CN111258300A - 一种无人车无信号灯环岛通行能力测试系统及测试方法 - Google Patents

一种无人车无信号灯环岛通行能力测试系统及测试方法 Download PDF

Info

Publication number
CN111258300A
CN111258300A CN202010075003.7A CN202010075003A CN111258300A CN 111258300 A CN111258300 A CN 111258300A CN 202010075003 A CN202010075003 A CN 202010075003A CN 111258300 A CN111258300 A CN 111258300A
Authority
CN
China
Prior art keywords
unmanned vehicle
roundabout
tested
vehicle
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010075003.7A
Other languages
English (en)
Other versions
CN111258300B (zh
Inventor
赵祥模
王润民
周文帅
朱宇
徐志刚
张心睿
李妍
高赢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN202010075003.7A priority Critical patent/CN111258300B/zh
Publication of CN111258300A publication Critical patent/CN111258300A/zh
Priority to US17/134,398 priority patent/US11407424B2/en
Application granted granted Critical
Publication of CN111258300B publication Critical patent/CN111258300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0025Planning or execution of driving tasks specially adapted for specific operations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/05Type of road, e.g. motorways, local streets, paved or unpaved roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • B60W2554/4029Pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明属于无人车性能测试领域,公开了一种无人车无信号灯环岛通行能力测试系统及测试方法,该测试系统结构简单,解决了现有无人驾驶汽车测试中缺少标准无信号灯环岛无人车通行能力测试的问题,同时解决了城市环境无信号灯环岛场景难以复现,测试方法复杂,成本较高的问题,利用待测无人车辆上安装的姿态控制器待测无人车辆的倾斜角度,利用360°全景摄像头用于获取待测无人车辆的行驶信息,行驶信息包括行驶轨迹、行驶速度及转向灯是否开启,从而对无人车无信号灯环岛通行能力进行测试,测试效率高,成本低。

Description

一种无人车无信号灯环岛通行能力测试系统及测试方法
技术领域
本发明涉及无人车性能测试领域,具体涉及一种无人车无信号灯环岛通行能力测试系统及测试方法。
背景技术
无人驾驶汽车是集环境感知、决策规划、控制执行于一体的智能交通工具,代表着未来汽车科技的战略制高点。随着一系列关键技术的发展,无人驾驶汽车为解决“交通事故、交通拥堵、环境污染、能源短缺”等问题提供了新的途径。科学完善的测试验证评价体系对提高自无人驾驶汽车的研发效率、健全相关法律法规、推进智能交通发展至关重要。
环岛指环形交通,是交通节点的一种特殊形式,属于平面道路交叉,由环形车道和一个中心岛组成。由于无信号环岛交通环境特殊,车辆需要绕经环岛,从环岛出口驶出。对于无人驾驶汽车,需要识别环岛、规划行驶路线、避让环形道路上路线冲的车辆,并正确识别环岛出口,驶出环岛。因此开展无人驾驶汽车无信号灯环岛通行能力的测试,检验无人驾驶汽车的行驶能力具有重要意义。
然而,目前缺乏一种贴近真实道路环境的无信号灯环岛无人驾驶汽车通行能力的测试场地及测试方法,仅仅依靠运行场景模拟进行车辆运行任务优化,无法准确获取无人驾驶汽车实际交通运行状态,同时由于场景较难复现,会造成测试的科学性、理论性不足,对实际应用的指导价值有限。因此,亟需一种能够测试无人车无信号灯环岛通行能力的贴近真实道路环境的测试系统及测试方法。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种无人车无信号灯环岛通行能力测试系统及测试方法,该测试系统结构简单,解决了现有无人驾驶汽车测试中缺少标准无信号灯环岛无人车通行能力测试的问题,同时解决了城市环境无信号灯环岛场景难以复现,测试方法复杂,成本较高的问题,利用待测无人车辆上安装的姿态控制器待测无人车辆的倾斜角度,利用360°全景摄像头用于获取待测无人车辆的行驶信息,行驶信息包括行驶轨迹、行驶速度及转向灯是否开启,从而对无人车无信号灯环岛通行能力进行测试,测试效率高,成本低。
为了达到上述目的,本发明采用以下技术方案予以实现。
(一)一种无人车无信号灯环岛通行能力测试系统,包括:待测无人车辆、环岛测试道路和控制中心;
其中,所述待测无人车辆上安装有姿态传感器,所述姿态控制器通过无线通讯设备与控制中心连接;
所述环岛测试道路的中心安装有360°全景摄像头,360°全景摄像头通过无线通讯设备与控制中心连接。
进一步的,所述姿态传感器用于获取待测无人车辆的倾斜角度,并将获取的待测无人车辆的倾斜角度传递给控制中心;
所述360°全景摄像头用于获取待测无人车辆的行驶轨迹、行驶速度及转向灯是否开启,并将获取的待测无人车辆的行驶轨迹、行驶速度及转向灯是否开启传递给控制中心。
进一步的,控制中心根据接收的待测无人车辆的倾斜角度与待测无人车辆预设的车辆倾斜角度进行比较,根据接收的待测无人车辆的行驶轨迹、行驶速度及转向灯是否开启分别与车辆环岛行驶限定的行驶轨迹、限定的行驶速度、以及转向灯要求进行比较分析,评价无人车无信号灯环岛通行能力;控制中心还用于向待测无人车辆发送行驶指令。
进一步的,评价无人车无信号灯环岛通行能力具体为:
无人车无信号灯环岛通行能力分为合格和不合格两种情况,其中,合格为:待测无人车辆在进出环岛时开启右转转向灯,并至少开启3s后开始转向;待测无人车辆转弯时候的侧倾角度小于待测无人车辆预设的车辆倾斜角度;待测无人车辆的行驶轨迹全程保持在测试车道线内,不得碰轧车道边线内侧,并由正确出口驶出;待测无人车辆的行驶速度应在车辆环岛行驶限定的行驶速度范围内;待测无人车辆从测试起点行驶到测试终点的时间小于3分钟;否则,不合格。
进一步的,还包括安全员,安全员将待测无人车辆在人工驾驶模式下驾驶到测试起点,待测无人车辆停稳后开启自动驾驶模式。
(二)一种无人车无信号灯环岛通行能力测试方法,包括以下步骤:
步骤1,安全员在人工驾驶模式下将待测无人车辆驾驶至环岛测试道路的测试起点,并将待测无人车辆停稳;
步骤2,开启安装在环岛测试道路的中心的360°全景摄像头,检查安装在待测无人车辆上的姿态传感器是否正常工作;
步骤3,安全员向控制中心发送测试请求,控制中心根据接收的测试请求向待测无人车辆发送车辆行驶指令,安全员根据待测无人车辆接收的车辆行驶指令开启待测无人车辆的自动驾驶模式,待测无人车辆进入环岛测试道路进行测试;
步骤4,姿态传感器实时获取待测无人车辆的倾斜角度,并将获取的待测无人车辆的倾斜角度传递给控制中心;
360°全景摄像头全程记录待测无人车辆的行驶视频,行驶视频包含待测无人车辆的行驶轨迹、行驶速度和转向灯是否开启,并将记录待测无人车辆的行驶视频传递给控制中心;
步骤5,控制中心根据接收的待测无人车辆的倾斜角度与待测无人车辆预设的车辆倾斜角度进行比较,根据接收的待测无人车辆的行驶轨迹、行驶速度及转向灯是否开启分别与车辆环岛行驶限定的行驶轨迹、限定的行驶速度、以及转向灯要求进行比较分析,评价无人车无信号灯环岛通行能力。
进一步的,步骤3中,待测无人车辆进入环岛测试道路进行测试时,在待测无人车辆进入环岛测试道路的驶入口同时,控制目标车辆也进入环岛测试道路的驶入口。
进一步的,步骤3中,待测无人车辆进入环岛测试道路进行测试时,在待测无人车辆驶出环岛测试道路的出口同时,控制目标车辆也驶出环岛测试道路的出口。
进一步的,步骤3中,待测无人车辆进入环岛测试道路进行测试时,在待测无人车辆驶出环岛测试道路的出口同时,让行人通过环岛测试道路的出口处的人行横道。
与现有技术相比,本发明的有益效果为:
1)本发明无人车无信号灯环岛通行能力测试系统中,包括控制中心、环岛测试道路、360°全景摄像头、姿态传感器,用于对城市环境无信号灯环岛无人车通行能力进行测试;通过在环岛中心安装360°全景摄像头,获取待测无人车辆通过环岛的行驶图像,并通过安装在待测无人车辆上的姿态传感器,获取待测无人车辆在环岛行驶中的姿态信息,以便对待测无人车辆的通行能力进行评价。
2)本发明简单,测试方便,更加贴近于真实行驶环境,使得测试结果能够更加准确地表现待测无人车辆城市环境无信号灯环岛通行的能力,相比于实际道路测试,测试过程更加安全、相比于虚拟仿真测试,测试环境更加接近真实交通环境,测试结果更加真实可靠。
3)本发明一种无人车无信号灯环岛通行能力测试方法,通过向待测无人车辆发出行驶任务,待测无人车辆做出相应的响应,正确通过环岛。同时测试系统获取待测无人车辆运行数据,测试结果结合实际运行数据,更贴近于待测无人车辆运行的真实路况,使得测试的方法更加安全、权威、可靠。
附图说明
下面结合附图和具体实施例对本发明做进一步详细说明。
图1为无人车进入环岛,在环岛内循线行驶、驶出环岛的测试场示意图;
图2为无人车驶入环岛,避让路线冲突车辆的测试场示意图;
图3为无人车驶出环岛,避让路线冲突车辆的测试场示意图;
图4为无人车驶出环岛,避让行人的测试场示意图。
图中:V1待测无人车辆;V2目标车辆;Z1控制中心;M1 360°全景摄像头;H1行人;L1测试起点位置;L3测试终点位置;A1驶入环岛的车道;B1环岛外侧车道;B2环岛内侧车道;C1C2,C3,C4为四个环岛出入口
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域的技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。
一种无人车无信号灯环岛通行能力测试系统,包括:待测无人车辆、环岛测试道路和控制中心;其中,环岛测试道路为有四个出入口的环岛,环岛内为两个车道的环形道路,环岛每个出入口为双向两车道的直线道路,车道宽度为3.5m,中心环岛直径为20m,路缘石半径为5m。
待测无人车辆上安装有姿态传感器,姿态控制器通过具有V2X通信协议的无线通讯设备与控制中心连接;姿态传感器用于获取待测无人车辆的倾斜角度,并将获取的待测无人车辆的倾斜角度传递给控制中心。当待测无人车辆通过曲线路段时,待测无人车辆需要调整自己的姿态,防止侧翻。姿态传感器可以记录待测无人车辆的姿态,待测试结束后,通过分析姿态信息,对待测无人车辆无信号灯环岛通行能力进行评价。
环岛测试道路的中心安装有360°全景摄像头,360°全景摄像头通过无线通讯设备与控制中心连接,能够记录覆盖整个测试场地的视频信息。视频信息包括待测无人车辆的行驶轨迹、行驶速度及转向灯是否开启,并将获取的视频信息传递给控制中心。
控制中心具有V2X通信协议的无线通信设备,能够向待测无人车辆发出行驶指令;并能根据接收的待测无人车辆的倾斜角度与待测无人车辆预设的车辆倾斜角度进行比较,根据接收的待测无人车辆的行驶轨迹、行驶速度及转向灯是否开启分别与车辆环岛行驶限定的行驶轨迹、限定的行驶速度、以及转向灯要求进行比较分析,评价无人车无信号灯环岛通行能力,具体为:
待测无人车辆在进出环岛时开启右转转向灯,并至少开启3s后开始转向;待测无人车辆转弯时候的侧倾角度小于待测无人车辆预设的车辆倾斜角度;待测无人车辆的行驶轨迹全程保持在测试车道线内,不得碰轧车道边线内侧,并由正确出口驶出;待测无人车辆的行驶速度应在车辆环岛行驶限定的行驶速度范围内;待测无人车辆从测试起点行驶到测试终点的时间小于3分钟。
安全员,安全员将待测无人车辆在人工驾驶模式下驾驶到测试起点,待测无人车辆停稳后开启自动驾驶模式。
以下结合具体实施例对本发明的无人车无信号灯环岛通行能力测试方法进行详细说明。
实施例1
如图1所示,一种无人车无信号灯环岛通行能力测试方法,用于测试无人车驶入环岛,在环岛内循线行驶,驶出环岛的能力,环岛测试道路为有四个出入口的环岛,每个出入口至少为双向两车道的环形道路、待测无人车辆V1、控制中心Z1、360°全景摄像头M1、A1驶入环岛的车道,待测无人车辆V1位于测试起点位置L1,C1C2,C3,C4为四个环岛出入口;包括以下步骤:
步骤1,安全员在人工驾驶模式下将待测无人车辆V1驾驶至环岛测试道路的测试起点位置L1,并将待测无人车辆V1停稳。
步骤2,开启安装在环岛测试道路的中心的360°全景摄像头M1,检查安装在待测无人车辆V1上的姿态传感器是否正常工作。
步骤3,安全员向控制中心Z1发送测试请求,控制中心Z1根据接收的测试请求向通过无线通讯设备待测无人车辆V1发送车辆行驶指令,安全员根据待测无人车辆V1接收的车辆行驶指令开启待测无人车辆V1的自动驾驶模式,待测无人车辆V1从测试起点位置L1出发,进入测试场景,在车道A1上加速至30km/h后匀速循线行驶驶向环形路口,最终从测试终点位置L3驶出,测试无人车在无信号灯环岛通行能力。
步骤4,姿态传感器实时获取待测无人车辆V1的倾斜角度,并将获取的待测无人车辆V1的倾斜角度传递给控制中心Z1;360°全景摄像头M1全程记录待测无人车辆V1的行驶视频,行驶视频包含待测无人车辆V1的行驶轨迹、行驶速度和转向灯是否开启,并将记录待测无人车辆V1的行驶视频传递给控制中心Z1。
步骤5,控制中心Z1根据接收的待测无人车辆V1的倾斜角度与待测无人车辆V1预设的车辆倾斜角度进行比较,根据接收的待测无人车辆V1的行驶轨迹、行驶速度及转向灯是否开启分别与车辆环岛行驶限定的行驶轨迹、限定的行驶速度、以及转向灯要求进行比较分析,评价无人车无信号灯环岛通行能力。
无人车无信号灯环岛通行能力分为合格和不合格两种情况,其中,合格为:待测无人车辆V1在接近环岛时开启右转转向灯,并至少开启3s后开始转向;在环形道路内循线行驶,经过至少一个出口后,开启转向灯准备驶出环岛,并在转向灯开启至少3s后开始转向驶出环岛,驶向测试终点位置L3;待测无人车辆V1转弯时候的侧倾角度小于待测无人车辆V1预设的车辆倾斜角度(即车辆发生侧倾时的角度);待测无人车辆V1的行驶轨迹全程保持在测试车道线内,不得碰轧车道边线内侧,并由正确出口驶出;待测无人车辆V1的行驶速度应在车辆环岛行驶限定的行驶速度范围内;待测无人车辆V1从测试起点行驶到测试终点的时间小于3分钟;否则,不合格。
待测无人车辆V1在接收到控制中心Z1发出的车辆行驶指令后,待测无人车辆V1进入环岛,并利用搭载的感知设备检测车道线,实现稳定的循线行驶。待测无人车辆V1在无信号灯环岛行驶过程中,无人车的通行能力体现在,无人车检测识别环岛入口、规划行驶路径、调整自身姿态实现稳定的曲线循线行驶、识别环岛出口驶向测试终点。
实施例2
如图2所示,一种无人车无信号灯环岛通行能力测试方法,用于测试无人车在驶入环岛过程中,避让路线冲突车辆的能力,环岛测试道路为有四个出入口的环岛,每个出入口至少为双向两车道的环形道路、待测无人车辆V1、目标车辆V2、控制中心Z1、360°全景摄像头M1、A1驶入环岛的车道、B1环岛外侧车道;B2环岛内侧车道,待测无人车辆V1位于测试起点位置L1,C1C2,C3,C4为四个环岛出入口;其中,目标车辆V2为测试专用移动平台,搭载测试专用假车,目标车辆V2位于环岛入口C4,等待启动命令。包括以下步骤:
步骤1,安全员在人工驾驶模式下将待测无人车辆V1驾驶至环岛测试道路的测试起点位置L1,并将待测无人车辆V1停稳。
步骤2,开启安装在环岛测试道路的中心的360°全景摄像头M1,检查安装在待测无人车辆V1上的姿态传感器是否正常工作。
步骤3,安全员向控制中心Z1发送测试请求,控制中心Z1根据接收的测试请求向通过无线通讯设备待测无人车辆V1发送车辆行驶指令,安全员根据待测无人车辆V1接收的车辆行驶指令开启待测无人车辆V1的自动驾驶模式,待测无人车辆V1从测试起点位置L1出发,进入测试场景,在车道A1上加速至30km/h后匀速循线行驶驶向环形路口,同时测试人员通过遥控手柄控制目标车辆V2从环岛入口C4进入环岛,并以35km/h的速度正要驶过待测无人车辆V1将要驶入的车道B1,测试无人车驶入环岛过程中,避让路线冲突车辆的能力。
步骤4,姿态传感器实时获取待测无人车辆V1的倾斜角度,并将获取的待测无人车辆V1的倾斜角度传递给控制中心Z1;360°全景摄像头M1全程记录待测无人车辆V1的行驶视频,行驶视频包含待测无人车辆V1的行驶轨迹、行驶速度和转向灯是否开启,并将记录待测无人车辆V1的行驶视频传递给控制中心Z1。
步骤5,控制中心Z1根据接收的待测无人车辆V1的倾斜角度与待测无人车辆V1预设的车辆倾斜角度进行比较,根据接收的待测无人车辆V1的行驶轨迹、行驶速度及转向灯是否开启分别与车辆环岛行驶限定的行驶轨迹、限定的行驶速度、以及转向灯要求进行比较分析,评价无人车无信号灯环岛通行能力。
无人车无信号灯环岛通行能力分为合格和不合格两种情况,其中,合格为:待测无人车辆V1在接近环岛入口时开启转向灯,并在转向灯开启至少3s后开始转向进入环岛;待测无人车辆V1利用搭载的感知设备检测到即将通过的上游目标车辆V2,待测无人车辆V1减速或停车等待目标车辆V2通过,待测无人车辆V1在目标车辆V2通过后进入环岛,并在环岛内循线行驶,至少经过1个出口后,开启转向灯准备驶出环岛,并在转向灯开启至少3s后开始转向驶出环岛,驶向测试终点位置L3;待测无人车辆V1转弯时候的侧倾角度小于待测无人车辆V1预设的车辆倾斜角度;待测无人车辆V1的行驶轨迹全程保持在测试车道线内,不得碰轧车道边线内侧,并由正确出口驶出;待测无人车辆V1的行驶速度应在车辆环岛行驶限定的行驶速度范围内;待测无人车辆V1从测试起点行驶到测试终点的时间小于3分钟;否则,不合格。
待测无人车辆V1启动,根据接收到的测试任务,从测试起点出发,进入测试场景。同时测试人员通过遥控手柄控制目标车辆V2进入环岛,行驶在车道B1。待测无人车辆V1在接收到控制中心Z1发出的行驶命令后,待测无人车辆V1进入环岛,并利用搭载的感知设备检测车道线和路径附近的车辆,实现避让路线冲突车辆并安全驶向测试终点。待测无人车辆V1在驶入环岛避让路线冲突车辆的过程中,无人车的通行能力体现在,无人车规划路径并检测路径冲突车辆,同时避让路径冲突车辆,最终正确的驶向测试终点。
实施例3
如图3所示,一种无人车无信号灯环岛通行能力测试方法,用于测试无人车在驶出环岛过程中,避让路线冲突车辆的能力,环岛测试道路为有四个出入口的环岛,每个出入口至少为双向两车道的环形道路、待测无人车辆V1、目标车辆V2、控制中心Z1、360°全景摄像头M1、A1驶入环岛的车道、B1环岛外侧车道;B2环岛内侧车道,待测无人车辆V1位于测试起点位置L1,C1C2,C3,C4为四个环岛出入口;其中,目标车辆V2为测试专用移动平台,搭载测试专用假车,目标车辆V2位于环岛入口C2,等待启动命令。包括以下步骤:
步骤1,安全员在人工驾驶模式下将待测无人车辆V1驾驶至环岛测试道路的测试起点位置L1,并将待测无人车辆V1停稳。
步骤2,开启安装在环岛测试道路的中心的360°全景摄像头M1,检查安装在待测无人车辆V1上的姿态传感器是否正常工作。
步骤3,安全员向控制中心Z1发送测试请求,控制中心Z1根据接收的测试请求向通过无线通讯设备待测无人车辆V1发送车辆行驶指令,安全员根据待测无人车辆V1接收的车辆行驶指令开启待测无人车辆V1的自动驾驶模式,待测无人车辆V1从测试起点位置L1出发,进入测试场景,在车道A1上加速至30km/h后匀速循线行驶驶向环形路口,行驶在车道B2,并从环岛出口C3驶出;同时测试人员通过遥控手柄控制目标车辆V2从C2口进入环岛,行驶在车道B1,并使目标车辆V2正要通过待测无人车辆V1将要驶出的环岛出口C3;测试无人车驶出环岛过程中,避让路线冲突车辆的能力。
步骤4,姿态传感器实时获取待测无人车辆V1的倾斜角度,并将获取的待测无人车辆V1的倾斜角度传递给控制中心Z1;360°全景摄像头M1全程记录待测无人车辆V1的行驶视频,行驶视频包含待测无人车辆V1的行驶轨迹、行驶速度和转向灯是否开启,并将记录待测无人车辆V1的行驶视频传递给控制中心Z1。
步骤5,控制中心Z1根据接收的待测无人车辆V1的倾斜角度与待测无人车辆V1预设的车辆倾斜角度进行比较,根据接收的待测无人车辆V1的行驶轨迹、行驶速度及转向灯是否开启分别与车辆环岛行驶限定的行驶轨迹、限定的行驶速度、以及转向灯要求进行比较分析,评价无人车无信号灯环岛通行能力。
无人车无信号灯环岛通行能力分为合格和不合格两种情况,其中,合格为:待测无人车辆V1在车道A1上加速至30km/h后匀速循线行驶驶向环形路口,在接近环岛入口时开启转向灯,并在转向灯开启至少3s后开始转向进入环岛;待测无人车辆V1行驶在车道B2上,至少经过1个出口后驶出环岛,在驶出环岛过程中,待测无人车辆V1减速或停车避让目标车辆V2,待目标车辆V2通过后,待测无人车辆V1开启转向灯至少3s后,从出口C3驶出,驶向测试终点位置L3;待测无人车辆V1转弯时候的侧倾角度小于待测无人车辆V1预设的车辆倾斜角度;待测无人车辆V1的行驶轨迹全程保持在测试车道线内,不得碰轧车道边线内侧,并由正确出口驶出;待测无人车辆V1的行驶速度应在车辆环岛行驶限定的行驶速度范围内;待测无人车辆V1从测试起点行驶到测试终点的时间小于3分钟;否则,不合格。
待测无人车辆V1启动,根据接收到的测试任务,从测试起点出发,进入测试场景。同时测试人员通过遥控手柄控制目标车辆V2进入环岛,行驶在车道B1。待测无人车辆V1在接收到控制中心Z1发出的行驶命令后,待测无人车辆V1进入环岛,并利用搭载的感知设备检测车道线和路径附近的车辆,实现避让路线冲突车辆并安全驶向测试终点。待测无人车辆V1在驶入环岛避让路线冲突车辆的过程中,无人车的通行能力体现在,无人车规划路径并检测路径冲突车辆,同时避让路径冲突车辆,最终正确的驶向测试终点。
实施例4
如图4所示,一种无人车无信号灯环岛通行能力测试方法,用于测试无人车在驶出环岛过程中,避让行人的能力,环岛测试道路为有四个出入口的环岛,每个出入口至少为双向两车道的环形道路、待测无人车辆V1、行人H1、控制中心Z1、360°全景摄像头M1、A1驶入环岛的车道、B1环岛外侧车道;B2环岛内侧车道,待测无人车辆V1位于测试起点位置L1,C1C2,C3,C4为四个环岛出入口;其中,行人H1为测试专用移动平台,搭载测试专用假人,行人H1位于环岛出口C3人行横道,等待启动命令;包括以下步骤:
步骤1,安全员在人工驾驶模式下将待测无人车辆V1驾驶至环岛测试道路的测试起点位置L1,并将待测无人车辆V1停稳。
步骤2,开启安装在环岛测试道路的中心的360°全景摄像头M1,检查安装在待测无人车辆V1上的姿态传感器是否正常工作。
步骤3,安全员向控制中心Z1发送测试请求,控制中心Z1根据接收的测试请求向通过无线通讯设备待测无人车辆V1发送车辆行驶指令,安全员根据待测无人车辆V1接收的车辆行驶指令开启待测无人车辆V1的自动驾驶模式,待测无人车辆V1从测试起点位置L1出发,进入测试场景,在车道A1上加速至30km/h后匀速循线行驶驶向环形路口,行驶在车道B2,并从环岛出口C3驶出,同时行人H1正要通过环岛出口C3的人行横道;测试无人车驶出环岛过程中,避让行人H1的能力。
步骤4,姿态传感器实时获取待测无人车辆V1的倾斜角度,并将获取的待测无人车辆V1的倾斜角度传递给控制中心Z1;360°全景摄像头M1全程记录待测无人车辆V1的行驶视频,行驶视频包含待测无人车辆V1的行驶轨迹、行驶速度和转向灯是否开启,并将记录待测无人车辆V1的行驶视频传递给控制中心Z1。
步骤5,控制中心Z1根据接收的待测无人车辆V1的倾斜角度与待测无人车辆V1预设的车辆倾斜角度进行比较,根据接收的待测无人车辆V1的行驶轨迹、行驶速度及转向灯是否开启分别与车辆环岛行驶限定的行驶轨迹、限定的行驶速度、以及转向灯要求进行比较分析,评价无人车无信号灯环岛通行能力。
无人车无信号灯环岛通行能力分为合格和不合格两种情况,其中,合格为:待测无人车辆V1在车道A1上加速至30km/h后匀速循线行驶驶向环形路口,在接近环岛入口时开启转向灯,并在转向灯开启至少3s后开始转向进入环岛;待测无人车辆V1行驶在车道B2上,至少经过1个出口后驶出环岛,在驶出环岛过程中,待测无人车辆V1减速或停车避让行人H1,待行人H1通过后,待测无人车辆V1开启转向灯至少3s后,从出口C3驶出,驶向测试终点位置L3;待测无人车辆V1转弯时候的侧倾角度小于待测无人车辆V1预设的车辆倾斜角度;待测无人车辆V1的行驶轨迹全程保持在测试车道线内,不得碰轧车道边线内侧,并由正确出口驶出;待测无人车辆V1的行驶速度应在车辆环岛行驶限定的行驶速度范围内;待测无人车辆V1从测试起点行驶到测试终点的时间小于3分钟;否则,不合格。
待测无人车辆V1在接收到控制中心Z1计算机发出的行驶任务后,待测无人车辆V1进入环岛,并利用搭载的感知设备检测车道线和路径附近的车辆或行人H1,实现避让路线冲突车辆或行人H1并正确通过环岛。待测无人车辆V1在驶出环岛避让路线冲突车辆的过程中,无人车的通行能力体现在,无人车规划路径并检测路径冲突的行人H1,同时避让路径冲突的行人H1,最终正确的驶出环岛。
虽然,本说明书中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (9)

1.一种无人车无信号灯环岛通行能力测试系统,其特征在于,包括:待测无人车辆、环岛测试道路和控制中心;其中,所述待测无人车辆上安装有姿态传感器,所述姿态控制器通过无线通讯设备与控制中心连接;
所述环岛测试道路的中心安装有360°全景摄像头,360°全景摄像头通过无线通讯设备与控制中心连接。
2.根据权利要求1所述的无人车无信号灯环岛通行能力测试系统,其特征在于,所述姿态传感器用于获取待测无人车辆的倾斜角度,并将获取的待测无人车辆的倾斜角度传递给控制中心;
所述360°全景摄像头用于获取待测无人车辆的行驶轨迹、行驶速度及转向灯是否开启,并将获取的待测无人车辆的行驶轨迹、行驶速度及转向灯是否开启传递给控制中心。
3.根据权利要求2所述的无人车无信号灯环岛通行能力测试系统,其特征在于,控制中心根据接收的待测无人车辆的倾斜角度与待测无人车辆预设的车辆倾斜角度进行比较,根据接收的待测无人车辆的行驶轨迹、行驶速度及转向灯是否开启分别与车辆环岛行驶限定的行驶轨迹、限定的行驶速度、以及转向灯要求进行比较分析,评价无人车无信号灯环岛通行能力;控制中心还用于向待测无人车辆发送行驶指令。
4.根据权利要求3所述的无人车无信号灯环岛通行能力测试系统,其特征在于,评价无人车无信号灯环岛通行能力具体为:
无人车无信号灯环岛通行能力分为合格和不合格两种情况,其中,合格为:待测无人车辆在进出环岛时开启右转转向灯,并至少开启3s后开始转向;待测无人车辆转弯时候的侧倾角度小于待测无人车辆预设的车辆倾斜角度;待测无人车辆的行驶轨迹全程保持在测试车道线内,不得碰轧车道边线内侧,并由正确出口驶出;待测无人车辆的行驶速度应在车辆环岛行驶限定的行驶速度范围内;待测无人车辆从测试起点行驶到测试终点的时间小于3分钟;否则,不合格。
5.根据权利要求1所述的无人车无信号灯环岛通行能力测试系统,其特征在于,还包括安全员,安全员将待测无人车辆在人工驾驶模式下驾驶到测试起点,待测无人车辆停稳后开启自动驾驶模式。
6.一种无人车无信号灯环岛通行能力测试方法,其特征在于,包括以下步骤:
步骤1,安全员在人工驾驶模式下将待测无人车辆驾驶至环岛测试道路的测试起点,并将待测无人车辆停稳;
步骤2,开启安装在环岛测试道路的中心的360°全景摄像头,检查安装在待测无人车辆上的姿态传感器是否正常工作;
步骤3,安全员向控制中心发送测试请求,控制中心根据接收的测试请求向待测无人车辆发送车辆行驶指令,安全员根据待测无人车辆接收的车辆行驶指令开启待测无人车辆的自动驾驶模式,待测无人车辆进入环岛测试道路进行测试;
步骤4,姿态传感器实时获取待测无人车辆的倾斜角度,并将获取的待测无人车辆的倾斜角度传递给控制中心;
360°全景摄像头全程记录待测无人车辆的行驶视频,行驶视频包含待测无人车辆的行驶轨迹、行驶速度和转向灯是否开启,并将记录待测无人车辆的行驶视频传递给控制中心;
步骤5,控制中心根据接收的待测无人车辆的倾斜角度与待测无人车辆预设的车辆倾斜角度进行比较,根据接收的待测无人车辆的行驶轨迹、行驶速度及转向灯是否开启分别与车辆环岛行驶限定的行驶轨迹、限定的行驶速度、以及转向灯要求进行比较分析,评价无人车无信号灯环岛通行能力。
7.根据权利要求6所述的无人车无信号灯环岛通行能力测试方法,其特征在于,步骤3中,待测无人车辆进入环岛测试道路进行测试时,在待测无人车辆进入环岛测试道路的驶入口同时,控制目标车辆也进入环岛测试道路的驶入口。
8.根据权利要求6所述的无人车无信号灯环岛通行能力测试方法,其特征在于,步骤3中,待测无人车辆进入环岛测试道路进行测试时,在待测无人车辆驶出环岛测试道路的出口同时,控制目标车辆也驶出环岛测试道路的出口。
9.根据权利要求6所述的无人车无信号灯环岛通行能力测试方法,其特征在于,步骤3中,待测无人车辆进入环岛测试道路进行测试时,在待测无人车辆驶出环岛测试道路的出口同时,让行人通过环岛测试道路的出口处的人行横道。
CN202010075003.7A 2020-01-22 2020-01-22 一种无人车无信号灯环岛通行能力测试系统及测试方法 Active CN111258300B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010075003.7A CN111258300B (zh) 2020-01-22 2020-01-22 一种无人车无信号灯环岛通行能力测试系统及测试方法
US17/134,398 US11407424B2 (en) 2020-01-22 2020-12-26 System and method for testing an ability of an automated vehicle to pass a traffic circle without traffic lights

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010075003.7A CN111258300B (zh) 2020-01-22 2020-01-22 一种无人车无信号灯环岛通行能力测试系统及测试方法

Publications (2)

Publication Number Publication Date
CN111258300A true CN111258300A (zh) 2020-06-09
CN111258300B CN111258300B (zh) 2023-05-30

Family

ID=70952675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010075003.7A Active CN111258300B (zh) 2020-01-22 2020-01-22 一种无人车无信号灯环岛通行能力测试系统及测试方法

Country Status (2)

Country Link
US (1) US11407424B2 (zh)
CN (1) CN111258300B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111811833A (zh) * 2020-07-08 2020-10-23 上海汽车集团股份有限公司 智能驾驶汽车实车测试系统
CN112735134A (zh) * 2020-12-30 2021-04-30 惠州华阳通用电子有限公司 一种自动驾驶车辆的多车道环岛进入方法
CN113677585A (zh) * 2021-06-22 2021-11-19 华为技术有限公司 一种盲区检测方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11869353B2 (en) * 2021-07-26 2024-01-09 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicular topple risk notification

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769085A (zh) * 2016-12-14 2017-05-31 特路(北京)科技有限公司 自动驾驶车辆避让动态障碍物能力的测试方法及测试场
US20180029605A1 (en) * 2016-07-28 2018-02-01 Beijing Baidu Netcom Science And Technology Co., Ltd. Method And Apparatus For Testing Operation And Control Accuracy Of Driving Control System In Unmanned Vehicle
CN107782564A (zh) * 2017-10-30 2018-03-09 青岛慧拓智能机器有限公司 一种自动驾驶车辆测评系统及方法
CN108645628A (zh) * 2018-05-14 2018-10-12 公安部交通管理科学研究所 基于道路驾驶技能的自动驾驶汽车测试系统
CN108797246A (zh) * 2018-06-21 2018-11-13 哈尔滨工业大学 一种环形交叉口车辆通行系统及通行控制方法
CN109849816A (zh) * 2019-02-01 2019-06-07 公安部交通管理科学研究所 一种自动驾驶汽车驾驶能力评测方法、装置及系统
CN110487562A (zh) * 2019-08-21 2019-11-22 北京航空航天大学 一种用于无人驾驶的车道保持能力检测系统及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2616765T3 (es) * 2013-10-07 2017-06-14 Kapsch Trafficcom Ab Sistema de vigilancia del tráfico
EP3021078B1 (en) * 2014-11-14 2018-09-26 Leica Geosystems AG Geodetic surveying system with virtual camera
CN110657820A (zh) * 2017-01-12 2020-01-07 御眼视觉技术有限公司 基于车辆活动的导航
WO2018175441A1 (en) * 2017-03-20 2018-09-27 Mobileye Vision Technologies Ltd. Navigation by augmented path prediction
US10909843B2 (en) * 2017-04-03 2021-02-02 Nissan North America, Inc. Traffic circle identification system and method
US10032379B1 (en) * 2017-04-03 2018-07-24 Nissan North America, Inc. Traffic circle warning system and method
US10217357B1 (en) * 2017-11-03 2019-02-26 Mohamed Roshdy Elsheemy Autonomous in-vehicle virtual traffic light system
JP7125214B2 (ja) * 2018-04-03 2022-08-24 モービルアイ ビジョン テクノロジーズ リミテッド プログラムおよびコンピューティングデバイス
CN108932840B (zh) 2018-07-17 2021-09-07 北京理工大学 基于强化学习的无人驾驶车辆城市交叉口通行方法
US10909866B2 (en) * 2018-07-20 2021-02-02 Cybernet Systems Corp. Autonomous transportation system and methods
WO2020076280A1 (en) * 2018-10-09 2020-04-16 Elsheemy Mohamed Roshdy Autonomous in-vehicle virtual traffic light system
US11679760B2 (en) * 2018-12-10 2023-06-20 Mobileye Vision Technologies Ltd. Navigation in vehicle crossing scenarios
KR20190096873A (ko) * 2019-07-31 2019-08-20 엘지전자 주식회사 자율주행시스템에서 차량과 서버의 연결 설정방법 및 이를 위한 장치
US11566896B2 (en) * 2019-08-22 2023-01-31 Leica Geosystems Ag Surveying system with image-based measuring
US11220214B1 (en) * 2020-08-04 2022-01-11 Robert Bosch Gmbh Vehicle viewing system and method including electronic image displays for rearward viewing by a driver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180029605A1 (en) * 2016-07-28 2018-02-01 Beijing Baidu Netcom Science And Technology Co., Ltd. Method And Apparatus For Testing Operation And Control Accuracy Of Driving Control System In Unmanned Vehicle
CN106769085A (zh) * 2016-12-14 2017-05-31 特路(北京)科技有限公司 自动驾驶车辆避让动态障碍物能力的测试方法及测试场
CN107782564A (zh) * 2017-10-30 2018-03-09 青岛慧拓智能机器有限公司 一种自动驾驶车辆测评系统及方法
CN108645628A (zh) * 2018-05-14 2018-10-12 公安部交通管理科学研究所 基于道路驾驶技能的自动驾驶汽车测试系统
CN108797246A (zh) * 2018-06-21 2018-11-13 哈尔滨工业大学 一种环形交叉口车辆通行系统及通行控制方法
CN109849816A (zh) * 2019-02-01 2019-06-07 公安部交通管理科学研究所 一种自动驾驶汽车驾驶能力评测方法、装置及系统
CN110487562A (zh) * 2019-08-21 2019-11-22 北京航空航天大学 一种用于无人驾驶的车道保持能力检测系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111811833A (zh) * 2020-07-08 2020-10-23 上海汽车集团股份有限公司 智能驾驶汽车实车测试系统
CN112735134A (zh) * 2020-12-30 2021-04-30 惠州华阳通用电子有限公司 一种自动驾驶车辆的多车道环岛进入方法
CN112735134B (zh) * 2020-12-30 2022-04-19 惠州华阳通用电子有限公司 一种自动驾驶车辆的多车道环岛进入方法
CN113677585A (zh) * 2021-06-22 2021-11-19 华为技术有限公司 一种盲区检测方法和装置

Also Published As

Publication number Publication date
CN111258300B (zh) 2023-05-30
US20210221392A1 (en) 2021-07-22
US11407424B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
CN111258300B (zh) 一种无人车无信号灯环岛通行能力测试系统及测试方法
CN108645628B (zh) 基于道路驾驶技能的自动驾驶汽车测试系统
CN108961798B (zh) 无人车交通信号灯自主感知能力测试系统及测试方法
CN113140125B (zh) 车路协同辅助驾驶方法及路侧设备
US10235885B2 (en) Autonomous vehicle driving system and method
US20220126871A1 (en) Lane Change Monitoring Method and Lane Change Monitoring System for Autonomous Vehicle
CN103335853B (zh) 一种无人驾驶车辆认知能力测试系统及方法
CN108304986B (zh) 一种自动驾驶车辆行为安全的测评方法
CN106706342B (zh) 自动驾驶车辆连续通过交叉路口能力的测试方法及测试场
CN111473980B (zh) 一种智能汽车自动驾驶能力测试系统
CN107134165B (zh) 一种车位车牌移动式识别装置及识别方法
CN103852265B (zh) 一种无人驾驶车辆环境分项性能测试系统及测试方法
CN110764889B (zh) 一种自动驾驶测试车远程监控方法及系统
JP2020066430A (ja) 車両の自動運転を制御する方法、装置、機器および媒体
CN106128137A (zh) 一种基于车联网的城市道路交通路口车内交通信息灯预警方法及系统
CN113453263B (zh) 一种车路协同v2i仿真测试系统及其方法
US20210221391A1 (en) System and method for testing cooperative driving capability of automated vehicles
CN111880511B (zh) 一种无人车泊车能力的测试系统及测试方法
CN102436752A (zh) 道路信号优先控制系统及方法
CN110749455A (zh) 一种无人车汇入车流通行能力测试系统及测试方法
JP2023541534A (ja) 少なくとも部分的に自動化された方法で運転される自動車をサポートするための構想
CN111811833A (zh) 智能驾驶汽车实车测试系统
CN211954685U (zh) 一种自动驾驶车辆逆光测试场
CN111426487A (zh) 用于自动驾驶车辆逆光测试场及测试方法
CN212112749U (zh) 路口车辆监测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant