CN111293971B - 一种耐磨自清洁太阳能电池面板 - Google Patents

一种耐磨自清洁太阳能电池面板 Download PDF

Info

Publication number
CN111293971B
CN111293971B CN201911310493.8A CN201911310493A CN111293971B CN 111293971 B CN111293971 B CN 111293971B CN 201911310493 A CN201911310493 A CN 201911310493A CN 111293971 B CN111293971 B CN 111293971B
Authority
CN
China
Prior art keywords
solar cell
cell panel
microstructures
cleaning solar
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911310493.8A
Other languages
English (en)
Other versions
CN111293971A (zh
Inventor
邓旭
王德辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Pujie Technology Co ltd
University of Electronic Science and Technology of China
Original Assignee
Chengdu Pujie Technology Co ltd
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Pujie Technology Co ltd, University of Electronic Science and Technology of China filed Critical Chengdu Pujie Technology Co ltd
Priority to CN201911310493.8A priority Critical patent/CN111293971B/zh
Publication of CN111293971A publication Critical patent/CN111293971A/zh
Priority to US17/075,720 priority patent/US11127870B2/en
Application granted granted Critical
Publication of CN111293971B publication Critical patent/CN111293971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0093Other properties hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/30Auxiliary coatings, e.g. anti-reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种耐磨自清洁太阳能电池面板,包括透明基底,透明基底上设置有若干连续的微结构,微结构为倒多棱锥或倒圆锥孔,微结构中填充有若干超疏水纳米材料,微结构与超疏水纳米材料共同构成太阳能电池面板的复合表面。本发明通过微结构与超疏水纳米材料构成复合表面,纳米级结构在微结构的保护下可以承受外界摩擦等冲击,并保持自清洁功能,保证其较高的透光率,有效解决了超疏水性、高透光率和机械稳定性无法兼具的问题。

Description

一种耐磨自清洁太阳能电池面板
技术领域
本发明属于太阳能电池面板技术领域,具体涉及一种耐磨自清洁太阳能电池面板。
背景技术
光伏发电行业存在的关键问题是安装于室外的电池面板积累灰尘和污垢,减少了太阳光的透过率,从而大幅降低了能源转换效率。尽管近年来不断开发出高效率的新型太阳能电池,但面板积灰导致的效率损失却无法避免。一般来说,电池面板积灰会导致发电效率平均每月下降10%-25%;在一些地区,如中国、印度、阿拉伯半岛等地的高雾霾区域,每月发电效率下降可达50%。即使在空气质量较高的加州,145天之后也有7.4%的发电效率损失。面板积灰使得大量的人力、水、电力等资源都花费在了电池面板的清洁过程中。
长期以来,人们尝试使用具有荷叶自清洁效应的超疏水表面来清除灰尘,以保持太阳能电池面板的高透光率。所谓超疏水材料一般是指水在其表面的接触角(contactangle)大于150°,滑动角(roll-off angle)小于10°。超疏水性通常依赖于低表面能和微纳米结构提供的粗糙度,而超疏水表面具有的微纳米结构(特别是纳米尺度)在宏观环境中无法表现出较好的机械稳定性,难以承受在安装、运输等过程中的摩擦磨损,以及使用场景中面临暴雨等高速水滴(流)的撞击。另外,提供粗糙度的微纳米结构往往造成光散射从而减弱光透过率。因此,普通超疏水表面难以在保证高透光率的同时拥有较好的机械稳定性,耐磨、耐刮等性能较差。在保证优良超疏水(自清洁)性能的前提下,同时兼具机械稳定性和高透光率,成为发展自清洁太阳能电池面板的技术难点,制约其在光伏领域中的应用。
发明内容
针对现有技术中存在的上述问题,本发明提供一种耐磨自清洁太阳能电池面板,通过微结构与超疏水纳米材料构成复合表面,纳米级结构在微结构的保护下可以承受外界摩擦等冲击,并保持自清洁功能,保证其较高的透光率,有效解决了超疏水性、高透光率和机械稳定性无法兼具的问题。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:提供一种耐磨自清洁太阳能电池面板,包括透明基底,透明基底上设置有若干连续的微结构,微结构为倒多棱锥或倒圆锥孔,微结构中填充有若干超疏水纳米材料,微结构与超疏水纳米材料共同构成太阳能电池面板的复合表面。
进一步,倒多棱锥或倒圆锥孔的侧壁与锥底之间的夹角为α,且30°<α<90°。
进一步,倒多棱锥边长为1μm<a<2mm,相邻微结构间隔为10nm<d<2mm。
进一步,超疏水纳米材料通过原位沉积法或间接填充法填充在微结构中。
进一步,透明基底材质为玻璃、石英、金刚石、有机玻璃、聚对苯二甲酸乙二醇酯、聚碳酸酯、聚二甲基硅氧烷、聚酰亚胺、聚乙烯或聚丙烯。
进一步,超疏水纳米材料为疏水化改性的纳米二氧化硅、纳米氧化锌、纳米氧化铜、纳米氢氧化铜纳米氢氧化钴或纳米二氧化钛。
进一步,超疏水纳米材料为Ultra-Ever Dry、NeverWet或Glaco Soft99。
进一步,微结构通过压印法制备得到。
进一步,压印法为微接触压印、紫外压印、热压印、热固化压印或辊式压印。
模具制备:采用基于超精密机床的微切削技术、光刻技术和复型法在模具预制品表面加工出与所设计微结构相反的微结构阵列。
微切削加工模具:用金刚石刀具在基底表面沿固定方向切削,保持切削深度不变,加工出一条微槽;通过周期性重复切削,得到平行的微槽阵列;然后将切削方向旋转固定角度,在相同的条件下进行交叉开槽操作,即可在模具预制品表面制作出微结构阵列。模具的材质包括镍、镍-磷合金、铜、铬、石英、蓝宝石的一种。
光刻与湿法刻蚀加工模具:通过传统光刻技术在具有氧化层的硅片表面制备出预先设计的图案,用BOE(HF:40%的NH4F=1:6)溶液腐蚀掉二氧化硅层,再浸没于25%的四甲基氢氧化铵(TMAH)溶液中加热至50~90℃刻蚀,制备出微结构结构。模具的材质为硅,可直接使用该微结构硅片作为模具。
复型法制作模具:也可将通过微切削或光刻方法制备的微结构表面作为模具,通过多次复型,将微结构转移至聚合物材料的表面,作为模板。模具的材质包括聚酰亚胺(PI)以及聚四氟乙烯(PTFE),聚二甲基硅氧烷(PDMS)中的一种。
综上所述,本发明具备以下优点:
1、本发明通过微结构与超疏水纳米材料构成复合表面,大幅提高自清洁太阳能电池面板表面的机械稳定性,包括优异的耐磨、耐刮、耐高速水流冲击性能,保证复合表面的自清洁性能不因外部摩擦磨损而失效;同时由于纳米材料的纳米级尺度,保证了较高的透光率,有效解决了太阳能电池面板表面超疏水性、高透光率和机械稳定性无法兼具的问题。
2、将超疏水纳米材料通过原位沉积法或间接填充法填充至带有倒多棱锥微或倒圆锥孔结构的透明基底上,由于纳米材料填充在透明基底中受微结构保护,外界摩擦冲击均无法将其损坏,使该超疏水表面在承受极为严苛的摩擦磨损后,仍能保持极好的自清洁效果。同时由于纳米结构尺度小(50~100nm),厚度低,不会对光产生散射,加之倒多棱锥或倒圆锥孔的微结构可有效降低光的反射,使该超疏水表面拥有极高的光透过率。
3、该耐磨自清洁太阳能电池面板可直接用于太阳能电池的前盖板玻璃,无需再次粘接,贴膜;在实际应用中,由于微结构的保护,该超疏水表面不仅可以抵抗安装、运输过程中摩擦磨损,还能等抵抗32.6m/s的高速水流冲击,保持有效的自清洁效果;用于保护纳米结构的微结构规整有序,可降低对光的反射,增强约3%的光透过率。
附图说明
图1为倒三棱锥微结构示意图;
图2为微结构填充示意图;
图3为热压法/冷压法示意图;
图4为倒四棱锥微结构示意图;
图5为倒四棱锥扫描电镜示意图;
图6为倒四棱锥填充后扫描电镜示意图;
图7为倒六棱锥微结构示意图;
图8为辊式压印法示意图;
图9为循环摩擦后的静态接触角示意图;
图10为循环摩擦后的滚动角示意图;
图11为高速水流冲击测试示意图;
图12为超疏水玻璃光透过率示意图;
图13为微结构保护示意图;
图14为超疏水玻璃I-V曲线示意图;
图15为太阳能光电转换效率测试结果示意图。
具体实施方式
实施例1
一种耐磨自清洁太阳能电池面板,包括透明基底,透明基底上设置有若干连续的微结构,微结构为倒三棱锥,如图1所示,倒三棱锥的侧壁角度为α,且30°<α<90°,倒三棱锥边长为1μm<a<2mm,相邻倒三棱锥间隔为10nm<d<2mm,;微结构通过热压法制备,且微结构通过原位沉积法填充有若干超疏水纳米材料,如图2所示,超疏水纳米材料形成复合表面。
热压法:将成型预制基底置于微结构模具上进行热压精密成型,如图3所示。将预制基底放置在模具上,将温度加热至300~1000℃(视预制基底的软化温度而定);通入氮气,以防止模具在高温下氧化。通过外部加压(0.3~10MPa压力,视模具以及比例预制品大小而定)压缩成型,模具表面的微观结构将被压印到预制基底表面。最后,释放压力,将成型的预制片冷却至室温后脱模,即可得到具有微结构的表面。上述的预制基底材质为玻璃。通过热压法制备的带有倒金字塔结构的玻璃板,其中侧壁α=45°,边长a=40um,间距d=25nm。
原位沉积法:将沉积有纳米氧化锌的微结构基底放入气相沉积室,并在旁边放置一个10mL的试剂瓶,并向其中加入200ul的全氟辛基三氯硅烷,抽真空至真空压力为-0.095MPa后将沉积室密闭,室温放置2h,即可得到微结构保护的超疏水透明盖板,水静态接触角为165°。所述纳米结构的填充,可将微结构填满,也可只将微结构表面覆盖1~10um厚度。
实施例2
一种耐磨自清洁太阳能电池面板,包括透明基底,透明基底上设置有若干连续的微结构,微结构为倒四棱锥,如图4所示,其扫描电镜图如图5所示,倒四棱锥的侧壁角度为α,且30°<α<90°,倒四棱锥边长为1μm<a<2mm,相邻倒四棱锥间隔为10nm<d<2mm;微结构通过冷压法制备,且微结构中通过间接填充法填充有若干超疏水纳米材料,如图2所示,超疏水纳米材料形成复合表面,填充后如图6所示。
冷压法:将成型预制基底置于微结构模具上进行热压精密成型,如图3所示。将预制基底放置在模具上,直接通过外部加压(1~200MPa压力,视模具以及比例预制品大小而定)压缩成型,模具表面的微观结构将被压印到预制基底表面。最后,释放压力后脱模,即可得到具有微结构的表面。所述的预制基底材质为有机玻璃。
间接填充法:采用喷涂法,填充时利用气动喷枪,压力为0.1~1MPa,以0.1~10mL/min的喷射流量,将含有纳米材料的悬浮液喷涂至微结构基底表面,持续5~120s。室温晾干10min后即可得到较好透明度的微结构保护的超疏水盖板,水静态接触角为165°。
所述的纳米材料悬浮液为疏水化改性的纳米二氧化硅,溶剂为丙酮。利用喷涂法间接将纳米材料填充于微结构,可预先喷涂胶粘剂于微结构表面,以增强纳米材料于微结构基底之间的粘附,胶粘剂为环氧树脂。
实施例3
一种耐磨自清洁太阳能电池面板,包括透明基底,透明基底上设置有若干连续的微结构,微结构为倒六棱锥,如图7所示,倒六棱锥的侧壁角度为α,且30°<α<90°,倒六棱锥边长为1μm<a<2mm,相邻倒六棱锥间隔为10nm<d<2mm;微结构通过辊式压印法制备,且微结构中通过间接填充法填充有若干超疏水纳米材料,如图2所示,超疏水纳米材料形成复合表面。
辊式压印法:方法原理与热/冷压成型技术相同,区别在于将模具制作于辊式滚轮表面,如图8所示。该方法适合大面积制备具有微结构的透明面板。
间接填充法:旋涂法,填充时利用旋涂仪,滴加0.1~10mL含有纳米材料的悬浮液至微结构基底表面,转速为1000~8000转,持续10~60s。室温晾干10min后即可得到较好透明度的微结构保护的超疏水盖板,水静态接触角为165°。
所述的纳米材料悬浮液包括疏水化改性的纳米氧化锌,溶剂为乙醇。利用旋涂法间接将纳米材料填充于微结构,可预先旋涂胶粘剂于微结构表面,以增强纳米材料于微结构基底之间的粘附,胶粘剂为脲醛树脂。
将实施例1~3所得耐磨自清洁太阳能电池面板依次进行热稳定性测试、耐酸碱稳定性测试、摩擦磨损测试、高速水流冲击测试和太阳能电池发电效率测试,其过程如下:
热稳定性测试:将耐磨自清洁太阳能电池面板恒温加热,定期取出样品冷却到室温后测量静态接触角和滚动角。结果表明装甲表面暴露在接近100℃的温度下30天,仍然保持其超疏水性,静态接触角为160°,滚动角为5°。
耐酸碱稳定性测试:将样品分别浸没于王水(浓盐酸和浓硝酸体积比3:1)和2.5mol/L的氢氧化钠溶液中,取出直接测试其静态接触角和滚动角。测试表面,分别在酸、碱溶液中浸没5小时,耐磨自清洁太阳能电池面板仍具有良好的超疏水性,静态接触角为159°,滚动角为5.5°。
摩擦磨损测试:耐磨自清洁太阳能电池面板可承受不锈钢刀片在10N压力下循环刮磨100次仍保持自清洁性能,静态接触角为156°,滚动角为6°;可承受钢丝球在20N压力下循环擦拭100次仍保持自清洁性能,静态接触角为158°,滚动角为5°;可承受800目砂纸在10N压力下循环摩擦100次仍保持自清洁性能,静态接触角为156°,滚动角为7°。
耐磨自清洁太阳能电池面板经过循环线性摩擦测试,静态接触角及滚动角分别见图9~10所示。所述的线性摩擦为:试验装置包括一个垂直安装的力传感器和一个磨耗探头(聚丙烯片,宽5mm,厚1mm,作为载荷下对样品表面的摩擦探头)和一个水平样品台。传感器固定在水平移动平台上,探头随移动平台移动,并对样品进行循环摩擦,负载约为5N。循环摩擦测试磨损点的静态接触角和滚脱角。结果表明,利用微结构保护纳米结构的策略显著提高了超疏水表面的机械稳定性,可以耐受循环摩擦,避免在安装、运输过程中的摩擦磨损使透明超疏水表面的自清洁性能失效。
高速水流冲击测试:在恒压下(0.9MPa),10mL水从喷嘴喷出,平均射流速度为20.4m/s(暴雨雨滴速度为9m/s),水流直径2.5mm,冲击时间100ms,重复测量40次。结果表明,耐磨自清洁太阳能电池面板表面表现出了良好的抗高速射流冲击性能,甚至可以抵抗32.6m/s速度的水流冲击100ms(约16mL);冲击后,表面的静态接触角为160°,滚动角为5°,如图11所示。
太阳能电池发电效率测试:由于耐磨自清洁太阳能电池面板具有良好的光透过率,如图12所示;作为太阳能电池盖板,可维持太阳能电池的高能源转化效率,示意图如图13。测试中,单晶硅太阳能电池表面覆盖一块耐磨自清洁太阳能电池面板,其I-V曲线如图14,太阳能光电转换效率如图15。所述测试中,污染超疏水玻璃盖板的灰尘为普通室内灰尘,覆盖率为35%,作为对比的普通平整玻璃,被灰尘污染后无法实现自清洁,而耐磨自清洁太阳能电池面板上的灰尘可被雨滴或雾气冷凝水滴带走,实现自清洁,保持表面不被灰尘污染,持续维持高透光率,使太阳能电池维持高发电效率。
综上所述,本发明所提供的耐磨自清洁太阳能电池面板热稳定性好,耐酸碱性强,耐磨性好,抗高速射流冲击性能好,沉积在太阳能电池面板表面的灰尘可被雨滴或雾气冷凝水滴带走,实现自清洁,使表面不被灰尘污染,持续维持高透光率。
虽然结合附图对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (8)

1.一种耐磨自清洁太阳能电池面板,其特征在于,包括透明基底,所述透明基底上设置有若干连续的微结构,所述微结构为倒多棱锥或倒圆锥孔,所述微结构中填充有若干超疏水纳米材料,所述微结构与超疏水纳米材料共同构成太阳能电池面板的复合表面。
2.如权利要求1所述的耐磨自清洁太阳能电池面板,其特征在于,所述倒多棱锥或倒圆锥孔的侧壁与锥底之间的夹角为α,且30°<α<90°。
3.如权利要求1所述的耐磨自清洁太阳能电池面板,其特征在于,所述倒多棱锥边长为1μm<a<2mm,相邻所述微结构间隔为10nm<d<2mm。
4.如权利要求1所述的耐磨自清洁太阳能电池面板,其特征在于,所述超疏水纳米材料通过原位沉积法或间接填充法填充在所述微结构中。
5.如权利要求1所述的耐磨自清洁太阳能电池面板,其特征在于,所述透明基底材质为玻璃、石英、金刚石、有机玻璃、聚对苯二甲酸乙二醇酯、聚碳酸酯、聚二甲基硅氧烷、聚酰亚胺、聚乙烯或聚丙烯。
6.如权利要求1所述的耐磨自清洁太阳能电池面板,其特征在于,所述超疏水纳米材料为疏水化改性的纳米二氧化硅、纳米氧化锌、纳米氧化铜、纳米氢氧化铜、纳米氢氧化钴或纳米二氧化钛。
7.如权利要求1所述的耐磨自清洁太阳能电池面板,其特征在于,所述微结构通过压印法制备得到。
8.如权利要求7所述的耐磨自清洁太阳能电池面板,其特征在于,所述压印法为微接触压印、紫外压印、热压印、热固化压印或辊式压印。
CN201911310493.8A 2019-12-18 2019-12-18 一种耐磨自清洁太阳能电池面板 Active CN111293971B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911310493.8A CN111293971B (zh) 2019-12-18 2019-12-18 一种耐磨自清洁太阳能电池面板
US17/075,720 US11127870B2 (en) 2019-12-18 2020-10-21 Wear-resistant self-cleaning solar cell panel having inverted microstructure filled with superhydrophobic nanomaterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911310493.8A CN111293971B (zh) 2019-12-18 2019-12-18 一种耐磨自清洁太阳能电池面板

Publications (2)

Publication Number Publication Date
CN111293971A CN111293971A (zh) 2020-06-16
CN111293971B true CN111293971B (zh) 2020-12-08

Family

ID=71025363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911310493.8A Active CN111293971B (zh) 2019-12-18 2019-12-18 一种耐磨自清洁太阳能电池面板

Country Status (2)

Country Link
US (1) US11127870B2 (zh)
CN (1) CN111293971B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111792615A (zh) * 2020-07-17 2020-10-20 电子科技大学 一种通过微结构保护的疏水材料及其制备方法和应用
CN111909421A (zh) * 2020-08-07 2020-11-10 南京林业大学 一种新型路面超疏水抑冰涂层用垫层的制备方法
CN111825480B (zh) * 2020-08-13 2022-11-04 西藏大学 一种抗紫外线超疏水防冻材料及其制备方法
CN111958958A (zh) * 2020-08-27 2020-11-20 电子科技大学 一种超疏水食品包装材料及其制备模具和制备方法
CN112802913A (zh) * 2021-01-11 2021-05-14 浙江师范大学 一种表面织构化太阳能玻璃自清洁增透结构及方法
WO2022213156A1 (en) * 2021-04-09 2022-10-13 Gale Pacific Limited Surface finish and fabric
CN115805180A (zh) * 2021-09-14 2023-03-17 合肥美的电冰箱有限公司 超疏水材料及其制备方法
CN114164499A (zh) * 2021-12-08 2022-03-11 电子科技大学 一种抗冷凝失效的铠甲化超疏水表面及其制备方法
CN117510946A (zh) * 2022-07-28 2024-02-06 华为技术有限公司 透光板材、结构件和光感装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148255B2 (en) * 2007-09-18 2012-04-03 International Business Machines Corporation Techniques for forming solder bump interconnects
JP6386700B2 (ja) * 2012-07-04 2018-09-05 キヤノン株式会社 構造体、光学部材、反射防止膜、撥水性膜、質量分析用基板、位相板、構造体の製造方法、及び反射防止膜の製造方法
CN104910776B (zh) * 2015-05-27 2018-04-03 南京粒能新材料科技有限公司 一种透明耐磨超疏水涂料及其制备方法和涂覆工艺
US10398041B2 (en) * 2015-08-17 2019-08-27 Hewlett-Packard Development Company, L.P. Making a hydrophobic surface for an object

Also Published As

Publication number Publication date
CN111293971A (zh) 2020-06-16
US11127870B2 (en) 2021-09-21
US20210193856A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
CN111293971B (zh) 一种耐磨自清洁太阳能电池面板
CN106893454B (zh) 一种可喷涂且耐久的超双疏涂层的制备方法
CN102866582B (zh) 一种用于高亮度led图形化的纳米压印装置和方法
Rahmawan et al. Self-assembly of nanostructures towards transparent, superhydrophobic surfaces
Xiu et al. Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching
TWI628516B (zh) 採用具有金屬或氧化物塗層之可重複使用聚合物模板的奈米壓印技術
US9469083B2 (en) Inverted nanocone structures for multifunctional surface and its fabrication process
CN101801874A (zh) 具有玻璃功能的基底的表面结构化方法及具有结构化表面的玻璃产品
WO2012087352A2 (en) Superhydrophobic and superoleophobic nanosurfaces
CN111454000B (zh) 一种耐磨超双疏自清洁贴膜及其制备方法
Lee et al. Continuous fabrication of bio-inspired water collecting surface via roll-type photolithography
CN111792615A (zh) 一种通过微结构保护的疏水材料及其制备方法和应用
CN110983330A (zh) 超疏水涂层的制备方法及应用和含有超疏水涂层的制品
KR20130034379A (ko) 초소수성 전자기장 차폐재 및 그 제조방법
Wang et al. The stable superhydrophobic ZnO@ stearic acid nanocone array and its remarkable all-sided protective abilities in various extreme environments
JP6141969B2 (ja) 大面積を有する基板のテクスチャ加工方法
Jang et al. Facile one-step photopatterning of hierarchical polymer structures for highly transparent, flexible superhydrophobic films
CN113896430A (zh) 一种胶黏剂复合耐磨超疏水涂层及其制备方法
Bochet-Modaresialam et al. Methylated silica surfaces having tapered nipple-dimple nanopillar morphologies as robust broad-angle and broadband antireflection coatings
Bhandari et al. Superhydrophobic coatings by the hot embossing approach: recent developments and state-of-art applications
Joghee et al. Superhydrophobic coatings based on pseudoboehmite nanoflakelets for sustainable photovoltaic energy production
CN105378562B (zh) 具有印模结构的印模及其制造装置和方法
CN112885504B (zh) 一种具有微纳结构的月尘防护导电薄膜及其制备方法
CN102736410B (zh) 一种多点接触模式下的大面积纳米压印硅模具加工方法
CN202817032U (zh) 一种提高底发射有机电致发光器件出光率的结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant