CN111262594A - Ldpc码辅助的载波同步系统、介质、通信系统 - Google Patents

Ldpc码辅助的载波同步系统、介质、通信系统 Download PDF

Info

Publication number
CN111262594A
CN111262594A CN202010095260.7A CN202010095260A CN111262594A CN 111262594 A CN111262594 A CN 111262594A CN 202010095260 A CN202010095260 A CN 202010095260A CN 111262594 A CN111262594 A CN 111262594A
Authority
CN
China
Prior art keywords
synchronization
signal
carrier
ldpc code
ldpc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010095260.7A
Other languages
English (en)
Inventor
刘刚
史斯豪
赵瑾
丁兴文
常洪雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Beijing Research Institute of Telemetry
Original Assignee
Xidian University
Beijing Research Institute of Telemetry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University, Beijing Research Institute of Telemetry filed Critical Xidian University
Priority to CN202010095260.7A priority Critical patent/CN111262594A/zh
Publication of CN111262594A publication Critical patent/CN111262594A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding
    • H03M13/1111Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明属于检错或纠错的编码、译码或代码转换技术领域,公开了一种LDPC码辅助的载波同步系统、介质、通信系统。比特序列信息发送模块,发送的信息比特序列sk经过编码和映射得到符号ak;信号接收模块接收信号rk在软解调和LDPC译码后输出的软信息L(ck);信号补偿模块,补偿后的信号yk进入由解调器,LDPC译码器,载波频率相位细估计模块形成的环路进行迭代,实现更高精度的同步性能。本发明能够在残留频偏较大时,与理想同步性能接近。与基于EM方法的LDPC码辅助载波频率细同步方法进行仿真对比后,仿真结果表明本发明提出的方法具有更宽的同步范围和更好的同步性能。

Description

LDPC码辅助的载波同步系统、介质、通信系统
技术领域
本发明属于检错或纠错的编码、译码或代码转换技术领域,尤其涉及一种LDPC码辅助的载波同步系统、介质、通信系统。
背景技术
目前深空通信常采用多进制相移键控(Multiple Phase Shif tKeying,MPSK)作为调制方式实现远距离的可靠通信。MPSK信号在相干解调时,接收端须提取一个与发送端载波同频同相的载波。但深空通信信道存在距离遥远,信号衰减严重,信噪比低;时延大,动态高;通信环境复杂等特点。这些特点对同步技术提出了较高的要求。传统的同步技术有一定的局限性不能满足深空通信的需求,因此找出一种能够工作在较低信噪比且较大多普勒频偏条件下的载波同步方法显得极为重要。
主流的同步技术主要有三种,分别为非数据辅助(No Data Aided,NDA),数据辅助(Data Aided,DA)和码辅助(Code-aided,CA)。NDA只有在较高信噪比下才拥有较好的同步性能;DA要想得到较好的同步性能,则需借助大量的训练序列,消耗了较多的频谱资源;而CA将译码器输出的软信息反馈到同步器来辅助同步器估计同步参数,具有较高的频谱利用率并且在低信噪比下也具有较好的同步性能,因而成为目前同步方法研究的热点。针对于相位估计的码辅助同步方法得到了更多的关注,对于残留频偏,只有较少的研究,且存在复杂度高、精度低、范围小等问题。
低密度校验(LDPC)作为差错控制编码的一种,具有低时延、低复杂度等优点,是一种接近香农限的好码,已被广泛应用于深空通信、数字视频广播等领域。关于LDPC码辅助频偏估计的方法大致分为三类,一是与数据辅助相结合,联合导频实现载波精估计;二是首先在载波频率空间搜索相应代价函数进行载波粗估计,然后与相应的码辅助载波精估计方案级联实现大范围高精度的载波同步;三是在牺牲少许估计精度的情况下,降低传统算法复杂度。
关于LDPC码辅助帧同步算法根据接收端判决方式大致分为两类。一种是对接收信号直接硬判决,以满足校验方程的比例为代价函数搜索帧偏移信息。该类算法实现简单,但是由于没有用到LDPC码的译码软信息,通常需要连续多帧数据来提高帧同步性能,因此不适用于突发通信;另一种是利用LDPC译码过程中的软信息捕获帧同步信息,该类算法需要LDPC译码器较多次的译码迭代,因此复杂度高,但是性能较好。
综上所述,现有技术存在的问题是:
(1)深空通信信道存在通信距离遥远,信号衰减严重,信噪比低;时延大,动态高;通信环境复杂等特点。
(2)非数据辅助只有在较高信噪比下才拥有较好的同步性能。
(3)数据辅助要想得到较好的同步性能,则需借助大量的训练序列,消耗了较多的频谱资源。
(4)针对于相位估计的码辅助同步方法对于残留频偏,存在复杂度高、精度低、范围小等问题。
(5)采用LDPC码辅助同步算法时,对接收信号直接硬判决,该方法虽简单但不适用于突发通信。
解决上述技术问题的难度在于:
(1)深空通信的特点对同步技术提出了较高的要求,并且传统的同步技术有一定的局限性不能满足深空通信的需求,因此需要找出一种能够工作在较低信噪比且较大多普勒频偏条件下的载波同步方法。
(2)传统的码辅助同步方法多针对相位估计进行处理。对于残留频偏,存在复杂度高、精度低、范围小等问题。因此需要提出一种可以解决残留频偏的码辅助同步方法。
解决上述技术问题的意义在于:
(1)对实际深空通信系统而言,如何在低信噪比条件下获得精确的载波同步是目前急需解决的关键问题。
(2)目前,码辅助同步算法的大部分研究集中于相位估计,较少针对残留频偏,且同步范围较小,因此针对于残留频偏的码辅助载波同步算法有着实际的应用价值。
发明内容
针对现有技术存在的问题,本发明提供了一种LDPC码辅助的载波同步方法及系统。
本发明是这样实现的,一种LDPC码辅助的载波同步系统包括:
比特序列信息发送模块,发送的信息比特序列sk经过编码和映射得到符号ak,并通过加性高斯白噪声信道传输,符号ak在信道传输时引入载波相位偏移
Figure BDA0002384959740000037
和频率偏移f,且加上高斯白噪声nk
信号接收模块,接收信号rk在软解调和LDPC译码后输出的软信息L(ck),送入载波粗估计模块对载波偏移进行补偿,将系统的残余载波偏差限制到一定范围内;
信号补偿模块,补偿后的信号yk进入由解调器,LDPC译码器,载波频率相位细估计模块形成的环路进行迭代,实现更高精度的同步性能。
本发明的另一目的在于提供一种实现所述LDPC码辅助的载波同步系统的方法,LDPC码辅助的载波同步方法包括:
步骤一、初始化迭代次数n=1,接收信号记为rk (0),估计参数
Figure BDA0002384959740000031
Figure BDA0002384959740000032
步骤二、更新接收信号即
Figure BDA0002384959740000033
将rk (1)送到软解调器、LDPC译码器,得到译码软输出L(1)(ck);接着在载波频率细估计模块利用该方法得到载波频偏估计
Figure BDA0002384959740000034
步骤三、在载波相位细估计模块估计相偏
Figure BDA0002384959740000035
步骤四、将迭代次数n加一,得到新的补偿后的信号
Figure BDA0002384959740000036
步骤五、将rk (2)再次送入软解调器和LDPC译码器中进行下一轮的迭代,直到达到最大译码迭代次数或者译码器收敛。
进一步,适用于系统存在载波频偏时基于Costas环的LDPC码辅助载波同步方法包括
参数θ的最大似然函数写作:
Figure BDA0002384959740000041
导数的零解即为参数θ的最大似然估计,采用递归方法计算对数似然函数导数的零解,即:
Figure BDA0002384959740000042
进一步,式(2)累加和为零的过程如下:
步骤一、将ak替换为符号ak的条件后验均值
Figure BDA0002384959740000043
步骤二、对于上面连和的每一项,令θ等于当前估计值θk
步骤三、将结果作为误差信号进行相位估计。
进一步,根据步骤三的过程,生成如下递归式:
Figure BDA0002384959740000044
Figure BDA0002384959740000045
式(3)与(4)为环路滤波器模块的表达式,α和β为控制环路等效噪声带宽和阻尼因子的环路参数,误差信号ek定义为:
Figure BDA0002384959740000046
进一步,接收信的方法为:
初始化迭代次数n=1,估计参数
Figure BDA0002384959740000047
Figure BDA0002384959740000048
其中
Figure BDA0002384959740000049
可以通过数据辅助的方式得到,根据式(3)与(4)初始化
Figure BDA00023849597400000410
将更新补偿信号
Figure BDA00023849597400000411
送到由软解调器,LDPC译码器,错误生成器构成的级联系统即相位误差检测器中。
进一步,接收信的方法还包括:
将PED输出的相位误差ek (1)送入环路滤波器,根据式(3)与(4)得出估计的相偏
Figure BDA0002384959740000051
通过查表的方法得到
Figure BDA0002384959740000052
Figure BDA0002384959740000053
的映射;
将接收信号rk
Figure BDA0002384959740000054
相乘得到补偿后的信号yk (2),将yk (2)再次送入PED中进行下一轮的迭代,直到达到最大译码迭代次数或者译码器收敛。
本发明的另一目的在于提供一种接收用户输入程序存储介质,所存储的计算机程序使电子设备执行所述的方法。
本发明的另一目的在于提供一种存储在计算机可读介质上的计算机程序产品,包括计算机可读程序,供于电子装置上执行时,提供用户输入接口以实施所述的方法。
本发明的另一目的在于提供一种安装有所述LDPC码辅助的载波同步系统的通信系统。
综上所述,本发明的优点及积极效果为:针对深空通信,本发明提出的基于Costas环的LDPC码辅助载波频率细同步方法能够在信噪比较低且多普勒频偏较大时,与理想同步性能接近。与基于EM方法的LDPC码辅助载波频率细同步方法进行仿真对比后,仿真结果表明在AWGN信道下,本发明具有更大的同步范围和更好的同步性能;在高斯信道环境下加入初始相偏后,本发明的误码率曲线均低于基于EM方法的码辅助载波同步方法的误码曲线,且更加接近理想同步的系统误码性能曲线。尤其当频偏较大的情况,基于EM方法的码辅助载波频率同步方法已经超出其频率同步范围,性能接近未同步系统,而本发明依旧具有较好的同步性能。
附图说明
图1是本发明实施例提供的码辅助载波粗同步与细同步级联框架图。
图2是本发明实施例提供的基于EM方法的LDPC码辅助载波同步框图。
图3是本发明实施例提供的基于Costas环的LDPC码辅助载波同步框图。
图4是本发明实施例提供的两种方法载波频偏同步性能(码长为300)图。
图5是本发明实施例提供的两种方法载波频偏同步性能(码长为600)图。
图6是本发明实施例提供的两种方法载波频偏同步性能(码长为396)图。
图7是本发明实施例提供的两种方法载波频偏同步性能(码长为792)图。
图8是本发明实施例提供的两种方法载波频偏同步性能(频偏200ppm)图。
图9是本发明实施例提供的两种方法载波频偏同步性能(频偏300ppm)图。
图10是本发明实施例提供的两种方法载波频偏同步性能(频偏400ppm)图。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下。
针对现有技术存在的问题,本发明提供了一种LDPC码辅助的载波同步方法及系统,下面结合附图1至图10对本发明作详细的描述。
本发明基于Costas环的LDPC码辅助载波频率细同步方法,该方法解决了传统方法当系统存在残留频偏时,同步性能较差的问题。通过仿真得出,该方法相对于基于EM方法的LDPC码辅助载波频率细同步方法具有更宽的同步范围和更好的同步性能。
该LDPC码辅助的载波同步系统为LDPC编码系统,码辅助载波同步方法分为粗同步和细同步两大类。码辅助载波细同步精度高但范围窄,码辅助载波粗同步估计范围宽,但要获得较高精度,则需要大量搜索,复杂度极高。因此,接收端采用码辅助载波粗同步与细同步级联的方式来实现宽范围高精度的载波同步,如图1所示。
发送的信息比特序列sk经过编码和映射得到符号ak,并通过加性高斯白噪声信道传输,符号ak在信道传输时引入载波相位偏移
Figure BDA0002384959740000061
和频率偏移f,且加上高斯白噪声nk,则接收端输入序列rk为:
Figure BDA0002384959740000071
其中T为码元周期。
接收信号rk在软解调和LDPC译码后输出的软信息L(ck)首先送入载波粗估计模块对载波偏移进行补偿,将系统的残余载波偏差限制到一定范围内。然后,补偿后的信号yk进入由解调器,LDPC译码器,载波频率相位细估计模块形成的环路进行迭代,实现更高精度的同步性能。
本发明的另一目的在于提供一种LDPC码辅助的载波同步方法,将EM方法具体应用于载波频率细同步系统,无关向量a对应码辅助载波同步系统的传输符号ak。参数向量b对应待估参数θ,其中
Figure BDA0002384959740000072
可得载波频偏f:
Figure BDA0002384959740000073
其中D为相偏斜率计算的测量间隔。由于接收到的样本信噪比较低,
Figure BDA0002384959740000074
中含有显著的噪声分量,使得上式估计值不准确。为了得到可靠的频偏估计,将
Figure BDA0002384959740000075
在区间[1,N-D]内求和,得
Figure BDA0002384959740000076
图2是基于EM方法的LDPC码辅助载波同步框图,如图所示,首先,初始化迭代次数n=1,接收信号记为rk (0),估计参数
Figure BDA0002384959740000077
Figure BDA0002384959740000078
然后更新接收信号即
Figure BDA0002384959740000079
将rk (1)送到软解调器、LDPC译码器,得到译码软输出L(1)(ck);接着在载波频率细估计模块利用该方法得到载波频偏估计
Figure BDA00023849597400000710
随后在载波相位细估计模块估计相偏
Figure BDA00023849597400000711
之后将迭代次数n加一,得到新的补偿后的信号
Figure BDA00023849597400000712
将rk (2)再次送入软解调器和LDPC译码器中进行下一轮的迭代,直到达到最大译码迭代次数或者译码器收敛。
传统的基于Costas环的LDPC码辅助载波同步方法,其环路滤波器的表达式为:
Figure BDA00023849597400000713
由于该表达式不含有系统的频偏信息,因此传统方法只适用于载波相位不变的情况,当系统存在残余频偏时,同步性能较差。本发明提出一种适用于系统存在载波频偏时基于Costas环的LDPC码辅助载波同步方法。
参数θ的最大似然函数可以写作:
Figure BDA0002384959740000081
上式导数的零解即为参数θ的最大似然估计,可采用递归方法计算对数似然函数导数的零解,即:
Figure BDA0002384959740000082
使上式累加和为零的过程如下:首先,将ak替换为符号ak的条件后验均值
Figure BDA0002384959740000083
然后,对于上面连和的每一项,令θ等于当前估计值θk;最后,将结果作为误差信号进行相位估计。根据上述过程,生成如下递归式:
2πfk+1 (n)T=2πfk (n)T+βek (n) (7)
Figure BDA00023849597400000814
式与为环路滤波器模块的表达式,α和β为控制环路等效噪声带宽和阻尼因子的环路参数。误差信号ek定义为:
Figure BDA0002384959740000084
图3是基于Costas环的LDPC码辅助载波频率同步框图,接收信为rk。首先,初始化迭代次数n=1,估计参数
Figure BDA0002384959740000085
Figure BDA0002384959740000086
其中
Figure BDA0002384959740000087
可以通过数据辅助的方式得到,根据式和初始化
Figure BDA0002384959740000088
然后将更新补偿信号
Figure BDA0002384959740000089
将yk (1)送到由软解调器,LDPC译码器,错误生成器构成的级联系统即相位误差检测器(Phase Error Detector,PED)中;接着将PED输出的相位误差ek (1)送入环路滤波器,根据式和得出估计的相偏
Figure BDA00023849597400000810
随后通过查表的方法得到
Figure BDA00023849597400000811
Figure BDA00023849597400000812
的映射;最后将接收信号rk
Figure BDA00023849597400000813
相乘得到补偿后的信号yk (2),将yk (2)再次送入PED中进行下一轮的迭代,直到达到最大译码迭代次数或者译码器收敛。
为了验证本发明提出的基于Costas环的LDPC码辅助载波频率同步方法的同步性能,本发明在不同条件下将该方法与基于EM方法的LDPC码辅助载波频率同步方法进行对比。
图4、图5、图6、图7分别给出了不同码率和码长情况下两种方法的频偏估计性能对比图,其具体仿真参数如表1表示。每幅图包含了三条曲线,方块标记的实线表示未同步的LDPC系统误码性能。菱形标记的虚线表示基于EM方法的码辅助载波频率同步系统误码性能,星号标记的虚线表示基于Costas环的码辅助载波频率同步系统误码性能。
表1 两种方法在不同码率和码长情况下的仿真参数
Figure BDA0002384959740000091
对比图4和图5可以看出当码率1/5时,基于Costas环的码辅助载波频率同步的误码率曲线低于基于EM方法的码辅助载波频率同步的误码曲线,且平坦的范围更宽。这说明基于Costas环的载波频率同步相比于基于EM方法的载波频率同步具有更大的同步范围和更好的同步性能。
对比图6与图7可以看出,当码率1/3时,两种方法的误码曲线基本重合,但是基于Costas环的码辅助载波频率同步的平坦的范围明显宽于基于EM方法的码辅助载波频率同步的曲线平坦范围。这说明基于Costas环的码辅助载波频率同步相比于基于EM方法的码辅助载波频率同步方法其同步范围更大,但是在同步范围内两种方法的BER性能差别不大。
在高斯信道环境下加入初始相偏后两种载波同步方法在不同频偏下的BER性能。图8至图10都包含了四条曲线,圆圈标记的虚线表示未同步的LDPC系统误码性能。方块标记的虚线表示基于EM方法的码辅助载波同步系统误码性能,星号标记的虚线表示基于Costas环的码辅助载波同步系统误码性能。菱形标记的实线表示理想同步的BER性能。其具体仿真参数如表2表示。
表2 两种方法在不同频偏情况下的仿真参数
Figure BDA0002384959740000101
对比图8、图9与图10可以看出,基于Costas环的码辅助载波同步方法的误码率曲线均低于基于EM方法的码辅助载波同步方法的误码曲线,且更加接近理想同步的系统误码性能曲线。尤其当频偏较大的情况,基于EM方法的码辅助载波频率同步方法已经超出其频率同步范围,性能接近未同步系统,而基于Costas环的码辅助载波同步方法依旧具有较好的同步性能。
深空通信存在信噪比低、时延大、通信环境复杂等特点,这些特点对同步技术提出了较高的要求。传统的同步技术在较低信噪比、且存在较大多普勒频偏时同步性能往往较差。本发明提出的基于Costas环的LDPC码辅助载波频率细同步方法能够在频偏较大时,与理想同步性能接近。与基于EM方法的LDPC码辅助载波频率细同步方法进行仿真对比后,仿真结果表明本发明提出的方法具有更宽的同步范围和更好的同步性能。
以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (10)

1.一种LDPC码辅助的载波同步系统,其特征在于,所述LDPC码辅助的载波同步系统包括:
比特序列信息发送模块,发送的信息比特序列sk经过编码和映射得到符号ak,并通过加性高斯白噪声信道传输,符号ak在信道传输时引入载波相位偏移
Figure FDA0002384959730000011
和频率偏移f,且加上高斯白噪声nk
信号接收模块,接收信号rk在软解调和LDPC译码后输出的软信息L(ck),送入载波粗估计模块对载波偏移进行补偿,将系统的残余载波偏差限制到一定范围内;
信号补偿模块,补偿后的信号yk进入由解调器,LDPC译码器,载波频率相位细估计模块形成的环路进行迭代,实现更高精度的同步性能。
2.一种实现如权利要求1所述LDPC码辅助的载波同步系统的方法,其特征在于,LDPC码辅助的载波同步方法包括:
步骤一、初始化迭代次数n=1,接收信号记为rk (0),估计参数
Figure FDA0002384959730000012
Figure FDA0002384959730000013
步骤二、更新接收信号即
Figure FDA0002384959730000014
将rk (1)送到软解调器、LDPC译码器,得到译码软输出L(1)(ck);接着在载波频率细估计模块利用该方法得到载波频偏估计
Figure FDA0002384959730000015
步骤三、在载波相位细估计模块估计相偏
Figure FDA0002384959730000016
步骤四、将迭代次数n加一,得到新的补偿后的信号
Figure FDA0002384959730000017
步骤五、将rk (2)再次送入软解调器和LDPC译码器中进行下一轮的迭代,直到达到最大译码迭代次数或者译码器收敛。
3.如权利要求2所述LDPC码辅助的载波同步方法,其特征在于,适用于系统存在载波频偏时基于Costas环的LDPC码辅助载波同步方法包括
参数θ的最大似然函数写作:
Figure FDA0002384959730000018
导数的零解即为参数θ的最大似然估计,采用递归方法计算对数似然函数导数的零解,即:
Figure FDA0002384959730000021
4.如权利要求3所述LDPC码辅助的载波同步方法,其特征在于,式(2)累加和为零的过程如下:
步骤一、将ak替换为符号ak的条件后验均值
Figure FDA0002384959730000022
步骤二、对于上面连和的每一项,令θ等于当前估计值θk
步骤三、将结果作为误差信号进行相位估计。
5.如权利要求4所述LDPC码辅助的载波同步方法,其特征在于,根据步骤三的过程,生成如下递归式:
2πfk+1 (n)T=2πfk (n)T+βek (n) (3)
Figure FDA0002384959730000023
式(3)与(4)为环路滤波器模块的表达式,α和β为控制环路等效噪声带宽和阻尼因子的环路参数,误差信号ek定义为:
Figure FDA0002384959730000024
6.如权利要求2所述LDPC码辅助的载波同步方法,其特征在于,接收信的方法为:
初始化迭代次数n=1,估计参数
Figure FDA0002384959730000025
Figure FDA0002384959730000026
其中
Figure FDA0002384959730000027
可以通过数据辅助的方式得到,根据式(3)与(4)初始化
Figure FDA0002384959730000028
将更新补偿信号
Figure FDA0002384959730000029
将yk (1)送到由软解调器,LDPC译码器,错误生成器构成的级联系统即相位误差检测器中。
7.如权利要求6所述LDPC码辅助的载波同步方法,其特征在于,接收信的方法还包括:
将PED输出的相位误差ek (1)送入环路滤波器,根据式(3)与(4)得出估计的相偏
Figure FDA00023849597300000210
通过查表的方法得到
Figure FDA00023849597300000211
Figure FDA00023849597300000212
的映射;
将接收信号rk
Figure FDA00023849597300000213
相乘得到补偿后的信号yk (2),将yk (2)再次送入PED中进行下一轮的迭代,直到达到最大译码迭代次数或者译码器收敛。
8.一种接收用户输入程序存储介质,所存储的计算机程序使电子设备执行所述权利要求2至7任意一项所述的方法。
9.一种存储在计算机可读介质上的计算机程序产品,包括计算机可读程序,供于电子装置上执行时,提供用户输入接口以实施如权利要求2至7任意一项所述的方法。
10.一种安装有如权利要求1所述LDPC码辅助的载波同步系统的通信系统。
CN202010095260.7A 2020-02-16 2020-02-16 Ldpc码辅助的载波同步系统、介质、通信系统 Pending CN111262594A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010095260.7A CN111262594A (zh) 2020-02-16 2020-02-16 Ldpc码辅助的载波同步系统、介质、通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010095260.7A CN111262594A (zh) 2020-02-16 2020-02-16 Ldpc码辅助的载波同步系统、介质、通信系统

Publications (1)

Publication Number Publication Date
CN111262594A true CN111262594A (zh) 2020-06-09

Family

ID=70952810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010095260.7A Pending CN111262594A (zh) 2020-02-16 2020-02-16 Ldpc码辅助的载波同步系统、介质、通信系统

Country Status (1)

Country Link
CN (1) CN111262594A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187689A (zh) * 2020-09-25 2021-01-05 中国人民解放军海军工程大学 基于归一化em算法的mpsk系统载波相位恢复方法
CN114221844A (zh) * 2021-11-18 2022-03-22 北京遥测技术研究所 一种sc-fde多机测控中ldpc码辅助的功率控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058224A1 (en) * 2003-09-12 2005-03-17 Alagha Nader S. Joint synchronizer and decoder
US20050123073A1 (en) * 2003-09-05 2005-06-09 Alberto Ginesi Process for providing a pilot aided phase recovery of a carrier
US20080317143A1 (en) * 2005-12-08 2008-12-25 Sun-Heui Ryoo Apparatus and Method for Correcting Iterative Residual Frequency and Phase in Turbo Coded Ofdm System
CN103297190A (zh) * 2013-05-11 2013-09-11 哈尔滨工业大学深圳研究生院 面向深空通信的码辅助载波相位同步系统及方法
US20140153625A1 (en) * 2012-12-03 2014-06-05 Digital PowerRadio, LLC Systems and Methods for Advanced Iterative Decoding and Channel Estimation of Concatenated Coding Systems
CN107769841A (zh) * 2017-10-19 2018-03-06 中国人民解放军陆军工程大学 高动态极低信噪比下卫星通信Turbo码迭代解调方法
WO2018116411A1 (ja) * 2016-12-21 2018-06-28 日本電気株式会社 変調方法、復号方法、変調装置および復調装置
CN110519200A (zh) * 2019-09-12 2019-11-29 北京理工大学 一种低信噪比环境下的极化码辅助载波同步系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050123073A1 (en) * 2003-09-05 2005-06-09 Alberto Ginesi Process for providing a pilot aided phase recovery of a carrier
US20050058224A1 (en) * 2003-09-12 2005-03-17 Alagha Nader S. Joint synchronizer and decoder
US20080317143A1 (en) * 2005-12-08 2008-12-25 Sun-Heui Ryoo Apparatus and Method for Correcting Iterative Residual Frequency and Phase in Turbo Coded Ofdm System
US20140153625A1 (en) * 2012-12-03 2014-06-05 Digital PowerRadio, LLC Systems and Methods for Advanced Iterative Decoding and Channel Estimation of Concatenated Coding Systems
CN103297190A (zh) * 2013-05-11 2013-09-11 哈尔滨工业大学深圳研究生院 面向深空通信的码辅助载波相位同步系统及方法
WO2018116411A1 (ja) * 2016-12-21 2018-06-28 日本電気株式会社 変調方法、復号方法、変調装置および復調装置
CN107769841A (zh) * 2017-10-19 2018-03-06 中国人民解放军陆军工程大学 高动态极低信噪比下卫星通信Turbo码迭代解调方法
CN110519200A (zh) * 2019-09-12 2019-11-29 北京理工大学 一种低信噪比环境下的极化码辅助载波同步系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
沈海鸥等: "一种改进的编码辅助载波同步算法", 《重庆邮电大学学报(自然科学版)》 *
赵旦峰等: "LDPC编码系统的码辅助载波相位同步算法", 《宇航学报》 *
魏苗苗等: "用于深空通信的载波同步技术", 《电子设计工程》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187689A (zh) * 2020-09-25 2021-01-05 中国人民解放军海军工程大学 基于归一化em算法的mpsk系统载波相位恢复方法
CN114221844A (zh) * 2021-11-18 2022-03-22 北京遥测技术研究所 一种sc-fde多机测控中ldpc码辅助的功率控制方法
CN114221844B (zh) * 2021-11-18 2023-07-21 北京遥测技术研究所 一种sc-fde多机测控中ldpc码辅助的功率控制方法

Similar Documents

Publication Publication Date Title
CN109617844B (zh) 一种载波同步的方法及系统
EP2380321B1 (en) Feedforward receiver and method for reducing inter-symbol interference by using coupling between bits or symbols
US9461773B2 (en) Method and a node for detecting phase noise in MIMO communication systems
CN108449303B (zh) 基于解调软输出的msk载波同步与解调系统及方法
CN111262594A (zh) Ldpc码辅助的载波同步系统、介质、通信系统
CN101217355A (zh) 基于低密度奇偶校验译码软判决信息的迭代定时同步方法
CN108683620B (zh) 一种适合高阶调制方式的抗相位噪声盲载波恢复方法
CN108965179B (zh) 增强遥测综合网系统在多径信道下的两步频偏估计方法
CN110430153B (zh) 卫星通信的频偏修正方法和装置
CN108462666A (zh) 高动态突发信号载波快速同步器
KR100706618B1 (ko) 반복 복호기를 위한 고차변조 방식에 적합한 연판정 디매핑방법 및 그를 이용한 오류 정정 장치
US6370189B1 (en) Apparatus and methods for variable delay channel tracking
Yang et al. Near optimum low complexity smoothing loops for dynamical phase estimation—Application to BPSK modulated signals
CN1305285C (zh) 一种实现差分偏移四相键控相干解调的方法及装置
CN105262505B (zh) 跳频通信干扰条件下的信噪比估计方法
KR100945532B1 (ko) 가변 스텝 크기를 이용한 위상 오차 추정 장치 및 그 방법
CN107995138B (zh) Sccpm系统的联合迭代载波同步与解调方法
Huh et al. A unified approach to optimum frame synchronization
Zhengke et al. A simplified code-aided carrier synchronization algorithm
CN103298101B (zh) 一种宽范围的码辅助载波同步实现方法
CN115580356B (zh) 一种相位噪声抑制方法和设备
Simon et al. Iterative information-reduced carrier synchronization using decision feedback for low SNR applications
CN114401174B (zh) 一种基于soqpsk和psp的联合相位跟踪检测方法
CN113824664B (zh) 一种tcm-cpm信号在多径信道下的解调方法
CN113965439B (zh) 一种适用于2dpsk系统的多符号联合检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination