CN111262130A - Laser structure and preparation method and application thereof - Google Patents
Laser structure and preparation method and application thereof Download PDFInfo
- Publication number
- CN111262130A CN111262130A CN202010162903.5A CN202010162903A CN111262130A CN 111262130 A CN111262130 A CN 111262130A CN 202010162903 A CN202010162903 A CN 202010162903A CN 111262130 A CN111262130 A CN 111262130A
- Authority
- CN
- China
- Prior art keywords
- layer
- grating
- periodic modulation
- laser structure
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 230000000737 periodic effect Effects 0.000 claims abstract description 71
- 238000005253 cladding Methods 0.000 claims abstract description 55
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 31
- 238000005530 etching Methods 0.000 claims description 22
- 239000004065 semiconductor Substances 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 3
- 239000002210 silicon-based material Substances 0.000 claims description 3
- 230000008901 benefit Effects 0.000 abstract description 5
- 230000001629 suppression Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 133
- 230000008569 process Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 20
- 230000003287 optical effect Effects 0.000 description 17
- 239000000463 material Substances 0.000 description 12
- 239000002096 quantum dot Substances 0.000 description 10
- 238000004891 communication Methods 0.000 description 8
- 230000001808 coupling effect Effects 0.000 description 7
- 238000010894 electron beam technology Methods 0.000 description 7
- 239000003292 glue Substances 0.000 description 7
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 6
- 238000000609 electron-beam lithography Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 5
- 229910000673 Indium arsenide Inorganic materials 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000001312 dry etching Methods 0.000 description 5
- 238000000407 epitaxy Methods 0.000 description 5
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000004630 atomic force microscopy Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229920003209 poly(hydridosilsesquioxane) Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1206—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
- H01S5/1215—Multiplicity of periods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1237—Lateral grating, i.e. grating only adjacent ridge or mesa
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
- H01S2304/02—MBE
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
本发明提出一种激光器结构及其制备方法和应用,所述激光器结构包括:衬底;外延层,设置在所述衬底上,所述外延层包括层叠的下包层、有源层、上包层和欧姆接触层;脊型波导,形成在所述上包层上;多个周期调制光栅,形成在所述上包层上,并位于所述脊型波导的两侧;其中,所述多个周期调制光栅与所述有源层之间具有预设距离,所述预设距离为50~200nm。本发明提出的激光器制作工艺简单、边模抑制比高、调制速度快,具有优良的动态单模特性。
The present invention provides a laser structure, a preparation method and application thereof. The laser structure includes: a substrate; an epitaxial layer, which is arranged on the substrate, and the epitaxial layer includes a stacked lower cladding layer, an active layer, an upper a cladding layer and an ohmic contact layer; a ridge waveguide formed on the upper cladding layer; a plurality of periodic modulation gratings formed on the upper cladding layer and located on both sides of the ridge waveguide; wherein the There is a preset distance between the plurality of periodic modulation gratings and the active layer, and the preset distance is 50-200 nm. The laser proposed by the invention has the advantages of simple manufacturing process, high side-mode suppression ratio, fast modulation speed and excellent dynamic single-mode characteristics.
Description
技术领域technical field
本发明涉及半导体激光器技术领域,特别涉及一种激光器结构及其制备方法和应用。The present invention relates to the technical field of semiconductor lasers, in particular to a laser structure and a preparation method and application thereof.
背景技术Background technique
在半导体激光其技术领域中,分布反馈(DFB)半导体激光器具有优异的微分增益、动态单模特性和较大的调制带宽,在近红外光通信,3D生物识别等领域具有广泛应用In the technical field of semiconductor lasers, distributed feedback (DFB) semiconductor lasers have excellent differential gain, dynamic single-mode characteristics and large modulation bandwidth, and are widely used in near-infrared optical communication, 3D biometrics and other fields.
目前,对于激光器结构中包括的光栅结构为相移光栅,其易出现由于空间烧孔效应,限制了光通信激光器的调制速度,即随着电流增加,阈值增益差减小,主模和第一边模的增益差变小,开始出现模式竞争,甚至跳模而无法实现动态单模,以致难以确保所述激光器具有稳定的动态单模特性,从而影响激光器的使用范围。At present, the grating structure included in the laser structure is a phase-shift grating, which is prone to occur due to the spatial hole burning effect, which limits the modulation speed of the optical communication laser, that is, as the current increases, the threshold gain difference decreases, and the main mode and the first The gain difference of the side modes becomes smaller, and mode competition or even mode hopping fails to realize dynamic single mode, so that it is difficult to ensure that the laser has stable dynamic single mode characteristics, thereby affecting the application range of the laser.
此外,目前主要通过光栅掩埋结构和光栅深刻蚀结构制备DFB激光器。对于光栅掩埋结构,在制造时需要两步外延工艺,在外延生长到有源区附近时需要停止,然后进行光栅刻蚀,然后进行二次外延,制备流程复杂繁琐,不仅需要严格的清洁工艺,且对激光器的高效率生产造成困扰。目前光栅深刻蚀结构的制备难度极大,对掩膜质量要求高,性能的稳定性和一致性难以保证。In addition, at present, DFB lasers are mainly fabricated by grating buried structure and grating deep etching structure. For the grating buried structure, a two-step epitaxy process is required during manufacture. When the epitaxy grows to the vicinity of the active region, it needs to be stopped, then the grating is etched, and then the secondary epitaxy is performed. The preparation process is complicated and tedious, and not only requires strict cleaning process, And it is troublesome to the high-efficiency production of the laser. At present, the preparation of the deep grating etching structure is extremely difficult, the quality of the mask is high, and the stability and consistency of the performance are difficult to guarantee.
发明内容SUMMARY OF THE INVENTION
鉴于上述现有技术的缺陷,本发明的目的之一在于提供一种激光器结构,该激光器结构稳定、光学损耗小、功率大,且边模抑制比和调制速度理想,具有优良的动态单模特性。In view of the above-mentioned defects of the prior art, one of the objects of the present invention is to provide a laser structure with stable structure, low optical loss, high power, ideal side-mode suppression ratio and modulation speed, and excellent dynamic single-mode characteristics .
本发明的另一个目的在于,提供一种如上所述激光器结构的制备方法。Another object of the present invention is to provide a preparation method of the above-mentioned laser structure.
本发明的另一个目的在于,提供一种如上所述激光器结构的应用。Another object of the present invention is to provide an application of the above-mentioned laser structure.
为实现上述目的及其他目的,本发明的第一方面提出一种激光器结构,所述激光器结构包括:衬底;外延层,设置在所述衬底上,所述外延层包括层叠的下包层、有源层、上包层及欧姆接触层;脊型波导,形成在所述上包层上;多个周期调制光栅,形成在所述上包层上,并位于所述脊型波导的两侧;其中,所述多个周期调制光栅与所述有源层之间具有预设距离,所述预设距离为50~200nm。In order to achieve the above object and other objects, a first aspect of the present invention proposes a laser structure, the laser structure includes: a substrate; an epitaxial layer disposed on the substrate, and the epitaxial layer includes a stacked lower cladding layer , an active layer, an upper cladding layer and an ohmic contact layer; a ridge waveguide formed on the upper cladding layer; a plurality of periodic modulation gratings formed on the upper cladding layer and located on two sides of the ridge waveguide side; wherein, there is a preset distance between the plurality of periodic modulation gratings and the active layer, and the preset distance is 50-200 nm.
可选地,所述激光器结构的输出波长为1260~1600nm。Optionally, the output wavelength of the laser structure is 1260-1600 nm.
可选地,所述激光器结构的共振腔的长度为0.3~3mm。Optionally, the length of the resonant cavity of the laser structure is 0.3-3 mm.
可选地,所述周期调制光栅的周期为150~250nm。Optionally, the period of the periodic modulation grating is 150-250 nm.
可选地,所述周期调制光栅的高度为30~350nm。Optionally, the height of the periodic modulation grating is 30-350 nm.
可选地,所述周期调制光栅的占空比为0.1~0.9。Optionally, the duty ratio of the period modulated grating is 0.1-0.9.
可选地,所述周期调制光栅包括多个光栅区域,所述多个光栅区域之间的长度及周期不同。Optionally, the period modulated grating includes a plurality of grating regions, and the lengths and periods of the plurality of grating regions are different.
可选地,所述周期调制光栅的填充介质为硅基化合物或者高分子聚合物。Optionally, the filling medium of the periodic modulation grating is a silicon-based compound or a high molecular polymer.
本发明另一方面还提供了一种激光器结构的制备方法,所述方法包括以下步骤:提供一衬底;于所述半导体衬底上形成外延层,所述外延层包括层叠的下包层、有源层、上包层和欧姆接触层;刻蚀所述上包层和所述欧姆接触层以形成一脊型波导;于所述上包层上形成多个周期调制光栅,且位于所述脊型波导的两侧,其中,所述多个周期调制光栅与所述有源层之间具有预设距离,所述预设距离为50~200nm。Another aspect of the present invention also provides a method for preparing a laser structure, the method comprising the steps of: providing a substrate; forming an epitaxial layer on the semiconductor substrate, the epitaxial layer comprising a stacked lower cladding layer, an active layer, an upper cladding layer and an ohmic contact layer; etching the upper cladding layer and the ohmic contact layer to form a ridge waveguide; forming a plurality of periodic modulation gratings on the upper cladding layer and located on the upper cladding layer On both sides of the ridge waveguide, there is a preset distance between the plurality of periodic modulation gratings and the active layer, and the preset distance is 50-200 nm.
本发明另一方面提供了一种激光模组,所述激光模组包括:电路板;激光器结构设置于所述电路板上;其中,所述激光器结构包括,衬底;外延层,设置在所述衬底上,所述外延层包括层叠的下包层、有源层、上包层和欧姆接触层;脊型波导,形成在所述上包层上;多个周期调制光栅,形成在所述上包层上,并位于所述脊型波导的两侧;所述多个周期调制光栅与所述有源层之间具有预设距离,所述预设距离为50~200nm。Another aspect of the present invention provides a laser module, the laser module includes: a circuit board; a laser structure is disposed on the circuit board; wherein, the laser structure includes a substrate; an epitaxial layer is disposed on the circuit board. On the substrate, the epitaxial layer includes a stacked lower cladding layer, an active layer, an upper cladding layer and an ohmic contact layer; a ridge waveguide is formed on the upper cladding layer; a plurality of periodic modulation gratings are formed on the upper cladding layer. on the upper cladding layer and located on both sides of the ridge waveguide; a preset distance between the plurality of periodic modulation gratings and the active layer, and the preset distance is 50-200 nm.
综上所述,本发明提出一种激光器结构及其制备方法和应用,该激光器结构,经一次外延生长和将多个周期调制光栅浅刻蚀在脊型波导的两侧,所述多个周期调制光栅与所述有源层之间具有50~200nm的预设距离。根据倏逝场耦合原理,实现了光场与光栅之间的最佳耦合,不仅提高了光栅的质量,解决了以往相移光栅带来的空间烧孔,实现激光器的动态单模,使得光通信激光器的调制速度和出光功率在理想的范围内。而且,本发明降低了光栅的刻蚀深宽比、极大的简化工艺、缩减了制造成本、减少了外延片的缺陷和损耗,为该激光器的产业化奠定了基础。其他的特征、优势、益处可以参考本公开的权利要求书和说明书的内容。To sum up, the present invention proposes a laser structure, a preparation method and application thereof. The laser structure is epitaxially grown and a plurality of periodic modulation gratings are shallowly etched on both sides of a ridge waveguide. There is a preset distance of 50-200 nm between the modulation grating and the active layer. According to the principle of evanescent field coupling, the optimal coupling between the optical field and the grating is realized, which not only improves the quality of the grating, but also solves the spatial hole burning caused by the previous phase-shift grating, realizes the dynamic single-mode of the laser, and enables optical communication. The modulation speed and output power of the laser are within the ideal range. Moreover, the invention reduces the etching aspect ratio of the grating, greatly simplifies the process, reduces the manufacturing cost, and reduces the defects and losses of the epitaxial wafer, thereby laying a foundation for the industrialization of the laser. For other features, advantages and benefits, reference is made to the contents of the claims and description of the present disclosure.
附图说明Description of drawings
图1显示为本实施提出的光发射机的整体框图。FIG. 1 shows an overall block diagram of the optical transmitter proposed in this embodiment.
图2显示为本实施提出的激光器结构的制备方法流程图。FIG. 2 shows a flow chart of the fabrication method of the laser structure proposed in this embodiment.
图3显示为本实施例中激光器结构的衬底的示意图。FIG. 3 shows a schematic diagram of the substrate of the laser structure in this embodiment.
图4显示为形成外延层的示意图。FIG. 4 shows a schematic diagram of forming an epitaxial layer.
图5显示为形成掩膜层和光刻胶层的示意图。FIG. 5 shows a schematic diagram of forming a mask layer and a photoresist layer.
图6显示为刻蚀所述光刻胶层和掩膜层的示意图。FIG. 6 shows a schematic diagram of etching the photoresist layer and the mask layer.
图7显示为形成脊型波导的示意图。FIG. 7 shows a schematic diagram of forming a ridge waveguide.
图8显示为形成电子束胶层的示意图。FIG. 8 is a schematic diagram showing the formation of an electron beam micelle layer.
图9显示为图8的侧视图。FIG. 9 shows a side view of FIG. 8 .
图10显示为制备光栅图案的示意图。Figure 10 shows a schematic diagram for preparing a grating pattern.
图11显示为刻蚀所述上包层的示意图。FIG. 11 shows a schematic diagram of etching the upper cladding layer.
图12显示为形成光栅的示意图。Figure 12 shows a schematic diagram of forming a grating.
图13显示为去除掩膜层后的示意图。FIG. 13 shows a schematic diagram after removing the mask layer.
图14显示为图13中的俯视图。FIG. 14 shows the top view of FIG. 13 .
图15显示为本实施例中提供的周期调制光栅的结构示意图。FIG. 15 shows a schematic structural diagram of the periodically modulated grating provided in this embodiment.
图16显示为另一实施例中提供的周期调制光栅的结构示意图。FIG. 16 is a schematic structural diagram of a periodically modulated grating provided in another embodiment.
图17显示为另一实施例中提供的周期调制光栅的结构示意图。FIG. 17 is a schematic structural diagram of a periodically modulated grating provided in another embodiment.
图18显示为图17中的俯视图。FIG. 18 shows the top view of FIG. 17 .
图19显示为另一实施例中提供的周期调制光栅的结构示意图。FIG. 19 is a schematic structural diagram of a periodically modulated grating provided in another embodiment.
图20显示为为图19中的俯视图。FIG. 20 is shown as the top view of FIG. 19 .
图21显示为另一实施例中提供的周期调制光栅的结构示意图。FIG. 21 is a schematic structural diagram of a periodically modulated grating provided in another embodiment.
图22显示为图21中的俯视图。FIG. 22 shows the top view of FIG. 21 .
图23显示为形成填充层和绝缘层的示意图。FIG. 23 is a schematic diagram showing the formation of filling layers and insulating layers.
图24显示为图23的主视图。FIG. 24 is a front view of FIG. 23 .
图25显示为形成上电极区域的示意图。FIG. 25 is a schematic diagram showing the formation of the upper electrode region.
图26显示为图25的俯视图。FIG. 26 is a top view of FIG. 25 .
图27显示为形成上电极和下电极的示意图。FIG. 27 is a schematic diagram showing the formation of upper and lower electrodes.
图28显示为图27中的侧视图。FIG. 28 shows the side view of FIG. 27 .
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the drawings provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, so the drawings only show the components related to the present invention rather than the number, shape and the number of components in actual implementation. For dimension drawing, the type, quantity and proportion of each component can be changed at will in actual implementation, and the component layout may also be more complicated.
光纤通信系统作为信息传送的物理基础,其包括数据源、光发射机、光学信道和光接收机等多个部分,其基于将发送端传送的信息变成电信号,接着调制到光发射机中发射的光源上,使光的强度随电信号的频率变化而变化,并通过光纤发送出去,接着在接收端收到光信号后将其变换成电信号,经解调后恢复形成原信息。其中作为光源的组件,例如包含激光器的激光模组,其利用接收到的电信号发射出激光信号,具有体积小、能耗小、发光效率高、可靠度佳,广泛适用于光纤通讯系统。Optical fiber communication system is the physical basis of information transmission, which includes data source, optical transmitter, optical channel and optical receiver, etc. It is based on converting the information transmitted by the sender into an electrical signal, and then modulates it into an optical transmitter for transmission. On the light source, the intensity of the light changes with the frequency of the electrical signal, and is sent out through the optical fiber, and then the receiving end receives the optical signal and converts it into an electrical signal, which is restored to form the original information after demodulation. The components used as light sources, such as laser modules including lasers, use the received electrical signals to emit laser signals, with small size, low energy consumption, high luminous efficiency, and good reliability, and are widely used in optical fiber communication systems.
如图1所示,本发明提供了一示例性激光模组100的框图,激光模组100作为光发射组件,其利用接收到的电信号发射出激光信号。所述激光模组100例如包括电路板,例如包括输入电路200、驱动电路300,和设置于所述电路板上的激光器结构400。应该理解的是,激光模组100仅用于图示的目的并且本发明不限于特定光激光模组100。例如,可以实现与本发明相关联的益处和能力,而不管输入电路200、驱动电路300和激光器结构400的类型和尺寸,以及接口如何,所有这些都可以基于特定要求和预期的使用而变化。As shown in FIG. 1 , the present invention provides a block diagram of an
如图1所示,在激光模组100中,输入电路200对输入的电信号进行扰码和编码操作。所述驱动电路300电连接所述输入电路200,用于将扰码和编码后的所述电信号进行调制,形成调制信号。所述激光器结构400电连接所述驱动电路300,用于根据调制信号驱动所述激光器结构400并产生光信号,所述激光器结构400发射的激光经过驱动电路300的调制,发射激光。As shown in FIG. 1 , in the
如图1所示,在激光模组100中,所述激光器结构400用于发射激光,例如侧面出光。在本发明的一些实施例中,所述激光器结构400的输出波长范围为850~1600nm,例如1550nm、1310nm、850nm,进一步地,激光器结构400的输出波长为1310nm,作为近红外光,广泛运用于移动设备的感测系统(Sensing)、光通信光源、激光雷达、AR/VR,以及安防监控领域中。As shown in FIG. 1 , in the
如图2至21所示,本发明提供了一种激光器结构400的制备方法,所述方法包括但不限于以下步骤S1~S4。As shown in FIGS. 2 to 21 , the present invention provides a method for fabricating a
如图2及图3所示,进行所述步骤S1,提供一衬底410。As shown in FIG. 2 and FIG. 3 , the step S1 is performed to provide a
如图3所示,在步骤S1中,所述衬底410可由III-V化合物类型或其合金形成,其可为适当掺杂的衬底,例如硅(Si)掺杂的砷化镓(GaAs)、蓝宝石衬底、硅、硅碳化物,铝氮化物,镓氮化物,在其上形成所述外延层420。所述衬底410的厚度例如为10-200μm,例如100μm、70μm,该厚度为衬底减薄后的厚度。As shown in FIG. 3, in step S1, the
如图2及图4所示,进行所述步骤S2,于所述衬底410上形成外延层420,所述外延层420包括层叠的下包层421、有源层422、上包层423和欧姆接触层424。As shown in FIG. 2 and FIG. 4 , step S2 is performed to form an
在一些实施例中,所述下包层421包括N型半导体层,具体地材料可以包括含铝材料,例如可以列举n-Al0.3Ga0.7As、n-Al0.25 Ga0.75As等,所述下包层421的所述厚度例如为1000-5000nm,例如2800nm、3000nm。In some embodiments, the
在一些实施例中,所述有源层422包括层叠设置的量子点复合结构。具体地,可以列举砷化铟/铟镓砷/砷化镓(InAs/InGaAs/GaAs)量子点激光器结构,该量子点激光器结构包括例如8层量子点,每层量子点例如可以被33nm的GaAs间隔层隔开,每层量子点含有2.7ML(mono layer)InAs,InAs上覆盖有6nm的InGaAs应力释放层。进一步地,所述有源层422还可以例如进行p型调制掺杂,例如采用铍(Be)、碳(C)、锌(Zn)、硅(Si)等元素,以提高模式增益和光学稳定性,具体地例如掺杂浓度为3×1017cm-3,掺杂区域在InAs/InGaAs量子点层以上17nm的GaAs层里,掺杂区域的宽度为6nm。在上述范围内的量子点激光器结构,所述有源层422的载流子数理想,且所述激光器结构400温度稳定性好和外量子效率高,提高所述激光器结构400的性能。当然并不限定于此,在本发明的一些实施例中所述有源层422还可以采用5~12层量子点复合结构。所述有源层422通过该量子点复合结构的半导体物质(即利用电子)在能带间跃迁发光,并用半导体晶体的解理面或者腔面镀膜形成两个平行反射镜面4221、4222作为反射镜组成谐振腔(图9),从而使光振荡、反馈,产生光的辐射放大,从侧面4221和/或4222输出激光。在一些实施例中,所述有源层422的材料对应1260~1600nm的输出波长,例如1310nm。In some embodiments, the
在一些实施例中,所述上包层423包括P型半导体层,具体地材料可以包括含铝材料,例如可以列举p-Al0.3Ga0.7As、p-Al0.25 Ga0.75As等,所述上包层404的厚度为1000-3000nm,例如1800nm、2100nm。In some embodiments, the
在一些实施例中,所述欧姆接触层424位于所述上包层423上,进一步地,在如上所述如下详述的脊型波导430上,用于连接后续形成的电极。在本发明的一些实施例中,所述欧姆接触层424例如可以采用重掺杂的p型GaAs,所述欧姆接触层424的厚度例如为100μm-500μm,例如200μm、230μm、250μm、300μm,并没有特别的限定。In some embodiments, the
进一步地,在本发明的一些实施例中,所述外延层420还可以包括一阻挡层(图中未示出),所述阻挡层位于所述上包层423内上,以在刻蚀如上所述如下详述的脊型波导430时,保证刻蚀的深度,所述阻挡层的厚度为30~150nm,例如50nm、85nm、120nm。Further, in some embodiments of the present invention, the
在一些实施例中,采用分子束外延(MBE)工艺在衬底410上依次生长形成所述外延层420,当然并不限定于此,例如还可以通过例如等离子增强化学气相沉积(PEVCD)、金属有机化学气相沉积(MOCVD)的外延沉积形成于所述衬底410上。In some embodiments, the
如图2及图5~7所示,进行所述步骤S3,刻蚀所述欧姆接触层424和上包层423以形成一脊型波导430并且暴露部分所述上包层423,所述脊型波导430可以限制电流和光斑整形。As shown in FIG. 2 and FIGS. 5 to 7 , the step S3 is performed, the
如图5~7所示,所述脊型波导430位于所述上包层423上,所述脊型波导430两侧沟槽的底部与所述有源层422之间距离为230~400nm,进一步地,例如230~300nm,更进一步的例如270~295nm,例如可以列举295nm、290nm、280nm、275nm,当所述距离在上述范围内时,在所述脊型波导430的两侧沟槽的底部形成如下结构的多个周期调制光栅,例如如图14所示的第一周期调制光栅440a、第二周期调制光栅440b,所述周期调制光栅440a、440b可以与所述脊型波导430之间连接紧密而不受所述脊型波导430的脊高的影响,使得所述有源层422外的倏逝场与周期调制光栅440a、440b可以形成理想的耦合效果,进而完成对光模式的筛选。所述脊型波导430的脊宽例如为2~5μm,例如2μm、3μm、3.5μm。As shown in FIGS. 5-7 , the
如图5所示,在本发明的一些实施例中,所述脊型波导430可以通过例如光刻工艺、干法刻蚀工艺和湿法刻蚀工艺形成于所述上包层423。为了保护欧姆接触层,在进行制备脊型波导430和所述多个第一周期调制光栅440a之前,可以于所述外延层420上形成一掩膜层450。所述掩膜层450的材料例如可以列举二氧化硅(SiO2)、氮化硅(SiN)。所述掩膜层450的厚度例如为50nm-100nm,例如50nm、60nm、70nm、80nm,在上述范围内的掩膜层450的厚度,可以充分保护如上所述如下详述的脊型波导430而免于在制备周期调制光栅440a、440b的过程中被破坏,且进一步地,避免了所述激光器结构400在生长电极时,电流注入窗口表面粗糙度增大和电极粘附性不好的问题。As shown in FIG. 5 , in some embodiments of the present invention, the
如图5所示,在本发明的一些实施例中,可以采用PECVD工艺制备所述掩膜层450。As shown in FIG. 5 , in some embodiments of the present invention, the
如图5所示,在本发明的一些实施例中,于所述掩膜层450上涂覆光刻胶460,图形化所述光刻胶460以显影出脊型波导430的刻蚀窗口,并采用干法刻蚀,例如反应离子刻蚀(Reactive Ion Etching,RIE)工艺首先刻蚀所述掩膜层450的一部分。As shown in FIG. 5, in some embodiments of the present invention, a
如图6所示,在本发明的一些实施例中,采用干法刻蚀,例如电感耦合等离子体(inductively coupled plasma,ICP)刻蚀工艺和湿法刻蚀工艺结合的方法接着沿所述欧姆接触层424和上包层423向下刻蚀并停止在所述上包层423上,并去除所述光刻胶460。即,于所述上包层423上形成脊型波导430。As shown in FIG. 6, in some embodiments of the present invention, dry etching, such as a combination of an inductively coupled plasma (ICP) etching process and a wet etching process, is used to The
如图2及图8~14所示,进行所述步骤S4,于所述上包层423上形成多个周期调制光栅,例如布拉格光栅,且位于所述脊型波导430的两侧,其中,所述多个周期调制光栅与所述有源层422之间具有预设距离H,所述预设距离H为50~200nm。本发明采用周期调制光栅将相移由点扩展成沿谐振腔分布的一个区域,使光场分布更加平坦均匀,避免以往例如相移光栅带来的空间烧孔的问题。因此,随着电流增加,阈值增益差保持相对稳定,维持了动态单模特性。通过更改所述周期调制光栅的结构和位置,调节对光的耦合效果,从而使所述激光器结构400稳定出光,实现单纵模连续输出和理想的边模抑制比。As shown in FIG. 2 and FIGS. 8 to 14 , the step S4 is performed to form a plurality of periodically modulated gratings, such as Bragg gratings, on the
如图8~22所示,所述周期调制光栅,例如包括第一周期调制光栅440a和第二周期调制光栅440b,形成于所述上包层423上,并分别布置于所述脊型波导430的两侧,构成侧向耦合光栅,由此获得的激光器结构400为侧向耦合分布反馈(laterally coupleddistributed feedback,LC-DFB)激光器。第一周期调制光栅440a和所述第二周期调制光栅440b例如具有相同结构,当然也可以具有不同的结构。As shown in FIGS. 8 to 22 , the periodic modulation grating, for example, includes a first periodic modulation grating 440 a and a second periodic modulation grating 440 b , formed on the
如图12~22所示,在一些实施例中,所述第一周期调制光栅440a的高度为30~350nm,进一步地,例如50~200nm,例如130nm、140nm、145nm、150nm,占空比0.1~0.9,例如0.5。周期λ为150~500nm,进一步地,例如为150~200nm,例如190nm、196nm、197nm、198nm。As shown in FIGS. 12 to 22, in some embodiments, the height of the first periodic modulation grating 440a is 30 to 350 nm, and further, for example, 50 to 200 nm, such as 130 nm, 140 nm, 145 nm, 150 nm, with a duty cycle of 0.1 ~0.9, eg 0.5. The period λ is 150 to 500 nm, further, for example, 150 to 200 nm, such as 190 nm, 196 nm, 197 nm, and 198 nm.
如图15所示,所述第一周期调制光栅440a的具有多个光栅区域,所述多个光栅区域之间的长度及周期不同,例如在本发明一些实施例中,所述多个光栅区域例如包括第一光栅区域441、第二光栅区域442、第三光栅区域443,以及第四光栅区域444。As shown in FIG. 15 , the first
在一些实施例中,所述激光器结构400共振腔的长度S为0.3~3mm,例如1mm,所述第一光栅区域441的中点与左腔面的距离S1为80~200μm,例如120μm、130μm、135μm,所述第一光栅区域441的周期λ1为150~500nm,例如190nm、196nm、197nm、198nm,所述第一光栅区域441的长度Λ1为200~280μm,例如260μm、280μm。所述第二光栅区域442的中点与左腔面的距离S2为200~700μm,例如400μm、500μm,所述第二光栅区域442的周期λ2为150~500nm,例如190nm、196nm、197nm、198nm,所述第二光栅区域442的长度Λ2为200~250μm,例如230μm、250μm。第三光栅区域443的中点与右腔面的距离S3为180~300μm,例如200μm、220μm,所述第三光栅区域443的周期λ3为150~500nm,例如190nm、196nm、197nm、198nm,所述第三光栅区域443的长度Λ3为250~350μm,例如290μm、300μm。所述第四光栅区域444的周期λ0为150~500nm,进一步地,例如为150~200nm,例如190nm、196nm、197nm、198nm。In some embodiments, the length S of the resonant cavity of the
如图16~23所示,所述第二周期调制光栅440b和所述第一周期调制光栅440a例如具有相同结构,当然也可以具有不同的结构。例如为,所述第一周期调制光栅440a的周期、光栅形状、光栅高度等不同于所述第二周期调制光栅440b,通过二者刻蚀形状的差异,可以进一步地调制光线的出射角度。As shown in FIGS. 16-23 , the second periodically modulated grating 440b and the first periodically modulated grating 440a have the same structure, for example, and of course may have different structures. For example, the period, grating shape, and grating height of the first
如图16所示,具体地,在一些实施例中,例如为,所述第二周期调制光栅440b的周期不同于所述第一周期调制光栅440a的周期,此处所指的差异为光栅主体部分的周期的差异,所述周期的差值例如为0.1~75nm,例如1nm、2nm、10nm、50nm、75nm,具体地,可以列举所述第一周期调制光栅440的周期λ1为196nm、200nm,所述第二周期调制光栅440b的周期λ2为197nm、196nm,当所述第二周期调制光栅440b的周期不同于所述第一周期调制光栅440a的周期,利用二者周期不同,所述激光器400还可以进一步地提供双单模激光,例如1260~1600nm波长范围的光源,从而利用差频技术获得THz波等,例如0.03mm~3mm的THz波,当然并不限定于此。As shown in FIG. 16 , specifically, in some embodiments, for example, the period of the second periodic modulation grating 440b is different from the period of the first periodic modulation grating 440a, and the difference referred to here is the main body of the grating Part of the period difference, the period difference is, for example, 0.1 to 75 nm, such as 1 nm, 2 nm, 10 nm, 50 nm, 75 nm, specifically, the period λ 1 of the first period modulation grating 440 can be listed as 196 nm, 200 nm , the period λ 2 of the second periodic modulation grating 440b is 197 nm and 196 nm. When the period of the second periodic modulation grating 440b is different from the period of the first periodic modulation grating 440a, the two periods are different, the The
如图17~18所示,具体地,在一些实施例中,可以列举所述第二周期调制光栅440b例如具有棱台形状,与所述第一周期调制光栅440a的长条形状不同,并分别平均地布置于所述脊型波导430的两侧。As shown in FIGS. 17-18 , specifically, in some embodiments, the second periodic modulation grating 440b may have, for example, a prismatic shape, which is different from the strip shape of the first periodic modulation grating 440a, and is respectively They are evenly arranged on both sides of the
如图21~22所示,具体地,在一些实施例中,可以列举所述第二周期调制光栅440b例如形成为具有一定倾斜角度的长条形状,与所述第一周期调制光栅440a的长条形状的布置方式不相同。As shown in FIGS. 21 to 22 , specifically, in some embodiments, the second periodic modulation grating 440b may be, for example, formed in a strip shape with a certain inclination angle, which is the same as the length of the first periodic modulation grating 440a. The bar shapes are arranged differently.
具体地,在一些实施例中,所述第一周期调制光栅440a的光栅高度不同于所述第二周期调制光栅440b的高度,具体地,所述第一周期调制光栅440a的高度例如为140nm,所述第二周期调制光栅440b的高度例如为150nm。进一步地,例如还可以包括,所述第二周期调制光栅440b的光栅占空比不同于所述第一周期调制光栅440a的光栅占空比,具体地,所述第一周期调制光栅440a的占空比例如为0.5,所述第二周期调制光栅440b的占空比例如为0.3。应当理解,任何所述第一周期调制光栅440a的光栅结构不同于所述第二周期调制光栅440b的光栅结构,均应当涵盖在本发明要求保护的范围内,并不限定于此。Specifically, in some embodiments, the grating height of the first periodic modulation grating 440a is different from the height of the second periodic modulation grating 440b, specifically, the height of the first periodic modulation grating 440a is, for example, 140 nm, The height of the second periodic modulation grating 440b is, for example, 150 nm. Further, for example, it may further include that the grating duty cycle of the second periodic modulation grating 440b is different from the grating duty cycle of the first periodic modulation grating 440a, specifically, the duty cycle of the first
如图13所示,在一些实施例中,所述周期调制光栅440a、440b的底部与所述有源层422之间的预设距离H的值,进一步地例如为100~200nm,更进一步地例如100~145nm,例如可以列举120nm、135nm、140nm、145nm,当所述预设距离H在上述范围内时,周期调制光栅440a、440b刻蚀在所述上包层423上,即内置在所述有源区附近。且进一步地,在上述范围内的光栅刻蚀深宽比的减小,使得这种浅刻蚀结构可以采用一阶光栅,从而大幅提高激光器结构400的耦合效果,即所述光栅可以对光形成较好的耦合,进而实现单纵模连续输出和理想的边模抑制比,提高激光器结构400调制速度和出光功率。As shown in FIG. 13 , in some embodiments, the value of the preset distance H between the bottoms of the
如图8~10所示,在一些实施例中,例如采用电子束光刻(electron beamlirhography,EBL)工艺制备所述掩膜图案,即光栅图案。基于保证所述光栅的质量,提高耦合效果的观点,所述EBL的电子束胶层470的厚度例如为50nm-100nm,例如50nm、60nm、70nm、75nm,当所述厚度低于50nm时,所述电子束胶层470过薄,在刻蚀形成周期调制光栅440a、440b的过程中易导致受破坏而无法形成所述光栅。当所述厚度高于所述100nm时,所述电子束胶层470过厚,在脊型波导430处易出现侧壁堆胶的情况,在刻蚀形成周期调制光栅440a、440b的过程中易导致与脊型波导430连接不紧密,而降低周期调制光栅440a、440b的耦合能力。所述EBL的电子束胶层470的材料例如可以采用聚甲基丙烯酸甲酯(PMMA)、氢硅倍半环氧乙烷(HSQ),以及ZEP材料,例如PMMA。需要注意的是,可以采用例如原子力显微镜(AFM)以检测所述掩膜图案。本发明提供的EBL工艺简单易操作,可以根据所需要的光栅的形状进行掩膜图案的制备,并且可以有效提高光栅的保真度,使其在刻蚀过程中不易变形。并且,本发明采用极薄的电子束胶,可以大幅度缩减EBL时间,节省工艺成本。As shown in FIGS. 8-10 , in some embodiments, the mask pattern, that is, the grating pattern, is prepared by, for example, an electron beam lithography (EBL) process. From the viewpoint of ensuring the quality of the grating and improving the coupling effect, the thickness of the electron
如图11~12所示,在一些实施例中,采用干法刻蚀,例如ICP刻蚀工艺在所述脊型波导430的两侧沿所述上包层423向下刻蚀并停止在所述上包层423上,并去除电子束胶层470。即,于所述上包层423上形成周期调制光栅440a、440b。需要注意的是,采用台阶仪和AFM确定光栅质量。As shown in FIGS. 11-12 , in some embodiments, dry etching, such as ICP etching, is used to etch down the
如图13~22所示,在本发明的一些实施例中,所述周期调制光栅440a、440b制作完成之后,去除掩膜层450的剩余部分,例如采用缓冲氧化物刻蚀液(Buffered Oxide Etch,BOE)腐蚀所述掩膜层450,显露所述脊型波导430的脊,所述脊型波导430位于所述上包层423上。As shown in FIGS. 13-22 , in some embodiments of the present invention, after the
如图13~22所示,在本发明的一些实施例中,采用PECVD工艺在所述周期调制光栅440a、440b和欧姆接触层424上制备所述填充层480和绝缘层490。As shown in FIGS. 13-22 , in some embodiments of the present invention, the
如图23~24所示,所述填充层480填充于所述周期调制光栅440a、440b,进而使得使光栅区的有效折射率和有源区的折射率产生差异,利用有源区外的倏逝场与布拉格光栅的耦合作用完成对光模式的筛选,基于实现理想耦合效果的观点,所述填充层480采用硅基化合物、或者高分子聚合物等介质等折射率较小的介质材料,具体的例子可以列举SiO2、SiN、苯并环丁烯(BCB)、聚酰亚胺。厚度为200~600nm,例如400nm当然并不限定于此。进一步地,所述第一周期调制光栅440a和第二周期光栅440b的填充材料可以相同也可以不相同,并没有特别的限定。As shown in FIGS. 23-24, the
如图23~24所示,所述绝缘层490位于所述填充层480上,并覆盖整个脊型波导430。在一些实施中,所述绝缘层490的材料例如与所述填充层480采用相同的材料并通过所述PECVD或其他工艺一体成型,所述绝缘层490位于脊型波导430上,用于形成电流注入窗口。As shown in FIGS. 23-24 , the insulating
如图25~28所示,在一些实施例中,可以于本发明提供的激光器结构400表面生长电极,通电后以进行发射激光作业,所述电极包括上电极510和下电极520。As shown in FIGS. 25-28 , in some embodiments, electrodes can be grown on the surface of the
在一些实施例中,所述上电极510和所述下电极520的材料可包括Au金属,Ag金属,Pt金属,Ge金属,Ti金属及Ni金属中的一种或组合。In some embodiments, the material of the
如图25~28所示,在一些实施例中,采用干法刻蚀,例如反应离子刻蚀(ReactiveIon Etching,RIE)工艺刻蚀于所述脊型波导430上刻蚀所述部分绝缘层490,以显露出所述所述欧姆接触层424,于所述欧姆接触层424形成上电极510。As shown in FIGS. 25-28 , in some embodiments, dry etching, such as reactive ion etching (Reactive Ion Etching, RIE) process, is used to etch the part of the insulating
如图27~28所示,在本发明的一些实施例中,采用先减薄、抛光所述衬底410背面,然后于所述衬底410背面形成所述下电极520,并退火。As shown in FIGS. 27-28 , in some embodiments of the present invention, the backside of the
如图27~28所示,所述激光器结构400在进行工作时,通电后电流从上电极510注入,经过上包层423,进入有源层422,所述有源层422内的半导体物质在能带间跃迁发光,在所述反射面4221、4222组成的所述谐振腔内形成激光振荡,反馈,产生光的辐射放大,并利用有源层外的倏逝场与周期调制光栅的耦合作用完成对光模式的筛选,最后侧向输出激光。本发明通过一次外延的方法,制备得到所述光栅的结构,提高外延质量,且采用光栅浅刻蚀,缩减了制造成本。同时,设计出周期调制光栅440a、440b,采用侧向耦合浅刻蚀的方法将其制备在脊型波导的两侧,可以实现激光器结构的动态单模,提高其调制速度和出光功率。As shown in FIGS. 27-28 , when the
需要说明的是,本发明提供的激光器结构400为实现理想的出射激光,可以包括多种的封装方式,以及适当地增添现有的结构,以满足各个领域例如移动设备的感测系统(Sensing)、光通信光源、激光雷达、AR/VR,以及安防监控领域中的实际需要,应当理解,这些应当涵盖在本发明要求的保护的范围内。It should be noted that the
如上所述,根据本发明提供的激光器结构400的制备方法,经一次外延结构和将多个周期调制光栅浅刻蚀在脊型波导430的两侧,不仅提高了光栅的质量,解决了以往相移光栅带来的空间烧孔,实现激光器的动态单模,使得光通信激光器的调制速度和出光功率在理想的范围内,而且极大的简化外延和制作工艺,缩减了制造成本。As mentioned above, according to the preparation method of the
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明,本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案,例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the application and an illustration of the applied technical principle. Those skilled in the art should understand that the scope of the invention involved in this application is not limited to the technical solution formed by the specific combination of the above technical features , and shall also cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the inventive concept, for example, the above features are similar to those disclosed in this application (but not limited to) A technical solution formed by replacing the technical features of the functions with each other.
除说明书所述的技术特征外,其余技术特征为本领域技术人员的已知技术,为突出本发明的创新特点,其余技术特征在此不再赘述。Except for the technical features described in the specification, the other technical features are known technologies by those skilled in the art, and in order to highlight the innovative features of the present invention, the remaining technical features are not repeated here.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010162903.5A CN111262130B (en) | 2020-03-10 | 2020-03-10 | Laser structure and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010162903.5A CN111262130B (en) | 2020-03-10 | 2020-03-10 | Laser structure and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111262130A true CN111262130A (en) | 2020-06-09 |
CN111262130B CN111262130B (en) | 2022-04-19 |
Family
ID=70951389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010162903.5A Active CN111262130B (en) | 2020-03-10 | 2020-03-10 | Laser structure and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111262130B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116107023A (en) * | 2023-04-13 | 2023-05-12 | 中国科学院长春光学精密机械与物理研究所 | Photonic device based on dense waveguide array and its fabrication method |
CN116207608A (en) * | 2023-01-20 | 2023-06-02 | 中国科学院半导体研究所 | Quantum dot laser structure and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010036213A1 (en) * | 2000-03-29 | 2001-11-01 | Yoshiaki Watanabe | Ridge type semiconductor laser of distributed feedback |
CN1710761A (en) * | 2005-07-27 | 2005-12-21 | 清华大学 | A Multi-stage Distributed Feedback Semiconductor Laser |
US20070133639A1 (en) * | 2005-12-05 | 2007-06-14 | Dae Kon Oh | Semiconductor laser structure including quantum dot |
DE602007002731D1 (en) * | 2006-03-10 | 2009-11-26 | Fujitsu Ltd | Optical semiconductor device with diffraction grating |
CN106953235A (en) * | 2016-03-17 | 2017-07-14 | 中国科学院半导体研究所 | Single-mode GaSb-based semiconductor laser and its preparation method |
WO2017220144A1 (en) * | 2016-06-22 | 2017-12-28 | Tty-Säätiö Sr | Semiconductor laser structure with a grating and multiple phase shifts therein |
CN110299669A (en) * | 2019-08-26 | 2019-10-01 | 常州纵慧芯光半导体科技有限公司 | Vertical cavity surface emitting laser and preparation method with particulate metal articulamentum |
-
2020
- 2020-03-10 CN CN202010162903.5A patent/CN111262130B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010036213A1 (en) * | 2000-03-29 | 2001-11-01 | Yoshiaki Watanabe | Ridge type semiconductor laser of distributed feedback |
CN1710761A (en) * | 2005-07-27 | 2005-12-21 | 清华大学 | A Multi-stage Distributed Feedback Semiconductor Laser |
US20070133639A1 (en) * | 2005-12-05 | 2007-06-14 | Dae Kon Oh | Semiconductor laser structure including quantum dot |
DE602007002731D1 (en) * | 2006-03-10 | 2009-11-26 | Fujitsu Ltd | Optical semiconductor device with diffraction grating |
CN106953235A (en) * | 2016-03-17 | 2017-07-14 | 中国科学院半导体研究所 | Single-mode GaSb-based semiconductor laser and its preparation method |
WO2017220144A1 (en) * | 2016-06-22 | 2017-12-28 | Tty-Säätiö Sr | Semiconductor laser structure with a grating and multiple phase shifts therein |
CN110299669A (en) * | 2019-08-26 | 2019-10-01 | 常州纵慧芯光半导体科技有限公司 | Vertical cavity surface emitting laser and preparation method with particulate metal articulamentum |
Non-Patent Citations (2)
Title |
---|
FRANCESCA POZZI : "Dual-Wavelength InAlGaAs–InP Laterally Coupled Distributed Feedback Laser", 《IEEE PHOTONICS TECHNOLOGY LETTERS》 * |
李玮淳: "特殊结构的单波长、多波长半导体激光器研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116207608A (en) * | 2023-01-20 | 2023-06-02 | 中国科学院半导体研究所 | Quantum dot laser structure and preparation method thereof |
CN116107023A (en) * | 2023-04-13 | 2023-05-12 | 中国科学院长春光学精密机械与物理研究所 | Photonic device based on dense waveguide array and its fabrication method |
Also Published As
Publication number | Publication date |
---|---|
CN111262130B (en) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101667716B (en) | Double-sided bonding long-wavelength vertical cavity surface emitting laser and manufacturing method thereof | |
JP6300240B2 (en) | Semiconductor device | |
US9823414B2 (en) | Method for fabricating a semiconductor device for use in an optical application | |
US9300115B2 (en) | Quantum cascade laser | |
CN107611772B (en) | Electroabsorption modulated laser and preparation method thereof | |
CN110429473A (en) | Vertical cavity surface emitting laser and preparation method thereof | |
JP5250245B2 (en) | Semiconductor laser | |
KR20140057536A (en) | Laser device | |
CN103259190A (en) | Annular semiconductor laser of vertical coupling structure and preparing method thereof | |
Arefin et al. | III-N/Si₃N₄ Integrated Photonics Platform for Blue Wavelengths | |
US6835581B2 (en) | Method of coating optical device facets with dielectric layer and device made therefrom | |
CN111262130B (en) | Laser structure and preparation method and application thereof | |
CN116207608A (en) | Quantum dot laser structure and preparation method thereof | |
CN107623250B (en) | Short-cavity long-surface emitting laser and manufacturing method thereof | |
JP5217767B2 (en) | Semiconductor laser and method for manufacturing semiconductor laser | |
JP5206976B2 (en) | Semiconductor laser and manufacturing method thereof | |
CN108988124B (en) | A Monolithically Integrated Tunnel Junction Laser for Microwave Oscillation Sources | |
CN111342341B (en) | Laser structure and preparation method and application thereof | |
CN109494285A (en) | Tunable optical transmitter part and preparation method thereof | |
JP2007311463A (en) | Quantum dot semiconductor device | |
CN114976865A (en) | High-efficiency vertical cavity surface EML chip with high-contrast grating | |
CN112821197A (en) | Light emitting chip manufacturing method and light emitting chip | |
JPH0697564A (en) | Semiconductor surface emitting device | |
CN1174469C (en) | Preparation method of polarization insensitive semiconductor optical amplifier | |
JP2613975B2 (en) | Periodic gain type semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |