CN111252765B - 一种活性炭微孔保护方法 - Google Patents

一种活性炭微孔保护方法 Download PDF

Info

Publication number
CN111252765B
CN111252765B CN201910885074.0A CN201910885074A CN111252765B CN 111252765 B CN111252765 B CN 111252765B CN 201910885074 A CN201910885074 A CN 201910885074A CN 111252765 B CN111252765 B CN 111252765B
Authority
CN
China
Prior art keywords
activated carbon
micropores
solvent
filling solvent
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910885074.0A
Other languages
English (en)
Other versions
CN111252765A (zh
Inventor
孙全
赵媛媛
司晓影
程锦国
卢珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shuangdeng Group Co Ltd
Original Assignee
Shuangdeng Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shuangdeng Group Co Ltd filed Critical Shuangdeng Group Co Ltd
Priority to CN201910885074.0A priority Critical patent/CN111252765B/zh
Publication of CN111252765A publication Critical patent/CN111252765A/zh
Application granted granted Critical
Publication of CN111252765B publication Critical patent/CN111252765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明提供一种活性炭微孔保护方法,该方法包括:先将活性炭与填充溶剂混合,使得填充溶剂将活性炭微孔填充;再将活性炭与填充溶剂混合物放入真空超声波装置中,使得填充溶剂能够完全分散填充;分散填充完成之后,将分散填充好的活性炭过滤出来,除去游离的填充溶剂,制作电极;电极制作完成后,通过烘箱加热,将活性炭微孔中的填充溶剂挥发,活性炭微孔恢复活性。本发明采用易挥发溶剂,成本低,制备加热完成后所有的活性炭微孔均为活性孔,提高了活性炭微孔的利用率,提高了电容量。电极制备过程与传统工艺一致,微孔恢复可代替传统工艺的极片烘烤工序,适合批量使用。

Description

一种活性炭微孔保护方法
技术领域
本发明涉及化学电源技术领域,尤其涉及一种活性炭微孔保护方法。
背景技术
活性炭多孔,微孔有效半径一般为1-10000nm,小孔半径在2nm以下,过渡孔半径一般为2-100nm,大孔半径为100-10000nm。化学电源领域用的活性炭百纳米以内,利用活性炭双电层电容的特性,用于生产超级电容器,电容型电池等等功率型化学电源。活性炭或活性炭复合电极在加工过程中一般采用是湿法油系工艺,即采用NMP作为溶剂。NMP沸点高,去除困难,进入活性炭的微孔无法去除,微孔被溶剂占据后,离子无法自由进入,微孔变成了死孔,无效孔,影响活性炭的电容特性。
为消除溶剂对活性炭电极性能的影响,通常采用提高烘烤温度和延长烘烤时间。萃取法可以有效去除活性炭电极中的水和NMP,将电极浸入易挥发机溶剂中,利用水和NMP在的有机溶剂溶解度高,将其萃取出来后再烘干。此这两种虽然有一定的效果,但生产效率低,成本高。
发明内容
为了解决上述问题,本发明提供一种活性炭微孔保护方法,提高了活性炭微孔的利用率,且具有成本低,可批量使用等优点。
一种活性炭微孔保护方法,包括:
S1、先将活性炭与填充溶剂混合,使得填充溶剂将活性炭微孔填充;所述填充溶剂的沸点<100℃,所述填充溶剂为:乙醇、丙酮、二氯甲烷或乙酸乙酯;
S2、再将活性炭与填充溶剂混合物放入真空超声波装置中,使得填充溶剂能够完全分散填充;
S3、分散填充完成之后,将分散填充好的活性炭过滤出来,除去游离的填充溶剂,制作电极;
S4、电极制作完成后,通过烘箱加热,将活性炭微孔中的填充溶剂挥发,活性炭微孔恢复活性。
进一步地,所述活性炭占溶剂与活性炭总重量的30%-60%。
进一步地,所述真空超声波装置包括超声波设备和真空箱,所述真空箱真空度≤-0.05MPa,分散时间≥5分钟,使得填充溶剂能够实现完全分散填充。
进一步地,所述填充溶剂分散填充制备电极后,所述烘箱进行加热挥发。
进一步地,所述烘箱加热温度≥100℃,使得所述填充溶剂挥发。
与现有技术相比,本发明的有益效果:
1、填充溶剂采用乙醇、丙酮、二氯甲烷、乙酸乙酯等,成本低。
2、填充溶剂的沸点<100℃,溶剂易挥发,制备加热完成后所有的活性炭微孔均为活性孔,提高了活性炭微孔的利用率,从而提高了电容量。
3、电极制备过程与传统工艺一致,微孔恢复可代替传统工艺的极片烘烤工序,适合批量使用。
具体实施方式
下面结合实施例,对本发明进行详细描述。
实施例一
首先,活性炭与优选为乙醇的填充溶剂混合,活性炭占乙醇与活性炭总重量的优选30%。活性炭与乙醇通过真空超声波装置分散,真空度为-0.05MPa,分散时间为5分钟。将分散好活性炭通过过滤,除去游离的溶剂,用于电极制作。
活性炭按照传统工艺制成电极,烘箱温度110℃,烘箱将活性炭微孔中的乙醇加热挥发,乙醇沸点低,易挥发,所得活性炭微孔均为活性孔,活性炭微孔恢复率在92%。
活性炭电极组装成电容器,电容器的实际容量3654F。
实施例二
首先,活性炭与优选为丙酮的填充溶剂混合,活性炭占丙酮与活性炭总重量的40%。活性炭与丙酮通过真空超声波装置分散,真空度为≤-0.06MPa,分散时间为8分钟。将分散好活性炭通过过滤,除去游离的溶剂,用于电极制作。
活性炭按照传统工艺制成电极,烘箱温度≥110℃,烘箱将活性炭微孔中的丙酮加热挥发,丙酮沸点低,易挥发,所得活性炭微孔均为活性孔,活性炭微孔恢复率在93%。
活性炭电极组装成电容器,电容器的实际容量3581F。
实施例三
首先,活性炭与优选为二氯甲烷的填充溶剂混合,活性炭占二氯甲烷与活性炭总重量的30%。活性炭与二氯甲烷通过真空超声波装置分散,真空度≤-0.075MPa,分散时间10分钟。将分散好活性炭通过过滤,除去游离的溶剂,用于电极制作。
活性炭按照传统工艺制成电极,烘箱温度120℃,烘箱将活性炭微孔中二氯甲烷加热挥发,二氯甲烷沸点低,易挥发,所得活性炭微孔均为活性孔,活性炭微孔恢复率在96%。
活性炭电极组装成电容器,电容器的实际容量3711F。
实施例四
首先,活性炭与优选为乙酸乙酯的填充溶剂混合,活性炭占乙酸乙酯与活性炭总重量的60%。活性炭与乙酸乙酯通过真空超声波装置分散,真空度≤-0.085MPa,分散时间30分钟。将分散好活性炭通过过滤,除去游离的溶剂,用于电极制作。
活性炭按照传统工艺制成电极,烘箱温度≥140℃,烘箱将活性炭微孔中乙酸乙酯加热挥发,乙酸乙酯沸点低,易挥发,所得活性炭微孔均为活性孔,活性炭微孔恢复率在91%。
活性炭电极组装成电容器,电容器的实际容量3680F。
Figure GDA0003486774580000041
Figure GDA0003486774580000051
传统工艺制备的活性炭微孔恢复率在80%左右,采用本发明活性炭孔保护方案的活性炭微孔,实际活性炭微孔恢复率提升90%以上。
传统工艺制作的标准3000F超级电容器实际容量在3100F左右,采用本发明活性炭孔保护方案的超级电容器,实际容量提升15%左右。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (5)

1.一种活性炭微孔保护方法,其特征在于,包括以下步骤:
S1、先将活性炭与填充溶剂混合,使得填充溶剂将活性炭微孔填充;所述填充溶剂的沸点<100℃,所述填充溶剂为:乙醇、丙酮、二氯甲烷或乙酸乙酯;
S2、再将活性炭与填充溶剂混合物放入真空超声波装置中,使得填充溶剂能够完全分散填充;
S3、分散填充完成之后,将分散填充好的活性炭过滤出来,除去游离的填充溶剂,制作电极;
S4、电极制作完成后,通过烘箱加热,将活性炭微孔中的填充溶剂挥发,活性炭微孔恢复活性。
2.如权利要求1所述活性炭微孔保护方法,其特征在于,所述活性炭与填充溶剂混合,所述活性炭占填充溶剂与活性炭总重量的30%-60%。
3.如权利要求1所述活性炭微孔保护方法,其特征在于,所述真空超声波装置包括超声波设备和真空箱。
4.如权利要求1所述活性炭微孔保护方法,其特征在于,所述真空箱真空度≤-0.05MPa,分散时间≥5分钟。
5.如权利要求1所述活性炭微孔保护方法,其特征在于,所述烘箱加热温度≥100℃。
CN201910885074.0A 2019-09-19 2019-09-19 一种活性炭微孔保护方法 Active CN111252765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910885074.0A CN111252765B (zh) 2019-09-19 2019-09-19 一种活性炭微孔保护方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910885074.0A CN111252765B (zh) 2019-09-19 2019-09-19 一种活性炭微孔保护方法

Publications (2)

Publication Number Publication Date
CN111252765A CN111252765A (zh) 2020-06-09
CN111252765B true CN111252765B (zh) 2022-06-03

Family

ID=70948422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910885074.0A Active CN111252765B (zh) 2019-09-19 2019-09-19 一种活性炭微孔保护方法

Country Status (1)

Country Link
CN (1) CN111252765B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319368B (zh) * 2008-05-09 2011-01-26 浙江理工大学 一种同时合成SiO2纳米线和SiC晶须的方法
CN104649267A (zh) * 2015-03-06 2015-05-27 方大炭素新材料科技股份有限公司 一种基于制作超级电容器用活性炭的制备方法
CN107364863B (zh) * 2017-07-21 2019-05-24 吉林大学 改性稻壳基活性炭的制备方法

Also Published As

Publication number Publication date
CN111252765A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
Qiao et al. Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors
DE102012208636B4 (de) Verfahren zur Herstellung von graphitischen Kohlenstoff-Partikeln
Jia et al. Nitrogen-doped microporous carbon derived from a biomass waste-metasequoia cone for electrochemical capacitors
CN105502386B (zh) 一种微孔碳纳米片的制备方法
Zhu et al. High‐performance supercapacitor electrode materials from chitosan via hydrothermal carbonization and potassium hydroxide activation
CN108584945B (zh) 一种大葱及废弃物制备多孔炭的方法
CN106115652B (zh) 一种b和/或p,n共掺杂紫苏叶多孔碳及其制备方法
CN106684360B (zh) 人造石墨负极材料的碳包覆方法、负极材料和锂离子电池
CN1934665A (zh) 电极的制造方法、所得到的电极和包括该电极的超电容器
JP2011020907A (ja) 活性炭および該活性炭を用いた電気二重層キャパシタ
KR20180024922A (ko) 활성탄-실리콘 복합체를 포함하는 리튬이차전지용 활물질 및 그 제조방법
CN104437444A (zh) 一种疏水活性炭改性材料的制备方法
CN104192836A (zh) 自支撑多孔石墨烯基薄膜的溶液热制备方法
CN106915744B (zh) 一种秸秆资源化利用方法
CN104760948A (zh) 一种超级电容器用高性能多孔碳电极材料的制备方法
CN108231425A (zh) 一种用于超级电容器电极材料的氮磷共掺杂多孔碳及其制备方法
JP2012101948A (ja) 活性炭の製造方法
CN109637827A (zh) 一种含氮多孔碳/二氧化锰纳米线复合电极的制备方法
CN112661153A (zh) 根茎类中药渣基多孔炭电极材料及其制备与应用
CN111252765B (zh) 一种活性炭微孔保护方法
CN104803381A (zh) 利用湘油茶果壳制备活性炭的方法和该活性炭及其应用
CN103523771A (zh) 石墨烯及其活化方法与超级电容器
Julnaidi et al. Renewable palm oil sticks biomass‐derived unique hierarchical porous carbon nanostructure as sustainability electrode for symmetrical supercapacitor
CN106824117A (zh) 一种类笼形有序介孔吸附剂的制备方法
CN109980206A (zh) 低膨胀硅碳负极材料的制备方法、负极材料和锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant