CN111282584A - 一种基于元素磷的近红外响应光催化剂薄膜的制备方法 - Google Patents

一种基于元素磷的近红外响应光催化剂薄膜的制备方法 Download PDF

Info

Publication number
CN111282584A
CN111282584A CN201911058220.9A CN201911058220A CN111282584A CN 111282584 A CN111282584 A CN 111282584A CN 201911058220 A CN201911058220 A CN 201911058220A CN 111282584 A CN111282584 A CN 111282584A
Authority
CN
China
Prior art keywords
substrate
phosphorus
corundum
temperature
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911058220.9A
Other languages
English (en)
Inventor
刘想梅
张琪
吴水林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201911058220.9A priority Critical patent/CN111282584A/zh
Publication of CN111282584A publication Critical patent/CN111282584A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/182Phosphorus; Compounds thereof with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种基于元素磷的近红外响应光催化剂薄膜的制备方法,包括以下步骤:(1)基底的预处理,(2)商业红磷的预处理,(3)元素磷薄膜的合成。本发明的制备方法能够使磷在各种基底表面,包括粉末表面均匀成膜,合成的非金属薄膜能在近红外光照射下表现出光催化活性。本发明的制备方法使用的原材料在地球上含量丰富,价格低廉,并且所需要的仪器较为常见,设备投入低,简单易行。

Description

一种基于元素磷的近红外响应光催化剂薄膜的制备方法
技术领域
本发明属于光催化材料技术领域,具体的说是一种基于元素磷的近红外响应光催化剂薄膜的制备方法。
背景技术
由于磷元素在地球上的广泛分布,基于元素磷的光催化剂已经得到了较为广泛的研究。元素P存在三种常见的同素异形体:白磷,红磷和黑磷。白磷由于其低燃点和高毒性而限于有机化学应用。热力学稳定但价格昂贵的黑磷已在 2014年被证明拥有半导体特性并引起了广泛的关注。相比之下,红磷更常用,因为它价格低,无毒,在环境条件下稳定、绿色环保。不仅如此,已经有研究证明无定形红磷、Hittorf红磷、以及纤维相红磷都具有光催化活性。它们作为可见光光催化剂在能源以及环境修复方面已得到广泛研究,如产氢、光催化杀菌、去除有机污染物和有害离子等。
但是这些红磷同素异形体的光吸收都局限在可见光范围,它们表现出略微不同的吸收边缘在~680nm至~720nm之间,对应从亮红色(无定形)到暗红色 (纤维相)的颜色。这种光学吸收特性极大地限制了红磷对太阳光的更有效利用,因为可见光所蕴含的能量仅占太阳光能的约48%。此外,可见光的穿透限制了红磷在生物学等其他领域的进一步应用。不仅如此,现今大多数的光催化剂的光吸收多局限于紫外光或者可见光,能对近红外光利用的光催化剂很少。对新的近红外光催化剂的研究是必要且急需的。基于磷元素复杂而众多分子结构,磷作为半导体的潜力尚未完全实现。
发明内容
针对这种情况,本发明提供了一种基于元素磷的近红外响应光催化剂薄膜的制备方法,利用无定形红磷作原料,以一种低廉简便的方法制备一种非金属近红外光催化剂,能够对近红外光表现出强烈吸收并表现出光催化活性,可以用在各种光催化领域可有效解决现有技术存在的问题。
为实现上述目的,本发明提供的技术方案如下:一种基于元素磷的近红外响应光催化剂薄膜的制备方法,其特征在于包括以下步骤:
1)基底的预处理
基底可选钛片,玻璃,铁片,镍片,SiO2或TiO2粉末,所述基底为钛片时,用目数为240-1200目的SiC砂纸将基底表面打磨光滑,备用;
2)商业红磷的预处理
将1.0-6.0g商业红磷置于装有40-60mL去离子水的聚四氟乙烯内胆反应釜中进行水热处理,然后用去离子水过滤冲洗,30-100℃真空干燥,最后使用研钵研磨成均匀细微的粉末;
3)元素磷薄膜的合成
所述基底为钛片,玻璃,铁片或镍片时,将步骤2)处理的红磷粉末均匀铺展到刚玉船中,将打磨好的基底置于粉末上,并且保持基底正面朝上;所述基底为SiO2或TiO2粉末时,将所述红磷粉末与基底混合均匀后铺展到刚玉船中,再将配套的刚玉盖置于其上,将所述刚玉船放入管式炉中,抽真空,然后以5-15℃/min的升温速率升至700-800℃,保温50-80min后,降至280-350℃, 继续保温8-12h后,自然降至室温,拿出所述刚玉船,即得到表面沉积有元素磷磷薄膜的样品。
优选的,步骤1)中所述基底为钛片时则预处理时打磨至800-1200目。
优选的,步骤2)中所述水热处理温度是150-220℃,反应时间12-24h,所述过滤冲洗采用的是减压过滤。
优选的,步骤3)中所述配套的刚玉船和刚玉盖是分离的。
优选的,步骤3)中所述管式炉是双温区的。
本发明所具有的有益效果为:
(1)本发明通过简便的化学气相沉积的方法,以及商业红磷作为原料,可以在各种基底表面形成一层磷元素薄膜,本发明设备投入低,原材料价格低廉。
(2)本发明通过高温升华,低温沉积的过程,使得红磷沉积到基底表面并由无定形状态发生晶型转变,从只能吸收可见光转变成能在近红外区域具有强烈吸收的状态。
(3)本发明制备的薄膜在近红外照射下具有优良的光催化活性,能在808 nm光的照射下产生活性氧:超氧阴离子。
附图说明
下图中图2至图7均以实施例1作为对象进行表征,图8和图9以实施例 2作为对象进行表征:
图1为本发明制备方法的流程图;
图2为钛片表面制备的磷元素薄膜SEM图;
图3为钛片表面制备的磷元素薄膜SEM截面图;
图4为钛片表面制备的磷元素薄膜XPS图;
图5为钛片表面制备的磷元素薄膜的UV-vis-NIR漫反射光谱;
图6为钛片表面制备的磷元素薄膜的电化学表征图;
图7为钛片表面制备的磷元素薄膜的NBT法检测超氧阴离子图。NBT(氯化硝基四氮唑蓝)法:氯化硝基四氮唑蓝能与超氧阴离子特异性反应生成吸收峰在530nm的物质MF;
图8为铁片表面制备的磷元素薄膜的SEM图;
图9为铁片表面制备的磷元素薄膜的NBT法检测超氧阴离子图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明具体实施例如下:
实施例1:
(1)将直径20mm、厚度2mm的钛金属圆片分别用规格为240#,400#, 600#,800#和1200#的SiC砂纸打磨直至表面光滑,然后依次放入丙酮,乙醇和去离子水进行超声清洗15min,除去钛片表面的杂质,然后干燥备用。
(2)称取6.0g商业红磷,以及量取50mL去离子水。随后先往聚四氟乙烯内胆反应釜内加入商业红磷粉末,后加入去离子水。密封好反应釜后,放置入马弗炉中,设置参数为:初始温度为室温,升温速度2℃/min,保持温度为 200℃,保持时间为12h。等自然冷却后,打开反应釜,使用减压过滤得到水热后的块状红磷,期间使用去离子水多次清洗。然后使用真空干燥箱在60℃真空干燥至少6h。将干燥后的块状红磷使用研钵研成细微均匀的粉末,可以保存在真空或者氩气环境,便于以后使用。
(3)将研磨均匀的红磷粉末均匀地铺展到一个刚玉船中,随后将上述打磨好的钛片正面(打磨面)朝上地放置到铺展的红磷上,随后将一个配套的刚玉盖恰当地置于其上。
(4)将装好红磷粉末和样品的刚玉船以及刚玉盖这一装置平稳地放入管式炉中,使用真空泵抽至真空,随后设置参数:首先以10℃/min升温至750℃,然后保温1h反应,设置降温时间1h,降低温度到280℃,随后保持温度10h,然后开始反应,反应结束后自然降至常温。拿出刚玉船,便可以得到表面沉积有元素磷磷薄膜的样品。
对上述方法制备的样品进行扫描电镜和元素检测,结果显示,图2中元素磷薄膜在钛片表面呈现不规则四棱锥结构均匀分布。图3中在钛片表面元素磷薄膜的截面也显示均匀分布的棱锥结构,并且棱锥结构的厚度大约为0.89μm。图4的XPS结果显示,钛片表面确实有磷元素沉积,说明了样品的成功制备。图5的漫反射光谱表明生长在钛片表面的元素磷薄膜具有强烈的近红外吸收特性,且在可见近红外区域吸收强度随着波长的增大而增大。
对上述方法制备的样品进行光电化学和光催化活性表征:1)如图6所示, 左边第一张图为在808nm光的照射下,在无偏压和无牺牲剂的情况下,沉积有 元素磷薄膜的钛片显示出增强的瞬态光电流,这表明磷元素薄膜在近红外光照 射下能有效地产生自由光生电荷载体。中间和右边一张图分别是线性扫描伏安 法曲线的负扫和正扫。光照下沉积有磷元素薄膜的光电流显著增加,而钛片变 化不大,这表明磷元素薄膜内电子-空穴对的有效分离。光电化学测试表明磷元 素薄膜可以在近红外光照射下产生自由光生电子,具有光催化潜力。2)图7 为利用NBT法检测超氧阴离子的产生,通过检测溶液的吸收光谱,确认是否有 MF生成,从而确定是否有超氧阴离子产生,进而确定薄膜的光催化活性。以 纯NBT溶液作为control组,则a)为control组,b)为control光照组。d)为沉积 有磷元素薄膜的钛片+NBT溶液光照组,c)为b)与d)光照后放置过夜的溶液的 MF吸收光谱,以探究NBT对时间以及材料的稳定性。e)是沉积有磷元素薄膜 的钛片+NBT溶液+牺牲剂TEOA后光照组。f)是以上光谱的量化。a),b),c)三 者说明了NBT非常稳定,光以及材料本身都对MF的生成无任何贡献。而d),e), f)则说明了光照下MF,即超氧阴离子的产生与磷元素薄膜有关,以及其产生量 与薄膜产生的光生电子的多少正相关(空穴牺牲剂抑制电子-空穴复合)。以上 结果说明近红外光照下磷元素薄膜能产生超氧阴离子,具有近红外光催化活性。
实施例2:
(1)将2cm*2cm*2mm的铁片分别用规格为240#,400#,600#,800 #的SiC砂纸打磨直至表面基本光滑,然后依次放入丙酮,乙醇和去离子水进行超声清洗15min,除去铁片表面的杂质,然后干燥备用。
步骤(2)(3)(4)同实施例1步骤大致相同,只是将钛片换成铁片。
对上述方法制备的样品进行扫描电镜检测和光催化活性表征,结果如图8 所示,尽管生长在铁片的元素磷显示有许多突起,但与生长在钛片表面的薄膜有很大差异。这说明不仅基底的光滑度会影响磷元素膜的形貌结构,而且基底本身也会如此。如图9所示,在对沉积后的铁片+NBT溶液光照后,530nm处的峰显示MF的产生,即超氧阴离子的产生,这表明生长在铁片上的磷元素膜也具有光催化活性。结果说明了在其他基底上光催化活性的可能性。也说明了利用本发明制备的磷元素膜能在不同基底上都表现出光催化活性。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.一种基于元素磷的近红外响应光催化剂薄膜的制备方法,其特征在于,包括以下步骤:
1)基底的预处理
基底为钛片,玻璃,铁片,镍片,SiO2或TiO2粉末,所述基底为钛片时,用目数为240-1200目的SiC砂纸将基底表面打磨光滑,备用;
2)商业红磷的预处理
将1.0-6.0g商业红磷置于装有40-60mL去离子水的聚四氟乙烯内胆反应釜中进行水热处理,然后用去离子水过滤冲洗,30-100℃真空干燥,最后使用研钵研磨成均匀细微的粉末;
3)元素磷薄膜的合成
所述基底为钛片,玻璃,铁片或镍片时,将步骤2)处理的红磷粉末均匀铺展到刚玉船中,将打磨好的基底置于粉末上,并且保持基底正面朝上;所述基底为SiO2或TiO2粉末时,将所述红磷粉末与基底混合均匀后铺展到刚玉船中,再将配套的刚玉盖置于其上,将所述刚玉船放入管式炉中,抽真空,然后以5-15℃/min的升温速率升至700-800℃,保温50-80min后,降至280-350℃,继续保温8-12h后,自然降至室温,拿出所述刚玉船,即得到表面沉积有元素磷磷薄膜的样品。
2.根据权利要求1所述的一种基于元素磷的近红外响应光催化剂薄膜的制备方法,其特征在于,步骤1)中所述基底为钛片时则预处理时打磨至800-1200目。
3.根据权利要求1所述的一种基于元素磷的近红外响应光催化剂薄膜的制备方法,其特征在于,步骤2)中所述水热处理温度是150-220℃,反应时间12-24h,所述过滤冲洗采用的是减压过滤。
4.根据权利要求1所述的一种基于元素磷的近红外响应光催化剂薄膜的制备方法,其特征在于,步骤3)中所述配套的刚玉船和刚玉盖是分离的。
5.根据权利要求1所述的一种基于元素磷的近红外响应光催化剂薄膜的制备方法,其特征在于,步骤3)中所述管式炉是双温区的。
CN201911058220.9A 2019-10-31 2019-10-31 一种基于元素磷的近红外响应光催化剂薄膜的制备方法 Pending CN111282584A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911058220.9A CN111282584A (zh) 2019-10-31 2019-10-31 一种基于元素磷的近红外响应光催化剂薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911058220.9A CN111282584A (zh) 2019-10-31 2019-10-31 一种基于元素磷的近红外响应光催化剂薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN111282584A true CN111282584A (zh) 2020-06-16

Family

ID=71026592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911058220.9A Pending CN111282584A (zh) 2019-10-31 2019-10-31 一种基于元素磷的近红外响应光催化剂薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN111282584A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772641A (zh) * 2021-08-20 2021-12-10 清华大学 一种非晶黑磷的液相制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
QI ZHANG等: "An UV to NIR-driven platform based on red phosphorus/graphene oxide film for rapid microbial inactivation", 《CHEMICAL ENGINEERING JOURNAL》 *
Y. N. SINGHBABU等: "Observation of large positive magneto-resistance in bubble decorated graphene oxide films derived from shellac biopolymer: a new carbon source and facile method for morphology-controlled properties", 《NANOSCALE》 *
ZHANG YUAN等: "Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIRirradiation", 《BIOMATERIALS》 *
张喆 等: "基于金银合金薄膜的近红外表面等离子体共振传感器研究", 《物理学报》 *
彭儒 等: "P/NaNO3 基薄膜型高热剂设计与燃烧反应机理研究", 《火工品》 *
戴春爱 颜鲁婷 主编: "《工科化学》", 31 August 2018, 北京交通大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772641A (zh) * 2021-08-20 2021-12-10 清华大学 一种非晶黑磷的液相制备方法

Similar Documents

Publication Publication Date Title
Yu et al. Mesocrystalline Ti3+ TiO2 hybridized g-C3N4 for efficient visible-light photocatalysis
Hu et al. Hydrothermal synthesis of oxygen functionalized S–P codoped gC 3 N 4 nanorods with outstanding visible light activity under anoxic conditions
Qu et al. A facile approach to synthesize oxygen doped gC 3 N 4 with enhanced visible light activity under anoxic conditions via oxygen-plasma treatment
Pyeon et al. Critical role and modification of surface states in hematite films for enhancing oxygen evolution activity
Zhou et al. Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode
Pore et al. H 2 S modified atomic layer deposition process for photocatalytic TiO 2 thin films
CN103191707B (zh) 双温区还原法制备黑色二氧化钛的方法
CN107376897B (zh) 一种含有三金属的氧化催化膜及其制备方法与应用
CN101591769A (zh) 一种C、N含量可调的共掺杂纳米TiO2薄膜的制备方法
CN106848494A (zh) 一种碳自掺杂氮化碳纳米薄膜电极的简单制备方法
Sreedhar et al. Highly photostable Zn-doped TiO2 thin film nanostructures for enhanced dye degradation deposited by sputtering method
CN110747692A (zh) 一种聚吡咯基光热转化薄膜及其制备方法和应用
CN101792271B (zh) 一种纳米二氧化钛异质复合膜的制备方法
Regue et al. TiO 2 photoanodes with exposed {0 1 0} facets grown by aerosol-assisted chemical vapor deposition of a titanium oxo/alkoxy cluster
Rahman et al. Influence of the physical, structural and chemical properties on the photoresponse property of magnetron sputtered TiO2 for the application of water splitting
Hossain et al. Microstructured ZnO photoelectrode grown on the sputter-deposited ZnO passivating-layer for improving the photovoltaic performances
Agarwal et al. Tailoring the physical properties of titania thin films with post deposition air and vacuum annealing
CN110512264B (zh) 一种光电极的制备方法
CN108579768A (zh) 少层MoS2修饰Ag-TiO2纳米复合薄膜的制备方法
Bjelajac et al. Absorption boost of TiO2 nanotubes by doping with N and sensitization with CdS quantum dots
CN111282584A (zh) 一种基于元素磷的近红外响应光催化剂薄膜的制备方法
Kot et al. Improved photon management in a photoelectrochemical cell with Nd-modified TiO2 thin film photoanode
Al-Aisaee et al. Fabrication of WO3/Fe2O3 heterostructure photoanode by PVD for photoelectrochemical applications
Park et al. Comparison of Electrochemical Luminescence Characteristics of Titanium Dioxide Films Prepared by Sputtering and Sol–Gel Combustion Methods
CN109183124A (zh) 一种窄禁带黑氧化锆纳米管薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200616