔体进行加热,同时通入载气对纳米淀粉微球进行表面进行清洗50min并使其分散,选择载气流量为100sccm。
1.4 待反应内腔的温度达到80℃进行第一次沉积反应,具体包括:
1.4.1抽真空,待腔体内的压力<1Pa之后,通入前驱体C10H10Fe脉冲60s;
1.4.2以280L/min的抽气速率以及150sccm的载气除去未吸附在表面的前驱体C10H10Fe;
1.4.3通入前驱体O3脉冲60s,之后以280L/min的抽气速率以及150sccm的载气除去未吸附在表面的前驱体 O3
1.4.4依次交替循环上述步骤50次,得到厚度为5nm的Fe2O3薄膜。
(2)氧化硅包覆:
2.1以280L/min的抽气速率以及200sccm的载气对反应腔及氧化铁包覆的纳米淀粉微球表面进行清洗30min;
2.2待反应内腔温度达到80℃进行第二次沉积反应,具体包括:
2.2.1以同样的抽真空速率将腔体内的压力抽至<1Pa之后,通入前驱体SiCl4脉冲90s;
2.2.2以200sccm 的载气除去未吸附在表面的前驱体SiCl4
2.2.3通入前驱体H2O脉冲90s,以200sccm的载气除去未吸附在表面的前驱体 H2O150s;
2.2.4依次交替循环上述步骤10次,得到厚度为1nm的SiO2薄膜。
两次原子层沉积后,使得纳米淀粉微球表面包覆了一层致密均匀的超薄Fe2O3薄膜和SiO2薄膜,实现了对纳米淀粉微球的表面改性。
本实施例中的Fe2O3涂层和SiO2涂层组合,可利用纳米Fe2O3涂层的超顺磁特性,制备出高磁含量的磁性纳米淀粉微球;用原子层沉积实现的致密均匀SiO2涂层,实现对磁性纳米淀粉微球的磁性物质Fe2O3涂层的包覆,避免磁泄露;利用SiO2涂层亲水、良好的生物相容性、抗团聚、悬浮稳定性、表面易修饰等特点,可提高纳米淀粉微球的载药性能,药物释放速度也会更平稳。
本发明原子层沉积过程中利用自行研发的原子层沉积设备—超声流化原子层沉积装置(中国专利CN201811502555.0)将薄膜沉积在软团聚体表面,使得纳米颗粒固化成大的颗粒团聚体,在后续的应用过程中影响纳米淀粉微球的药物释放及应用性能。
对比例1
取与实施例1同一批次纳米淀粉微球,将纳米淀粉微球通过800目筛网之后,与氧化铁和氧化铝颗粒混合。本例除与实施例1中氧化铁和氧化铝的包覆方法不同外,其余条件均相同。
分别测量实施例1和对比例1样品的饱和磁化强度和水氧渗透率,见图2和图3。从图2中磁饱和强度的数据可以看出磁饱和强度与包覆在纳米淀粉微球上氧化铁颗粒的厚度成正相关;但在相同氧化铁的条件下,实施例1中利用ALD在纳米淀粉微球表面包覆氧化铁纳米薄膜的磁饱和强度要比对比例1中氧化铁、氧化铝和纳米淀粉微球的混合样品高出20%。
从图3中水氧渗透率的数据可以看出水氧渗透率与包覆在纳米淀粉微球上氧化铝薄膜的厚度成负相关;但在相同氧化铝的条件下,实施例1中利用ALD在纳米淀粉微球表面包覆氧化铝纳米薄膜的水氧渗透率要比对比例1中氧化铁、氧化铝和纳米淀粉微球的混合样品低30%。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种利用原子层沉积包覆纳米淀粉微球的方法,其特征在于,在纳米淀粉微球表面包覆纳米级薄膜,对纳米淀粉微球进行改性,具体方法如下:
(S1)过筛:首先将纳米淀粉微球通过800-2000目的筛网,除掉团聚的纳米淀粉微球;
(S2)加热等待:将步骤(S1)中经过筛网的纳米淀粉微球置于超声垂直流化原子层沉积设备中,对反应腔进行加热并通入载气对其表面进行清洗,同时打开真空泵对整个超声垂直流化原子层沉积设备进行抽真空直至腔体内压力不大于10Pa;
(S3)超声振动:设定超声振动杆的超声波频率为20-40KHz,超声振动工作时长1s-99h,间歇时长1ms-99s;
(S4)原子层沉积:当温度和压力达到设定值:温度为80-450℃,压力为0.1-10Pa,其后利用低压载气携带前驱体组合进入超声垂直流化原子层沉积设备腔体内,进行氧化物A和氧化物B的原子层沉积,得到改性后的纳米淀粉微球;
所述原子层沉积过程具体如下:
S4.1 低压载气携带第一前驱体组合进入反应腔并在纳米淀粉微球表面完成化学吸附,得到沉积氧化物A层;
S4.2 通入载气把未被表面吸附、多余的第一前驱体组合和反应副产物带出反应腔;
S4.3低压载气携带第二前驱体组合进入反应腔和第一前驱体组合吸附的表面继续进行原子层沉积,重复多次后得到氧化物B层;
S4.4 利用载气把多余的第二前驱体组合和反应生成的副产物带出反应腔;
所述第一前驱体组合为C10H10Fe/O3或SiCl4/H2O;第二前驱体组合为能够用于ALD反应的烷基、氨基金属,包括三(二甲胺基)硅烷/O2等离子气体、四(二甲基氨基)钛/H2O、Ti[OCH(CH3)]4/H2O、二甲基锌/H2O、四(乙基甲基氨基)锆/H2O、三甲基锆/H2O、四(二甲基氨基)铪/H2O、四(乙基甲基氨基)铪/H2O、三甲基铝/H2O或三甲基铝/O3,第一前驱体组合和第二前驱体组合在不构成冲突的情况下可任意组合;
所述氧化物A形成的纳米级可控薄膜为Fe2O3涂层或SiO2涂层,氧化物B形成的纳米级可控薄膜为TiO2涂层、ZnO涂层、ZrO2涂层、HfO2涂层或Al2O3涂层中的一种。
2.根据权利要求1所述利用原子层沉积包覆纳米淀粉微球的方法,其特征在于,步骤S4.1和S4.3中所述低压载气携带第一前驱体组合或第二前驱体组合以气相形式进入反应腔,其中前驱体通气时长与纳米淀粉微球表面的表面积成正比,反应温度和压力由前驱体组合和纳米淀粉微球对温度的耐受性所决定。
3.根据权利要求1所述利用原子层沉积包覆纳米淀粉微球的方法,其特征在于,步骤S4.1-S4.4中反应温度为80-120℃,通入载气之前的压力低于1Pa;
所述第一前驱体组合和第二前驱体组合均包括两种前驱体,反应时,通过载气脉冲通入对应前驱体组合中包含的两种前驱体,脉冲时长为60-90s,携带前驱体的载气流量为0.1-100sccm,使两种前驱体分别依次吸附在纳米淀粉微球表面;
每通入下一种前驱体之前通过载气对纳米淀粉微球表面进行清洗,载气流量为100-200sccm,清洗时长为120-150s;
其中,当第一前驱体组合沉积完毕后,通入载气对纳米淀粉微球表面进行清洗,载气流量为100-200sccm,清洗时长为10-30min,而后重复上述步骤进行第二前驱体组合的沉积。
4.根据权利要求1所述利用原子层沉积包覆纳米淀粉微球的方法,其特征在于,步骤S4.1和S4.3的循环次数为1~800,所述氧化物A或/和氧化物B包覆层的厚度为0.1~50nm,所述被包覆的纳米淀粉微球质量为0.1~100g。
5.根据权利要求1所述利用原子层沉积包覆纳米淀粉微球的方法,其特征在于,所述载气为惰性气体,惰性气体为高纯氮气或氩气。
6.根据权利要求1-5任一所述利用原子层沉积包覆纳米淀粉微球的方法,其特征在于,所述纳米淀粉微球替换为聚乳酸纳米颗粒、磷灰石晶体颗粒、金纳米颗粒或生物医药用磁性颗粒。
CN202010231957.2A 2020-03-27 2020-03-27 一种利用原子层沉积包覆纳米淀粉微球的方法 Active CN111304634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010231957.2A CN111304634B (zh) 2020-03-27 2020-03-27 一种利用原子层沉积包覆纳米淀粉微球的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010231957.2A CN111304634B (zh) 2020-03-27 2020-03-27 一种利用原子层沉积包覆纳米淀粉微球的方法

Publications (2)

Publication Number Publication Date
CN111304634A CN111304634A (zh) 2020-06-19
CN111304634B true CN111304634B (zh) 2022-05-13

Family

ID=71160848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010231957.2A Active CN111304634B (zh) 2020-03-27 2020-03-27 一种利用原子层沉积包覆纳米淀粉微球的方法

Country Status (1)

Country Link
CN (1) CN111304634B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220105496A1 (en) * 2020-09-17 2022-04-07 Sk Innovation Co., Ltd. Cobalt-Based Single-Atom Dehydrogenation Catalysts Having High Selectivity and Regenerability and Method for Producing Corresponding Olefins from Paraffins Using the Same
CN115010968B (zh) * 2022-05-26 2023-06-16 中国科学技术大学 一种单层密排微球薄膜的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102477541A (zh) * 2010-11-25 2012-05-30 英作纳米科技(北京)有限公司 紧固件表面三氧化二铝薄膜的制备方法及其产品
CN102569768A (zh) * 2011-08-19 2012-07-11 吴杭春 锂电池高比表面积碳/金属氧化物复合电极材料、电极及其制备方法
CN102965640A (zh) * 2012-11-27 2013-03-13 中国科学院山西煤炭化学研究所 一种制备磁性材料包覆的碳纳米螺旋电磁波吸收剂的方法
CN103510074A (zh) * 2013-10-25 2014-01-15 南京大学 基于ald技术的复合无机-有机杂化物薄膜的制备方法
CN109355641A (zh) * 2018-11-06 2019-02-19 华中科技大学无锡研究院 一种无机颜料表面改性的方法
CN109576673A (zh) * 2018-12-10 2019-04-05 华中科技大学 用于微纳米颗粒充分分散包覆的超声流化原子层沉积装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100123117A1 (en) * 2008-11-19 2010-05-20 Seagate Technology Llc Non volatile memory cells including a filament growth layer and methods of forming the same
CN107099283A (zh) * 2013-03-14 2017-08-29 纳米技术有限公司 多层包覆的量子点珠

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102477541A (zh) * 2010-11-25 2012-05-30 英作纳米科技(北京)有限公司 紧固件表面三氧化二铝薄膜的制备方法及其产品
CN102569768A (zh) * 2011-08-19 2012-07-11 吴杭春 锂电池高比表面积碳/金属氧化物复合电极材料、电极及其制备方法
CN102965640A (zh) * 2012-11-27 2013-03-13 中国科学院山西煤炭化学研究所 一种制备磁性材料包覆的碳纳米螺旋电磁波吸收剂的方法
CN103510074A (zh) * 2013-10-25 2014-01-15 南京大学 基于ald技术的复合无机-有机杂化物薄膜的制备方法
CN109355641A (zh) * 2018-11-06 2019-02-19 华中科技大学无锡研究院 一种无机颜料表面改性的方法
CN109576673A (zh) * 2018-12-10 2019-04-05 华中科技大学 用于微纳米颗粒充分分散包覆的超声流化原子层沉积装置

Also Published As

Publication number Publication date
CN111304634A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
CN111304634B (zh) 一种利用原子层沉积包覆纳米淀粉微球的方法
Kirsch et al. Three-dimensional metallization of microtubules
CN106540658A (zh) 一种氧化石墨烯共价键包覆磁性纳米粒子复合材料及其制备方法
CN107790075B (zh) 一种核-壳-壳结构的磁性介孔SiO2纳米粒子的制备方法
CN105779968B (zh) 一种量子点薄膜制备方法
JP2001181403A (ja) 複合粒子、その製造方法および使用方法
JP2014529511A (ja) ナノ粒子コンポジット膜の生成方法及びその方法を用いて製造した膜
CN110251479B (zh) 一种红细胞膜包裹仿生型血液六价铬还原去除剂/磁性纳米马达及其制备方法和应用
JP2004351608A (ja) ナノ材料の製造方法およびナノ材料
Gong et al. Highly active photocatalytic ZnO nanocrystalline rods supported on polymer fiber mats: Synthesis using atomic layer deposition and hydrothermal crystal growth
WO2016004191A1 (en) Method for making a catalyst metal substrate for growth of carbon nanotubes
Wu et al. Preparation and magnetoviscosity of nanotube ferrofluids by viral scaffolding and ALD on porous templates
CN102631876A (zh) 核壳结构磁性纳米颗粒的制备方法
CN111364023A (zh) 基于原子层沉积的光伏正面导电银浆银粉的表面改性方法
CN109355641A (zh) 一种无机颜料表面改性的方法
CN106498365B (zh) 一种氧化锆包覆铝粉实现铝粉钝化的方法
CN110656488A (zh) 一种碳纤维编织布负载羟基氧化铁纳米颗粒复合结构色的方法及得到的碳纤维编织布
CN108478806B (zh) 中空介孔二氧化硅药物载体纳米孔道的可靠性封装制备方法
CN109675609B (zh) 一种原子层沉积超薄氧化钛修饰的纳米孔金基催化剂的制备方法及其应用
Nielsch et al. Ferromagnetic nanostructures by atomic layer deposition: From thin films towards core-shell nanotubes
Yan et al. Atomic layer deposition SiO2 films over dental ZrO2 towards strong adhesive to resin
ur Rahman et al. Preparation and characterization of magnetic gold shells using different sizes of gold nanoseeds and their corresponding effects on catalysis
Aoi et al. Synthesis of nanostructured metal oxide by liquid-phase deposition
Chen et al. Fabrication of well-defined water-soluble core/shell heteronanostructures through the SiO 2 spacer
JP2022533257A (ja) 高い飽和磁化を有する保磁力強化された窒化鉄ナノ粒子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant